
A Novel Synthesis Algorithm for Reversible Circuits

Mehdi Saeedi, Mehdi Sedighi, Morteza Saheb Zamani
Quantum Design Automation Group, Computer Engineering Department

Amirkabir University of Technology
Tehran, Iran

{msaeedi, msedighi, szamani}@aut.ac.ir

Abstract—In this paper, a new non-search based synthesis
algorithm for reversible circuits is proposed. Compared with the
widely used search-based methods, our algorithm is guarantied
to produce a result and can lead to a solution with much fewer
steps. To evaluate the proposed method, several circuits taken
from the literature are used. The experimental results
corroborate the expected findings.

1. INTRODUCTION
An n-input, n-output, fully specified Boolean specification

is called reversible if it maps each input assignment to a unique
output assignment. It has been shown that using conventional
irreversible logic gates leads to energy dissipation, regardless of
the underlying circuit [1], [2]. Today, reversible logic design
has received considerable attention in various research areas
 [3]- [5].

Reversible logic synthesis is defined as the ability to
generate a circuit from a given reversible specification. The
synthesis of reversible circuits is significantly more complex
than the synthesis of traditional irreversible gates [6] and it is
one of the most recent research problems.

In this paper, a non-search based synthesis method for
reversible circuits is proposed. The rest of the paper is
organized as follows: In Section 2, basic concepts are
presented. Previous work on reversible logic synthesis is
reviewed in Section 3. Our synthesis algorithm is presented in
Section 4. Experimental results are reported in Section 5 and
finally, Section 6 concludes the paper.

2. BASIC CONCEPT
An n-input, n-output gate is called reversible if it realizes a

reversible function. Previously, various reversible gates with
different functionalities have been proposed [7]- [9]. Among
them, CNOT-based gates comprise an important class of
reversible gates [10]- [18] which are also considered in this
paper and denoted as follows:

Definition 1: An n-input, n-output CNOT gate
CNOTn(x1,x2,…,xn) passes the first n-1 lines unchanged. These
lines are referred to control lines. This gate flips the nth line if
the control lines are all one. In other words, we have: xi(out)=xi
(i<n), xn(out)=x1x2…xn-1⊕xn. Some authors [12] assume that
complementation can also be internal to a CNOT-based gate.
Therefore, it is possible to have a CNOT3(a’,b’,c) gate to refer
to cout=c⊕a’b’, aout=a and bout=b.

In the following section, previous algorithms for reversible
circuit synthesis are reviewed.

3. PREVIOUS WORK
Several algorithms have recently been proposed to

synthesize a reversible circuit. Toffoli in [9] presented an
algorithm to implement a function using CNOT-based gates. In
 [10], a new incremental approach was presented using shared
binary decision diagrams for representing a reversible
specification and measuring circuit complexity. Some authors
used transformation-based methods to optimize the synthesized
results of other algorithms [11]- [13].

The authors of [14] investigated a number of techniques to
synthesize optimal and near-optimal reversible circuits that
require little or no temporary storage. They also provided some
properties about even and odd permutation functions. As the
size of a reversible circuit can be large, a practical algorithm for
reversible circuit synthesis may become extremely difficult.

Due to the lack of a systematic method, search-based
algorithms are widely used for reversible circuit synthesis
where an extensive exploration is required to find a possible
implementation of the circuit (for example see [15]- [17]). In
order to guide the search process, the authors of [18] and [19]
considered the use of spectral techniques to select the best
possible candidate based on a predefined cost function.
However, as search-based algorithms evaluate all possible
gates to find an implementation of the circuit, they cannot be
used to synthesize large functions.

In the following section, we propose a non-search based
synthesis algorithm for reversible circuits which produces a
solution for a given specification without evaluation of all
possible gates during each step.

4. SYNTHESIS ALGORITHM
Based on the definition of a reversible specification, it can

be said that a reversible Boolean specification of size n maps
the set of integers {0, 1… 2n-1} onto itself probably with
different order where the jth integer represents the jth minterm.
For example, the reversible specification shown in Fig. 1-a may
be represented as the set of integers {2,7,0,1,6,3,4,5}.

In this paper, the ith input (output) variable is denoted as ai
(fi). In addition, a general reversible specification of size n is
shown as F(a1,a2,…,an)=(f1,f2,…,fn). Assume that a set of
CNOT-based gates (g1,g2, …gk) is used to produce fi (i=1,..,n)
from its corresponding ai as shown in Fig. 1-b. Since the circuit
is reversible, one can use the same set of gates in the reverse
order, i.e. (gk,gk-1, …g1), to produce ai from fi.

g2 gkg1

a1

a2

an

f2

fn

f1

101111
001011
110101
011001
100110
000010
111100
010000

321321 fffaaa

(a) (b)

Figure 1. (a) A possible reversible specification of size 3, (b) producing n
reversible functions from k reversible gates

Definition 2: The application of a reversible CNOT-based
gate at the output side of a reversible specification F is called
“output translation”. Therefore, after using several output
translations each output variable fi will be transformed to its
corresponding ai.

As each output translation is a reversible gate, the result of
using an output translation on a reversible circuit will also be
reversible. Furthermore, by using an output translation only one
output variable (i.e. the last one) is changed and the others are
left unchanged.

Lemma 1: (a) Applying an output translation to a given
specification F exchanges the location of 2k minterm pairs
where k≤n-1. (b) Conversely, exchanging the location of 2k-1
(k=n-m+1) minterm pairs with the following properties has the
same result as applying an output translation

()
mm iiiim ffffCNOT ,,...,,

121 − to F where ik∈(1…n) and m≤n:

• all of the 2k minterms have the same value on m-1
particular bit locations.

• the two minterms of each pair differ only in one bit
position.

Proof: (Case a): Assume that an output translation
()

mm iiiim ffffCNOT ,,...,,
121 − is applied to F where ki

f for k∈(1..m-1)
can also be a complemented function. It can be easily verified
that this output translation changes mi

f to mm iiii ffff ⊕
−121

... where
the value of 121 −miii fff is 1 for only 2k (k=n-m+1) minterms. As a
result, by using ()

mm iiiim ffffCNOT ,,...,,
121 − , the location of these 2k

minterms are changed. Moreover, it can be checked that
()

mm iiiim ffffCNOT ,,...,,
121 − exchanges the locations of all 2k-1

minterm pairs 1: =
mii fm and 0: =

mij fm .

(Case b): Since there are 2k (k=n-m+1) minterms which
have the same value on their m-1 bits, there are 2k-1 minterm
pairs each of which differs only in one bit position. Therefore,
exchanging the location of these pairs has the same effect as
applying an output translation ()

mm iiiim ffffCNOT ,,...,,
121 − where

ik∈(1…m) and m≤n.□

Based on the previous definitions and lemma, the goal of
our reversible synthesis algorithm is to generate a set of output

translations with a specific order which when applied to the
reversible specification F, generates ai from fi. Fig. 2 shows our
synthesis algorithm.

Input: A reversible specification F (a1, a2, …, an) = (f1 , f2, …, fn)
Output: A set of reversible CNOT-based gates which when applied to F
produces an identity function.
Notation: The ith function (variable) of jth minterm is denoted as fi,mj
(ai,mj). Consequently, The ith minterm of jth function (variable) is
denoted as mi,fj (mi,aj)

i = 1;
repeat
 reset all of the 2n minterms to be unvisited.
 for each minterm mj (j = 1 ... 2n) do
 if mj is not visited then
 if fi,mj ≠ai,mj then
 begin
 mark the minterm mj,fi as a visited minterm
 select the minterm mk,fi which differs from mj,fi in its ith variable
 if mk,fi is below mj,fi then
 exchange the locations of mj,fi and mk,fi. (Therefore fi,mj =ai,mj)
 mark the minterm mk,fi as a visited minterm
 else if mk,fi is above than mj,fi then
 if fp,mk ≠ap,mk (p=1...n) for at least one p then
 exchange the locations of mj,fi and mk,fi. (Therefore fi,mj =ai,mj)
 mark the minterm mk,fi as a visited minterm
 end
 Extract the set of output translations (gates) based on Lemma 1
i = (i+1) mod n;

until fi=ai for each i n)

Figure 2. Our synthesis algorithm

The following example explains the proposed algorithm in
more details:

Example 1: Consider a reversible specification
F(a1,a2,a3)=(0,1,2,3,7,5,6,4) defined as the first and the second
columns of Fig. 3.

48476484764847648476 3

321

2

321

1

321321321

011

001
110
010
100
000

011
111

110
010
100
000

001
011

110
010
100
000

001
011
101
111
110
010
100
000

111
011
101
001
110
010
100
000

StepStepStepF

ffffffffffffaaa

111

101

101

001
111
101

Figure 3. The specification of Example 1 before and after three translations

Step 1: Select the first variable (i.e. a1). It can be verified
that the minterms of a1 are placed at their right positions.
Therefore, i should be incremented to select the second variable
(i.e. a2). In addition, it can be seen that the first four minterms
of a2 are also positioned correctly. So, set j=5 and check the 5th
minterm of f2 (i.e. 1) and a2 (i.e. 0). As these minterms are not
equal, the 6th minterm of F (i.e. 101) should be selected. Note
that the 5th and the 6th minterms differ only in their second
variable. Furthermore, the minterm 101 (the 6th minterm) is
below 111 (the 5th minterm) in F. Therefore, these two

minterms are exchanged by the algorithm. Then, set j=7 as the
6th minterm has been visited previously. However, the 7th
minterm was also placed correctly which leads to set j=8 to
verify the last minterm of a2. Note that the second variable of
this minterm is wrong. However, correcting it needs to change
the location of the 7th minterm (i.e. 110) which is at its right
position above the 8th minterm. Therefore, the algorithm does
nothing to and goes to the next step. The third column in Fig. 3
shows the specification of F after this translation.

Step 2: Select the third variable (i.e. a3). Start with j=5 as
the first four minterms were placed correctly. It can be checked
that the 5th minterm of f3 (i.e. 1) and a3 (i.e. 0) are not equal.
Therefore, the 8th minterm of F (i.e. 100) should be selected.
Note that these two minterms differ only in their third variable.
Furthermore, the minterm 100 (the 8th minterm) is below 101
(the 5th

 minterm) in F. Therefore, these two minterms are
exchanged. Other minterms of f3 (i.e. j=6 and 7) are left
unchanged. The forth column in Fig. 3 shows the specification
of F after this translation.

Step 3: Select the second variable (i.e. a2) as the first
variable needs no consideration (see Step 1). Based on the
previous two steps and the proposed algorithm, it can be easily
checked that the locations of the 6th and the 8th minterms are
exchanged. Since after the third translation, we have fi=ai for
each i∈(1…n), the algorithm is finished. The fifth column in
Fig. 3 shows the specification of F after this translation.

In order to find the CNOT-based implementation of each
output translation, one can use the results of the previous
translation and Lemma 1 to find each gate. Fig. 4 shows the
implementation of each output translation and the final
circuit.□

Figure 4. The CNOT-based implementation of each output translation for
(a) Step 1, (b) Step 2, (c) Step 3 and (d) the final circuit

As each output translation changes only one fi (i=1…n), if
the previous output translation placed the minterms of the ith
variable at their right locations, the current output translation
applied to another variable would not change their locations.
Furthermore, it is important to note that the result of applying
the proposed algorithm is a set of CNOT-based gates which
should be applied in the reverse order to the input variables
(a1,a2,…,an) to produce the outputs (f1,f2,…,fn).

Theorem 1: The proposed algorithm will converge to a
possible implementation after several steps.

Proof: Consider a reversible specification F of size n.
Assume that after the ith step, several minterms which are
represented as a set Σ, are placed at their right positions and in
the (i+1)th step, the algorithm works on the kth variable (k≤n).
Suppose that the kth variable of a minterm, i.e. the mth (m∉Σ)
minterm, is not correct. Accordingly, the algorithm finds a

minterm placed at location p which differs from the mth
minterm only in its kth variable. If p∈Σ and p<m, the algorithm
does nothing to avoid instability in minterm locations.
However, as the mth minterm is placed at a wrong position (for
example, the position of the qth minterm, q∉Σ), there must be
another minterm, i.e. the qth minterm, which should be
exchanged with the mth minterm during the next steps.
Therefore, the algorithm does not finish at the current step and
the algorithm will reach the other cases, i.e. p∉Σ or p∈Σ and
p>m). For these cases, the algorithm exchanges the location of
the pth minterm with that of the mth minterm. Then, the kth
variable of the mth minterm will be correct and the algorithm
moves forward to check other minterms. As each output
translation does not change the results of the previous ones, the
algorithm will gradually place all minterms at their right
positions. Therefore, the algorithm will lead to a valid result.□

By the previous theorem, we show that the proposed
algorithm will converge after several steps. In order to compare
the time complexity of our proposed approach with the search
based methods assume that a possible CNOT-based
implementation of a reversible specification F of size n needs
at most h gates. It can be verified that n×2n-1 possible gates
must be evaluated to simplify F at each step of a search-based
method. Therefore, a search-based algorithm evaluates (n×2n-1)h

or O(n×2n)h gates in the worst case. On the other hand, the
proposed method considers h output translations, i.e. gates, in
the worst case where for each translation at most 2n minterms
are considered. As a result, the time complexity of our
algorithm is O(h×2n).

Compared with the search-based methods [15]- [17], the
proposed algorithm needs much fewer steps to synthesize a
given specification. In the following section, the experimental
results are shown.

5. EXPERIMENTAL RESULTS
Our proposed algorithm was implemented in C++. Due to

lack of space, we only maintained CNOT gate control and
target lines. For example, we use (a,b,c) meaning
CNOT3(a,b,c). To evaluate the proposed method, we use the
examples of [17]. The results of using our method and two
previous search-based algorithms [15], [17] are shown in Table
I. As shown in this table, the proposed algorithm not only has
the ability to produce a result for all of the attempted
specifications but also can reach the result with much fewer
steps.

6. CONCLUSIONS
In this paper, a new non-search based synthesis algorithm

was proposed which requires fewer steps to synthesize a given
reversible specification. In order to evaluate the algorithm, we
used several examples taken from the literature. It was shown
that the proposed approach can lead to a result for all of the
circuits very fast. The natural next step for future work seems
to be working on the improvement of the resulting synthesized
circuits possibly by combining the proposed approach and the
search-based methods. Efforts to reach this goal are under way.

REFERENCES

[1] R. Landauer, “Irreversibility and Heat Generation in the
Computing Process,” IBM Journal, vol. 5, pp. 183-191, July
1961.

[2] C. Bennett, “Logical Reversibility of Computation,” IBM
Journal, vol. 17(6), pp. 525-532, November 1973.

[3] G. Schrom, “Ultra-Low-Power CMOS Technology,” PhD
Thesis, Technischen Universitat Wien, June 1998.

[4] E. Knill, R. Laamme, and G. J. Milburn, “A Scheme for
Efficient Quantum Computation with Linear Optics,” Nature,
pp. 46-52, January 2001.

[5] M. Nielsen and I. Chuang, “Quantum Computation and
Quantum Information” Cambridge University Press, 2000.

[6] A. Mishchenko and M. Perkowski, “Logic synthesis of
Reversible Wave Cascades,” IWLS, June 2002, pp. 197-202.

[7] R. Feynman. “Quantum Mechanical Computers,” Optic News,
11:11-20, 1985.

[8] E. Fredkin, and T. Toffoli, “Conservative Logic,” International
Journal of Theoretical Physics, 21:219-253, 1982.

[9] T. Toffoli. “Reversible computing,” Tech memo MIT/LCS/TM-
151, MIT Lab for Comp. Sci, 1980.

[10] P. Kerntopf, “A New Heuristic Algorithm for Reversible Logic
Synthesis,” DAC, pp. 834-837, 2004.

[11] K. Iwama, and Y. Kambayashi, and S. Yamashita,
"Transformation Rules for Designing CNOT-Based Quantum
Circuits," DAC, pp.419-424, 2002.

[12] D. Maslov, C. Young, D. M. Miller, and G. W. Dueck,
"Quantum Circuit Simplification Using Templates," DATE, pp.
1208-1213, 2005.

[13] V. V. Shende, A. K. Prasad, K. N. Patel, I. L. Markov and J. P.
Hayes, "Scalable Simplification of Reversible Circuits," IWLS,
2003.

[14] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes,
"Synthesis of Reversible Logic Circuits," TCAD, vol. 22(6), pp.
710-722, 2003.

[15] P. Gupta, A. Agrawal, and N. K Jha, “An Algorithm for
Synthesis of Reversible Logic Circuits,” TCAD, November
2006.

[16] M. Saeedi, M. Sedighi, M. Saheb Zamani, “A New
Methodology for Quantum Circuit Synthesis: CNOT-Based
Circuits as an Example,” IWLS, 2007.

[17] M. Saeedi, M. Saheb Zamani, M. Sedighi, “On the Behavior of
Substitution-Based Reversible Circuit Synthesis Algorithms:
Investigation and Improvement,” ISVLSI, 2007.

[18] D. M. Miller, D. Maslov, and G. W. Dueck, “A Transformation
Based Algorithm for Reversible Logic Synthesis,” DAC, pp.
318-323, 2003.

[19] D. M. Miller, G. W. Dueck, "Spectral Techniques for
Reversible Logic Synthesis," RM, 2003.

TABLE I. THE RESULTS OF USING THE PROPOSED SYNTHESIS METHOD VERSUS TWO SEARCH-BASED ALGORITHMS

Number of Gates
Number of Searched Nodes

 [15] [17] & Steps (our
algorithm) Circuit # Specification

Our
Algorithm

 [15],
 [17]

Our
Algorithm [17] [15]

Our Synthesized Circuits

1 (1,0,3,2,5,7,4,6) 6 4 48 15 11 (f1,f2),(f3),(f1,f2),(f1,f2,f3),(f1,f3,f2),(f1,f2,f3)
2 (7,0,1,2,3,4,5,6) 3 3 24 300 761 (f2,f3,f1),(f3,f2),(f3)
3 (0,1,2,3,4,6,5,7) 3 3 24 10 7 (f1,f3,f2),(f1,f2,f3),(f1,f3,f2)
4 (0,1,2,4,3,5,6,7) 7 5 56 786 156 (f2,f3,f1),(f1,f2),(f1,f3),(f2,f3,f1), (f1,f3,f2),(f1,f2,f3),(f1,f3,f2)

5 (0,1,2,3,4,5,6,8,7,9,
10,11,12,13,14,15) 15 7 240 8256 9515

(f2,f3,f4,f1),(f1,f3
',f4

',f2),(f1,f3,f4,f2),(f1,f2,f4
',f3),(f1,f2

',f4,f3),
(f1,f2,f3,f4),(f1,f2

',f3
',f4),(f2,f3,f4,f1),(f1,f3

',f4,f2),(f1,f2
',f4,f3),

(f1,f2,f4
',f3),(f1,f2,f3

',f4),(f1,f3,f4,f2),(f1,f2,f4,f3),(f1,f3,f4,f2)
6 (1,2,3,4,5,6,7,0) 3 3 24 4 4 (f2

',f3
',f1),(f3

',f2),(f3)

7 (1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,0) 4 4 64 5 5 (f2

',f3
',f4

',f1),(f3
',f4

',f2),(f4
',f3),(f4)

8 (0,7,6,9,4,11,10,13,
8,15,14,1,12,3,2,5) 3 4 48 139 230 (f4,f1),(f3,f2),(f4,f3)

9 (3,6,2,5,7,1,0,4) 8 7 64 66 - (f2,f3
',f1),(f2

',f1),(f2),(f2
',f3),(f1,f3,f2),(f1,f2,f3),(f2,f3

',f1),(f1,f2,f3)
10 (1,2,7,5,6,3,0,4) 8 6 64 77 - (f3,f1),(f2

',f3
',f1),(f2),(f1,f2,f3),(f1

',f2
',f3),(f2,f3

',f1),(f1
',f3

',f2),
(f ,f ,f)

11 (4,3,0,2,7,5,6,1) 8 7 64 4387 - (f2
',f3

',f1),(f1
',f3,f2),(f1,f2),(f1

',f2,f3),(f1,f2
',f3),(f2,f3

',f1),(f1,f3,f2),
(f1,f2,f3)

12 (7,5,2,4,6,1,0,3) 6 7 48 352 - (f2
',f3

',f1),(f3,f1),(f1
',f3,f2),(f1,f3

',f2),(f1
',f2

',f3),(f1
',f3,f2)

 [17]

13 (6,2,14,13,3,11,10,
7,0,5,8,1,15,12,4,9) 23 15 368 678 -

(f4
',f1),(f3

',f4,f1),(f2
',f3,f4,f1),(f3,f4

',f2),(f4,f2),(f1,f4
',f3),(f1

',f4,f3),
(f1,f2,f4,f3),(f1,f2,f3

',f4),(f1,f2
',f3,f4),(f3

',f4
',f1),(f2,f4,f1),(f1,f3

',f4
',f2),

(f1,f3,f4
',f2),(f1

',f2,f4,f3),(f1,f2
',f3),(f1,f2,f4

',f3),(f1,f2
',f3

',f4),
(f1,f2,f3,f4), (f2,f3

',f4,f1),(f1,f3
',f4,f2),(f1,f4,f3), (f1,f2,f3,f4)

Avg. 7.46 5.76 87.38 1159

