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Abstract—The memory physics induced unknown offset of the
channel is a critical and difficult issue to be tackled for many
non-volatile memories (NVMs). In this paper, we first propose
novel neural network (NN) detectors by using the multilayer
perceptron (MLP) network and the recurrent neural network
(RNN), which can effectively tackle the unknown offset of the
channel. However, compared with the conventional threshold
detector, the NN detectors will incur a significant delay of
the read latency and more power consumption. Therefore, we
further propose a novel dynamic threshold detector (DTD), whose
detection threshold can be derived based on the outputs of the
proposed NN detectors. In this way, the NN-based detection
only needs to be invoked when the error correction code (ECC)
decoder fails, or periodically when the system is in the idle
state. Thereafter, the threshold detector will still be adopted
by using the adjusted detection threshold derived base on the
outputs of the NN detector, until a further adjustment of the
detection threshold is needed. Simulation results demonstrate that
the proposed DTD based on the RNN detection can achieve the
error performance of the optimum detector, without the prior
knowledge of the channel.

I. INTRODUCTION

In recent years, the solid-state non-volatile memory (NVM)

technologies have been developed rapidly which offer lower

power consumption, faster read access time, and better me-

chanical reliability than hard disk drives (HDDs), and non-

volatile data retention over DRAM and SRAM. The current

NVM market is dominated by the flash memories, while

emerging NVM technologies such as the spin-torque transfer

magnetic random access memory (STT-MRAM) and resistive

random-access memory (RRAM) are being actively explored

to be the next generation NVMs, due to their superior per-

formance of the write/read speed, data retention time, energy

consumption, endurance, and scalability [1], [2].

Among various noises and interferences that affect the

reliability of NVMs, the memory physics induced unknown

offset of the channel is a critical and difficult issue to be

tackled for many NVMs. For example, in the flash memory,

the charges stored in the memory cell leak away from the

floating gate over time, thus causing a decrease of the memory

cell threshold voltage and hence the data retention noise [3]. In

the multilevel-cell phase-change memory (PCM), the structural
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relaxation and stress release of the phase change material

cause the random fluctuation of the programmed resistances

of the closely-spaced amorphous levels of the memory cell,

and thereby the critical issue of “resistance drift” for PCM

[4]. In the recently commercialized STT-MRAM, the change

of the working temperature also has a significant impact

on the memory reliability. In particular, with the increase

of temperature, the low resistance of the STT-MRAM cell

hardly changes, but the high resistance decreases, thus leading

to more overlapping of the memory resistance distributions

[5]. The corresponding deviations from the nominal values

of memory readback signals (e.g. threshold voltages or resis-

tances of memory cells), called offsets, are unknown to the

channel detector, and hence will severely degrade its error

performance, and lead to more decoding errors of the error

correction code (ECC) subsequently.

To mitigate the unknown offset of the NVM channels, the

typical techniques proposed in the literature are to estimate the

NVM channel with the unknown offset periodically or when

the ECC decoder fails, based on which the memory sensing

thresholds (i.e. the channel detection thresholds) are adjusted

accordingly [6]. However, these techniques either require a

well-predicated NVM channel model, which are difficult to

be derived due to the complication of memory physics, or

they assume Gaussian distribution of the memory cell readback

signal, which can be non-Gaussian in practice [7]. Reference

cells, which are redundant cells with known stored data,

are also widely applied in NVMs to estimate the unknown

offset of the channel [8]. A frequent insertion of reference

cells may improve the accuracy of the detection threshold,

which, however, comes at the cost of higher redundancy and

thus decreasing the information storage efficiency. Moreover,

similar to the data cells, the reference cells also suffer from the

non-uniformity issue caused by fabrication process variations,

which may lead to inaccurate estimation of the NVM channel.

Constrained coding techniques have also been proposed to

improve the channel detection for NVM channels with un-

known offset. Typical codes proposed in the literature include

the balanced codes [9], and the composition check codes [10].

These codes can mitigate the unknown offset of the channel

when used in conjunction with the Slepian detector. However,

the corresponding code rate loss is very high. A Pearson

distance detection scheme [11], and subsequently a dynamic

threshold detection based on Pearson distance detection [12]
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are proposed recently to tackle the uncertainty of the NVM

channel. These works assume that the offset for a given symbol

is fixed within a codeword, which may not always hold in

practice. In addition, the algorithms become unpractical for

large values of the codeword length and the code alphabet.

On the other hand, in recent years the machine learning

(ML) and deep learning (DL) techniques have shown amazing

performance in speech recognition, natural language process-

ing, image processing, and many other areas [13]. Neural

networks (NNs) have also been applied to communication

systems and demonstrated superior performance from various

aspects, such as the channel estimation and channel decoding

[14], [15]. However, so far no much work has been reported

on ML for the channel detection for NVMs. Realizing that the

uncertainty of the NVM channels can be effectively tackled by

using the ML and DL techniques, in this work, we propose

a novel NN-based dynamic threshold detection scheme, for

NVM channels with unknown offset. We mainly use the STT-

MRAM channel as an example to illustrate the proposed

detection scheme, although it can also be applied to the

other NVMs, such as the flash memory and PCM. The major

contributions of this work are summarized as follows.

1) We first propose novel NN detectors, which can effec-

tively tackle the unknown offset of the NVM channel.

We find that the recurrent neural network (RNN) detector

outperforms the multilayer perceptron (MLP) detector,

and approaches the performance of the optimum detector

with the full knowledge of the channel. It also requires

much smaller size of training data, and can learn the

NVM channel uncertainty much faster than the MLP

detector.

2) To avoid the significant increase of the read latency

and power consumption incurred by the NN detectors,

we further propose a novel dynamic threshold detector

(DTD), whose detection threshold can be derived based

on the outputs of the proposed NN detectors. Simulation

results demonstrate that the DTD based on the RNN de-

tection can achieve the error performance of the optimum

detector, without the prior knowledge of the channel.

3) We propose to only activate the NN-based detection when

the ECC decoder fails, or periodically when the system

is in the idle state. Thereafter, the threshold detector will

still be adopted by using the adjusted detection threshold

derived based on the outputs of the NN detector, until a

further adjustment of the detection threshold is needed.

Thus leading to a significant reduction of the read latency

and power consumption.

II. CHANNEL MODEL

We use the STT-MRAM channel as an example to illustrate

the proposed detection schemes. An STT-MRAM cell has two

resistance states, a low resistance state R0 which represents

an input information bit of “0”, and a high resistance state

R1 which denotes an information bit of “1”. The reliability

of the data stored in the memory cell is largely affected by

the process variation caused by the fabrication imperfection,
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Fig. 1. Resistance distributions of the STT-MRAM cell. (a) Original resistance
distributions; (b) With offset caused by increase of temperature.

which leads to widened distributions of the low and high resis-

tances of the memory cell and their overlapping, and hence the

channel detection errors [16], [17]. Moreover, the resistance

distributions of the STT-MRAM cell are also affected by the

working temperature. It has been found that with the increase

of temperature, the high resistance R1 will decrease and while

the low resistance R0 hardly changes [5]. Fig. 1 shows an

illustration of the resistance distributions (i.e. the probability

density functions (PDFs) of the resistances) of STT-MRAM

and their variation caused by the change of temperature.

Obviously more memory sensing errors or detection errors will

occur if the detection threshold Rth remains the same when

temperature increases. Based on the stochastic characteristics

of R0 and R1 described above, the resistance read back from

the k-th memory cell can be expressed as

yk = rk + nk + bk, (1)

where rk is the nominal resistance value corresponding to an

input bit of xk ∈ {0, 1} stored in the k-th memory cell, with

k = 1, · · · , N . That is, rk = µ0 for xk = 0, and rk = µ1

for xk = 1. Here, we use nk to represent the variation of

the resistances R0 and R1 caused by process imperfection,

where nk ∈ R is a zero-mean independent and identically

distributed (i.i.d) noise sample with a variance of σ2
i , i = 0, 1.

Note that nk is not necessarily to be Gaussian distributed.

Furthermore, we use bk to denote the offset of resistance

caused by the increase of temperature, which only occurs with

the high resistance state R1. Thus, bk = 0 for all xk = 0.

Since the influence of temperature on each cell is random, we

assume the offset bk for xk = 1 follows a Gaussian distribution

N (µb, σ
2
b ) with mean of µb and standard deviation of σb.

In the simulations of this work, we follow the empirical

results of [18] and assume µ0 = 1 kΩ, µ1 = 2 kΩ. We further

assume σ0/µ0 = σ1/µ1 due to the characteristics of memory

fabrication process. We vary σ0/µ0 (and hence σ1/µ1) and the

offset bk for xk = 1 to account for the influence of different

levels of process variations as well as the temperature increase.
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Fig. 2. Proposed MLP network architecture for the NN-based detection.

III. NEURAL NETWORK-BASED DYNAMIC THRESHOLD

DETECTION

A. Neural Network Detector

In this work, we first consider the detection of the NVM

channel with unknown offset as a ML problem and propose

novel NN detectors. The inputs to the NN are the resistance

values y = {y1, y2, · · · , yN} read back from the memory

cells, where N is the number of neurons in the input layer

of the NN. Note that in the practical NVMs, these resistances

need to be quantized first before sending to the NN. In this

work, we find that by using a three or four bits uniform

quantizer, the proposed detectors can achieve a performance

close to that using the full soft resistances. The outputs of the

NN are the soft estimates x̃ of x, with x̃ = {x̃1, x̃2, · · · , x̃N},

based on which we can obtain the hard estimation x̂ of x.

The corresponding hard-decision rule is: if x̃k > 0.5, x̂k = 1;

Otherwise, x̂k = 0. We note that the NN output is a function

of the NN input and the network parameters θ, given by

x̃ = f(y, θ). The NN will learn to find the best θ∗ by

minimizing a properly defined loss function L over the set

of training data, such that

θ∗ = argmin
θ

L(x, x̃), (2)

where L(x, x̃) calculates the loss between x̃ and x. Note that

the training process is to be carried out off-line. Moreover,

another separate data set named the validation set will be used

to validate the effectiveness of the trained NN detector. After

the training and validation processes, the NN with the trained

θ∗ will be applied to detect the unknown channel outputs by

using the same NN architecture.

1) Neural Network Architectures: We adopt two typical NN

architectures, the MLP and RNN, to perform the NN-based

detection. The MLP is a feedforward NN with fully-connected

layers [19]. For each neuron of the MLP, all of its weighted

inputs and the bias are added up, after which an activation

function σ(·) is applied to introduce the non-linearity to the

NN. In this work, we adopt the rectified linear unit (ReLU)

and the sigmoid activation function, which are defined by
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Fig. 3. Proposed RNN architecture for the NN-based detection.

σrelu(t) = max {0, t} and σsigmoid(t) = 1
1+e−t , respectively,

with σrelu(t) ∈ [0,∞) and σsigmoid(t) ∈ (0, 1). The proposed

MLP structure is illustrated by Fig. 2. It consists of three

layers: an input layer of size N , a hidden layer of size 4N ,

and an output layer of size N . With the sigmoid function, the

output x̃k of the final layer is a value between 0 and 1, which

indicates the probability of xk being a ‘0’ or a ‘1’.

Unlike the feedforward NNs, the RNN has memories to

process a sequence of inputs, and hence has shown superior

performance for the time series tasks. The RNN has different

types of cells such as the vanilla RNN, long short-term mem-

ory (LSTM), and gated recurrent unit (GRU). Compared with

the LSTM and GRU, the vanilla RNN has significantly less

number of parameters. However, it suffers from the vanishing

gradient problem, which causes difficulties to learn long-

distance relationships since the gradients might vanish to zero

[19]. Therefore, in this work, we employ the GRU as the RNN

unit since it can avoid the vanishing gradient problem, and it

has less number of parameters than the LSTM. In our settings,

we use a stacked RNN architecture as shown by Fig. 3. The

proposed RNN has two GRU hidden layers with a many-to-

many (multiple inputs, multiple outputs) configuration. The

final output layer is a fully-connected layer with the sigmoid

activation function. Although different codeword lengths of

ECCs have been investigated for STT-MRAM [17], [20], in

our experiments, N is set to be 71, which is the same with

the codeword length of the (71, 64) Hamming code adopted

by Everspin’s 16Mb MRAM [21].

2) Training Method: To train the MLP and RNN, with

the channel model given by (1), we can generate sufficient

number of samples of the memory readback resistance yk
and its corresponding label xk as the training data set. In our

paper, such training data set is generated for each resistance

variation and offset level. We further define the specific loss

function for the NNs. When the loss function is minimized

through the training process, the NN output x̃ will be closest

to the expected output x. For both the MLP and RNN, we use

the mean square error (MSE) to measure the loss. Hence, the

loss function is given by L(x, x̃) = 1
N

∑N
k=1(xk − x̃k)

2. By



TABLE I
NETWORK SETTINGS FOR THE PROPOSED MLP AND RNN

ARCHITECTURES FOR THE NN-BASED DETECTION.

MLP RNN

Network Parameters 40683 46080

Training Samples 1× 106N 4× 104N

Mini-batch Size 4N 2N

Loss Function MSE MSE

Initializer Xavier uniform Xavier uniform

Optimizer Adam Adam

using variants of the gradient descent algorithm as well as the

back propagation method, the optimal θ∗ can be obtained by

minimizing L(x, x̃) defined above over the training data set,

respectively.

The MLP and RNN settings obtained based on our exper-

iments are illustrated by Table I. Observe that the number of

network parameters for the proposed MLP and RNN is similar.

The significant difference between the MLP and RNN settings

is the number of training samples. After many trials, we find

that 4 × 104N training samples are sufficient for the RNN

to achieve its best performance, while the size of the training

data required by the MLP is 25 times larger than the RNN.

This is a great advantage of the RNN, since the size of the

training data is often limited in the practical applications.

To illustrate the NN training process, we show in Fig. 4

the bit error rate (BER) of the MLP detector and the RNN

detector for each epoch during training. The corresponding

channel parameters are σ0/µ0 = 5%, µb = −0.2 kΩ, and

σb/µ1 = 4%. We observe that the training BER of both NN

detectors decreases as the epoch increases, and after a certain

number of epoches, the BER converges. Furthermore, the MLP

detector requires much more number of epoches, and the BER

converges much slower than the RNN detector. This indicates

that the RNN can learn the NVM channel uncertainties much

faster than the MLP. Note that with preprocessing of the input

data and regularization techniques, it is possible to further

improve the performance of MLP. For a fair comparison, these

techniques are not included in this paper.

We finally remark that the above proposed NNs and the

learning process can be efficiently implemented in parallel

with low-precision data types on a graphical processing unit

(GPU) or an application specific integrated circuit (ASIC). The

NNs after training and validation can then be used to detect

its input samples y and generate the estimation of the channel

input x̃ by using the same NN architecture, without any prior

knowledge of the NVM channel.

B. Dynamic Threshold Detector Based on Neural Network

Detection

As what will be shown in Section IV, for the NVM channel

with unknown offset, the above proposed NN detectors and

especially the RNN detector can achieve performance very

close to the optimum detector with the full knowledge of

(a) MLP (b) RNN
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Fig. 4. BERs of the MLP detector and the RNN detector for each epoch
during training.

the channel. However, the corresponding NN-based detection

needs to be activated for each data block of length N . This will

lead to a significant delay of the read latency and more power

consumption. Therefore, in this subsection, we propose a novel

dynamic threshold detector (DTD) whose detection threshold

is derived based on the outputs of the proposed NNs.

First, for a given y and with an assumed detection threshold

Rth, we can obtain the hard estimation x̄Rth
. Therefore, based

on the output x̃ and hence x̂ from the proposed NNs, an

adjusted detection threshold Radj

th can be obtained by searching

for an Rth that minimizes the Hamming distance between x̂

and x̄Rth
, denoted by d(x̂, x̄Rth

). By including a large amount

M of NN output sequences, a more accurate adjusted detection

threshold can be obtained. We thus have

Radj
th = argmin

Rth

M
∑

i=1

d(x̂i, x̄i
Rth

). (3)

Note that the above described NN-based detection and

the subsequent search of the adjusted detection threshold

only need to be invoked when the ECC decoder fails, or

periodically when the system is in the idle state, and will

be terminated once the adjusted detection threshold is de-

termined. Thereafter, the conventional threshold detector will

be adopted by using the adjusted detection threshold until a

further adjustment of the detection threshold is needed. Thus

leading to a significant reduction of the read latency and power

consumption compared to the NN detectors described in the

previous subsection, which need to be activated for every input

data block.

C. Optimum Detection with Full Knowledge of the Channel

Finally, in order to provide references for evaluating the per-

formance of the above proposed detectors, in this subsection,

we derive the optimal detection threshold R
opt

th and the BER of

the corresponding threshold detector. We consider three cases:

channels with no offset, channels with a fixed offset of bk = µb

(σb = 0) for all xk = 1 corresponding to the high resistance

state R1, and channels with an offset bk that varies from cell

to cell for xk = 1. We assume that the channel given by (1)

including the knowledge of bk is known to the detector. Based
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Fig. 6. BER comparison of different detectors for the channel with an offset
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on the hard-decision rule, and for a given Rth and bk, the BER

of the threshold detector is given by

Pb(Rth, bk) = Pr(xk = 0)Pr(x̂k 6= 0|xk = 0)

+ Pr(xk = 1)Pr(x̂k 6= 1|xk = 1)

=
1

2

(

1 +Q

(

Rth − µ0

σ0

)

−Q

(

Rth − µ1 − bk
σ1

))

,

(4)

where we assume i.i.d channel inputs, and the resistance vari-

ation nk is Gaussian distributed. The corresponding optimal

Rth can be obtained by minimizing (4). That is, the derivative

of Pb(Rth, bk) with respect to Rth is given by

P ′

b(Rth, bk) = − 1

2σ0

√
2π

exp

(

− (Rth − µ0)
2

2σ2
0

)

+
1

2σ1

√
2π

exp

(

− (Rth − µ1 − bk)
2

2σ2
1

)

. (5)

Hence, the optimal Rth that minimizes Pb(Rth, bk) can be

derived by solving P ′

b(Rth, bk) = 0 analytically, and the

obtained optimum threshold is given by (6).

For channels with no offset, or with a fixed offset of bk =
µb, the minimum BER of the channel detector can be obtained

by substituting the optimized Ropt
th of (6) back into (4). For the

case that the offset bk has variations, the BER for a given Rth

can be obtained by calculating the expectation of Pb(Rth, bk)
given by (4). We thus have

Pb(Rth) =
1

2

(

1 +Q

(

Rth − µ0

σ0

)

− E

[

Q

(

Rth − µ1 − bk
σ1

)])

,

(7)

where the expectation term in (7) can be computed as

E

[

Q
(

Rth−µ1−bk
σ1

)]

=
∫

∞

−∞
p(bk)Q

(

Rth−µ1−bk
σ1

)

dbk, with

p(bk) being the PDF of bk. Since there is no close-form

solution for the derivative of Pb(Rth) given by (7), we calculate

it numerically. We apply, for example, the bisection searching

method to find the root Ropt
th that minimizes (7), and hence

can obtain the minimum BER thereafter. The above derived

minimum BERs for various cases serve as lower bounds to

evaluate the performance of the proposed detectors.

IV. PERFORMANCE EVALUATIONS

In our experiments, the implementation and training of all

NNs are performed by using the machine learning library

Keras [22], with TensorFlow [23] as its back-end. The network

settings are given in Table I. To evaluate the BER performance

of the MLP detector and RNN detector as low as 10−5, we

set the test data size of 106N bits. In the simulations, we

adopt the channel model of (1), and take different values of

σ0/µ0 (and hence σ1/µ1) and the offset bk for xk = 1 to

incorporate the influence of different process variations as

well as the change of working temperature. The resistance

variation nk is assumed to be Gaussian distributed for most

cases, and the corresponding performance bounds with the

optimum detection thresholds we derived in Section III.C are

included as references. Meanwhile, we also present at the end

of this section a case that nk is not Gaussian distributed.

To verify the effectiveness of the proposed NN detectors, we

first consider the case that the channel has no offset. As shown

by Fig. 5, both our proposed NN detectors significantly out-

perform the conventional threshold detector with the detection

threshold of (µ0+µ1)/2, and achieve performance close to the

optimum detection for the channel without offset (Curve 4).

In particular, the performance of the RNN detector approaches

that of the optimum detector, while the MLP detector has a

larger gap from the optimum detector.

Next, we present the performance of the various detectors

for the channel with different offsets. We first illustrate in

Figures 6 and 7, the detector performance for the offsets

with a fixed mean value of µb = −0.2 kΩ, and different

normalized root mean squared values σb/µ1 of 4% and 7%,

respectively. For the case of the offset with a small variation

of σb/µ1 = 4%, we observed from Fig. 6 that both the

MLP and RNN detectors outperform the detector optimized

for the channel without offset (Curve 1). The performance of

MLP detector is slightly worse than the detector optimized

for the channel with a fixed offset of bk = µb (Curve 2,

assuming only the mean of bk is known to the detector).

However, the RNN detector provides performance better than
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Curve 2 and approaches that of the detector optimized using

the full knowledge of the channel (e.g. µb = −0.2 kΩ
and σb/µ1 = 4%) as indicated by Curve 3. Furthermore,

the proposed DTDs based on the MLP detector and the

RNN detector both achieve even better performance than their

original NN detectors. The DTD based on the RNN detection

almost achieves the performance of the optimum detector with

the full knowledge of the channel.

With the increase of the offset variation, as shown by Fig.

7, the performance gap between the detector optimized for

the channel with a fixed offset of bk = µb (Curve 2) and

that optimized for the fully known channel (Curve 3) becomes

larger. In this case, all the proposed detectors (Curves 4, 5, 6,

7) achieve performance better than the detector optimized for

the channel with a fixed offset of bk = µb. Again, the RNN

detector outperforms the MLP detector and achieves BERs
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Fig. 9. BER comparison of different detectors for the channel with nk being
Beta distributed, µb = −0.2 kΩ, and σb/µ1 = 7%.

close to those of the optimum detector. Moreover, the proposed

DTDs outperform their original NN detectors, and the RNN

detection based DTD achieves the performance of the optimum

detector with the full knowledge of the channel.

We further illustrate by Fig. 8, the performance of various

detectors with different mean offsets µb. The resistance spread

is fixed at σ0/µ0 = 5%, and the normalized offset variation

is σb/µ1 = 7%. Observe that all the proposed detectors

outperform the detector optimized for the channel with a fixed

offset of bk = µb. The RNN detector performs better than

the MLP detector, and the DTD based on the RNN detection

almost achieves the performance of the optimum detector, for

all the different mean offsets.

Finally, we consider the case that the resistance variation

nk is non-Gaussian distributed. As an example, we assume nk

follows a skewed Beta distribution B(α, β), with β = 1.2α,

and σ2
0 = αβ

(α+β)2(α+β+1) . From Fig. 9, we observe that all the

proposed detectors outperform the detector optimized for the

channel with Gaussian distributed nk, and with a fixed offset of

bk = µb. The proposed DTD based on the the RNN detection

achieves the performance of the optimum detector with the full

knowledge of the channel (with nk being Beta distributed),

which is obtained by simulations. This demonstrates that the

proposed NN-based DTD works well for channels with the

non-Gaussian distributed noise.

V. CONCLUSIONS

We have considered the memory physics induced unknown

offset that severely degrades the error performance of many

NVM channels, and proposed a novel NN-based dynamic

threshold detection scheme. In particular, we have first pro-

posed novel NN detectors, which can effectively tackle the

unknown offset of the NVM channel. We found that the RNN



detector outperforms the MLP detector, and approaches the

performance of the optimum detector with the full knowledge

of the channel. It also requires much smaller size of training

data, and can learn the NVM channel uncertainty much

faster than the MLP detector. However, compared with the

conventional threshold detector, the NN detectors will result

in a significant delay of the read latency and more power

consumption. Therefore, we have further proposed a novel

DTD, whose detection threshold can be derived based on

the outputs of the proposed NN detectors. We proposed to

only activate the NN-based detection when the ECC decoder

fails, or periodically when the system is in the idle state.

Thereafter, the threshold detector will still be adopted by

using the adjusted detection threshold derived base on the

outputs of the NN detector, until a further adjustment of the

detection threshold is needed. Thus leading to a significant

reduction of the read latency and power consumption. In the

simulations, we have considered channels with both Gaussian

distributed and non-Gaussian distributed noises. Simulation

results demonstrated that the proposed DTD based on the RNN

detection can achieve the error performance of the optimum

detector, without the prior knowledge of the NVM channel.

Thus demonstrating the great potential of the proposed NN-

based DTD for NVMs.
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