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ABSTRACT
This paper criticises the notion that long-range dependence
is an important contributor to the queuing behaviour of real
Internet traffic. The idea is questioned in two different ways.
Firstly, a class of models used to simulate Internet traffic
is shown to have important theoretical flaws. It is shown
that this behaviour is inconsistent with the behaviour of real
traffic traces. Secondly, the notion that long-range correla-
tions significantly affects the queuing performance of traffic
is investigated by destroying those correlations in real traf-
fic traces (by reordering). It is shown that the longer ranges
of correlations are not important except in one case with an
extremely high load.

1. INTRODUCTION
Since the seminal paper of Leland et al [6] it has been

considered important that a statistical model of Inter-
net traffic captures the phenomenon of Long-Range De-
pendence (LRD). In particular it has often been sug-
gested that a model of Internet traffic must capture the
Hurst parameter H ∈ (1/2, 1) of real traffic. LRD is
characterised by the unsummability of the autocorrela-
tion function (ACF). It is often stated that this is an
important characteristic for the queuing performance of
the traffic.
A related topic is that of heavy-tailed distributions.

A commonly suggested origin for the LRD in Internet
traffic is the heavy-tailed distribution of traffic on peri-
ods .

Definition 1. A random variable X is heavy-tailed
if, for all ε > 0 it satisfies

P [X > x] eεx → ∞ as x → ∞. (1)

A specific functional form is usually assumed (and will
be throughout this paper)

P [X > x] ∼ Cx−β , (2)

where C > 0 is a constant and 2 > β > 0. The symbol
∼ means asymptotically equal to. If β < 1 then E [X ]
is infinite and therefore most models use β ∈ (1, 2).
Suggested models for Internet traffic which generate

LRD include fractional Gaussian noise and the related

fractional Brownian motion (fGn, fBm) [7], chaotic maps
[4], wavelets [9, 8] and Markov modulated processes [1,
3]. Some of these models output a “traffic level” which
represents the mean arrival rate in some notional time
period but others are packet based models, that is they
produce a model of packets and inter-arrival times. It
is the latter class of models (including [4, 1, 3] which
are covered by theorem 1 in this paper.
This paper criticises the notion that the long-range

correlations in traffic are important to queuing in two
ways. In section 2 it is shown that a class of models used
to simulate traffic with LRD arising from heavy tails
gives an infinite result when queued in infinite buffers.
It is demonstrated in section 4 that this is at odds with
the behaviour of real traffic. In section 5 real traffic
traces are analysed again and reordered to break up
correlations beyond a certain level. It is shown that
this reordering does not affect the queueing behaviour
of the traffic beyond a certain time-scale except when
unrealistically high loads are used. The behaviour of
the long-range dependent models (and in particular a
certain class based on heavy-tails) is theoretically unde-
sirable and fundamentally different to that of real traf-
fic.

2. THEORETICAL RESULTS
Let {At : t ≥ 0} be an arrival process to a queue

drained by a deterministic server which serves at a con-
stant rate assumed w.l.o.g. to be one. The mean arrival

rate λ is given by λ = limT→∞

∫ T

0
A(t)dt/T and it is

assumed throughout that At is such that this limit ex-
ists and λ ∈ (0, 1). Since the server rate is one then λ is
equal to the utilisation ρ (the ratio of the rate at which
work enters to the maximum rate at which it can be
served). Let {Qt : t ≥ 0} be the queue process where it
is assumed that Q0 = 0. Assume that the queue evolves
according to

dQt

dt
=

{

At − 1 Qt > 0

max(0, At − 1) Qt = 0.

Let E [Q(s, t)] =
∫ t

s
E [Qu] du/(t − s) where t > s and
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E [·] denotes expectation. Let E [Q] = limt→∞ E [Q(0, t)]
and note that this is limit is not guaranteed to exist
(and may tend to infinity). The mean arrival rate at
time t is λt = E [At] and the overall mean arrival rate

λ = limT→∞

∫ T

0
λt/Tdt. If λ > 1 then ρ > 1 and the

queue must eventually grow to infinity regardless of the
details of the arrival process.

Theorem 1. Let {At : t ∈ R+} be an ergodic, weakly
stationary arrival process which can only take values
a > 1 (on) and 0 (off). This is drained by a queue
which drains at a fixed rate, w.l.o.g. assumed to be one.
Let At be such that the arrival rate λ (and hence the
utilisation ρ) is in (0, 1). Let {Xn : n ∈ N} be the
length of the nth on period and assume these are i.i.d.
with a heavy-tailed distribution P [Xn > x] ∼ x−α for
α ∈ (1, 2) then as t → ∞ the expected queue length
(and hence the expected waiting time) is infinite.

This theorem can be restated as: if an infinite buffer
queuing model is driven by a a single on/off source with
i.i.d. heavy-tailed on periods then the expected queue
length is either zero (if a ≤ 1) or infinite. This remains
true even if the utilisation – ρ ∈ (0, 1) defined as the
proportion of the time the server is busy, is much less
than one (the queue is empty for an arbitrarily high
proportion of the time). It may seem paradoxical that
a queue which is empty arbitrarily often can have an
infinite expected length. However, this has parallels
with the classical Pollaczek–Khinchine formula for an
M/G/1 queue [5] where a server with an infinite vari-
ance in the service time has an infinite expected queue
length even if the mean service time is arbitrarily small
and the queue empty an arbitrarily large proportion of
the time.
Note that for α < 1 the mean length of an on pe-

riodwill not converge and such processes will not, in
general, be useful for a queuing system. However, for
1 < α < 2 the mean length of an on periodwill be fi-
nite and such a process could be used to produce a time
series with a known Hurst parameter.

Proof. First consider a single on period followed by
a single off period of such length that the entire queue
has drained by the end of the off period . Consider the
time period (t1, t2) where Qt1 = Qt2 = 0, consisting of
an on period (t1, t1 + X) (where aX < (t2 − t1)) and
an off period (t1+X, t2). Within the period (t1, t2) the
queue peaks at time t1 + X when Qt1+X = (a − 1)X
and drains completely by time t1 + aX after which the
queue is zero until t2. It can be readily seen that, since
the queuing process is triangular in shape (rising at rate
a − 1 during the on period and falling at rate 1 during
the off period ), then

∫ t2

t1
E [Qu] du = (a− 1)aX2/2 and

E [Q(t1, t2)] = (a− 1)aX2/2(t2 − t1).
Now consider some time period (t1, t2) again where

Qt1 = Qt2 = 0. Let this period contain exactly two on

periods of lengths X1 and X2 where a(X1+X2) < (t2−

t1). It is clear that
∫ t2

t1
E [Qu] du ≥ (a−1)a(X1+X2)/2

with equality occurring only when the queue empties
completely between the two on periods . This argu-
ment can be trivially extended to n on periods of lengths
X1, X2, . . . , Xn all occurring within (t1, t2) with Qt1 =
Qt2 = 0. The mean queue size is minimised if the on
periods are such that the generated queues do not over-
lap.
Consider the process A′

t which has the same mean
arrival rate and is the process At reordered in time ac-
cording to the following rules:

• on periods occur in the same order and have the
same length as At with the first on period starting
at t = 0,

• an on period of length Xi is followed by an off
period of length exactly Xi(a/λ− 1).

This off period is long enough that the queue has al-
ways completely drained before the end of the off pe-
riod (since λ < 1). It can easily be shown that such
a reordering is possible since the on periods are of ex-
actly the same length in the same order and the off
periods have the same mean length.
Let Q′

t be the queue process for A′

t (assuming the
same server process). Clearly E [Q′] ≤ E [Q] since the
queues due to A′

t never overlap (with equality occurring
only when the queues never overlap in At either).
It can be shown that

E [Q′] = lim
N→∞

∑N
i=1

∫ ti+1

ti
Q′

tdt

tN+1

= lim
N→∞

a(a− 1)
∑N

i=1
X2

i

2
∑N

j=1
Xj

.

Taking expectations a second time gives

E [E [Q′]] = E [Q′] = lim
N→∞

a(a− 1)
∑N

i=1
E
[

X2
i

]

2
∑N

j=1
E [Xj ]

=
a(a− 1)E

[

X2
]

2E [X ]
,

where the last equality follows since the Xi are i.i.d.
E [Q′] is a lower bound for E [Q]. E [Q] does not con-

verge if E
[

X2
]

does not converge. If 1 < α < 2 then

E [X ] is finite but E
[

X2
]

is not and the expected queue
is infinite. The result follows.

A similar result holds for discrete time on-off arrival
processes {An : n ∈ N} with heavy-tailed on periods .
However, the result is not true, for example, if the queue
is driven by two or more heavy-tailed sources each of
which has an arrival rate less than one but together hav-
ing an arrival rate over one. Processes such as fractional
Gaussian noise exhibit LRD but have a finite expected
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queue length in an infinite buffer. In fact the theorem
has an obvious corollary.
It should be noted that heavy-tailed arrival processes

of the type from Theorem 1 which give rise to a finite
value of E [Q] are possible but paradoxically these have
an arrival rate λ = 0. For example, let q > 0 and let ev-
ery on period of length Xi (at rate a) be followed by an
off period of length max((a−1)Xi, (a−1)aX2

i /2q−Xi).
The queue drains completely in every off period and the
mean queue size for that on period and off period is at
most q (with equality attained when ((a− 1)aX2

i /2q−
Xi) ≥ (a − 1)Xi) and therefore E [Q] ≤ q. However,
in the heavy-tailed case, E

[

X2
i

]

does not converge and
hence neither does the expected length of an off pe-
riod . This implies a proportion of time in the off pe-
riod tending to one and a mean arrival rate λ of zero.
It might still be argued that real traffic traces have

this property but the outcome of infinite queue size is
not seen in real life because they are fed to a finite sized
array. This possibility will be investigated in section 4.

3. SIMULATION FRAMEWORK FOR THIS
PAPER

CAIDA data: This data set is taken from a trace
approximately an hour long. It is referred to on the
CAIDA website 1 as
20030424-000000-0-anon.pcap.gz and was captured
on the 24th April 2003. It was captured on an OC48
link with a rate of 2.45 Gb/s. The first 550,000 packets
are used in the analysis here. This trace has a relatively
low Hurst parameter H = 0.6 (see [2]).
Bellcore data: This is a much studied data set and,

while certainly not representative of modern traffic, it
is included as one of the original traces from [6]. The
data here is taken from an August 1989 measurement
referred to as BC-pAug89.TL. The data was collected
on an Ethernet link2. The first 1,000,000 packets are
studied here. This trace has a relatively high Hurst
parameter H = 0.8 (see [2]).
The simulations used in this paper are all based upon

an extremely simple queuing model. Packets arrive in
a FIFO buffer which never drops packets. The buffer
has a given bandwidth b (in bytes/second) – which can
be adjusted to give a specific level of utilisation. While
the absolute level of the queue changes, the results pre-
sented here are not very sensitive to this parameter. A
packet of length l bytes takes l/b seconds to depart the
queue. If Qt is the queue length in packets at time t
and the simulation runs until time T then the mean
queue Q is evaluated as Q =

∫ T

0
Qt/Tdt (this integral

can be evaluated exactly since Qt is a constant between

1
See http://www.caida.org/data/passive/ for more infor-

mation about this trace.
2
See http://ita.ee.lbl.gov/html/contrib/BC.html for

more information about this traffic
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Figure 1: Mean queue size versus number of

packets for the CAIDA data.

arrivals and departures from the queue).
This simple model has been used by the first author to

assess several the queuing performance of several mod-
els which attempt to replicate the statistical nature of
Internet traffic. This work is reported in [2]. None of
the long-range dependence based models replicated the
queuing performance of the real traffic traces they were
tuned to match. Such a simple model is, of course, open
to much criticism. It does not account for TCP feedback
mechanisms. However, if the question being addressed
is about an “open loop” model of traffic and whether
it replicates the characteristics of real traffic then we
should expect both to have the same behaviour at a
queue.

4. SIMULATION RESULTS ON REAL VER-
SUS HEAVY-TAILED TRAFFIC

The first simulations here consider the theoretical re-
sults presents in section 2. The first results show how
the infinite expected queue size in the model reveals
itself in simulation results. Obviously any experiment
with a model of the form in Theorem 1 will produce a
finite value for Q the mean queue size. However, this
finite value will increase as the model is run for longer
and longer (up to the numerical accuracy of the model).
The value of Q generated will (in theory at least – in
practice the finite accuracy of computers limits this) in-
crease as the runtime increases. The question may be
asked if this is true of real data.
The experiment performed here is to take different

sized samples of the real data and to queue those sam-
ples with the model from the previous section. The
behaviour of the mean queue length versus sample size
is investigated. Experiments on LRD are notorious for
their high (often theoretically infinite) variability. Here
ten replications are performed for each size are used and
the mean plotted. In addition error bars of the size of
the standard deviation (one standard deviation above
and below the mean) are added (standard confidence in-
terval techniques are not applicable in the case of LRD
data).
Figure 1 (left) shows the results for the CAIDA data.
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Figure 2: Mean queue size versus number of

packets for the Bellcore data.

The x axis shows the number of packets in the sample
and the y axis the mean queue size (or rather the mean
of the ten means for the ten experiments with that sam-
ple size). Since the queue is assumed to start empty
then very small sample sizes would naturally have a
smaller expected queue. However, beyond this, figure 1
shows no clear influence of the sample size on the ex-
pected queue. As the samples get larger the standard
deviation bounds from the ten experiments gets smaller.
It should be noted that the final (rightmost) point is the
whole data set and no error bars can be included.
Figure 1 (right) shows the same experiment but per-

formed on a simulated data set with the same mean
arrival rate and the same Hurst parameter using the
techniques described in [2] (the Wang model from that
paper). The simulation does not well reflect the queu-
ing performance of the trace and this is because of the-
orem 1 which applies here. In contrast with figure 1 the
mean queue size increases with the number of packets
in the sample. In addition the error bars (representing
one standard deviation either side of the mean) stay as
large or become larger.
Figure 2 (left) shows the same experiment for the

Bellcore data. This data has a higher Hurst parameter
and the outcome is less clear. However, remembering
that the last point has no error bars (representing the
entire data) this figure is not consistent with the idea
that the mean queue rises as the length of the sample
rises apart from in the early part of the plot. (The rise
in the mean and the larger error bars in the center of
the plot coincides with a single very large burst of a
particular duration).
Figure 2 (right) shows simulated data with the same

Hurst parameter and same mean arrival rate as the Bell-
core data. As in figure 1 (right) and in accordance with
theorem 1 the mean queue size rises with the number of
packets simulated (although the connection is certainly
not unambiguous). As can be seen, these simulations
can be problematic to work with and a researcher look-
ing only at the early part of the graphs could be con-
vinced that they had used sufficiently many packets for
the simulation to converge to a good estimation of the
mean queue length.
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Figure 3: Mean queue size versus blocksize for

CAIDA data.

It may be thought that the problem may be con-
nected with the fact that the LRD based methods dra-
matically overestimated levels of queuing. However, re-
peating the experiment with lower bandwidth on the
real data for both Bellcore and CAIDA traces does not
dramatically alter the shape of the graph although ob-
viously the mean queue level increases.

5. SIMULATION RESULTS ON REORDER-
ING OF REAL TRAFFIC TRACES

This section takes a different approach by deliberately
destroying correlations in the data to see which scales
of correlation are important to the queuing properties.
It is often stated that LRD is an extremely important
property for queuing in real data. If this is the case,
then deliberately truncating the correlation beyond a
certain scale should have important effect on the queu-
ing.
The experiment performed in this section is to take a

certain blocksizeB and to split the data into blocks each
containing B packets (and associated delays). The or-
der of these blocks is then randomised so no correlation
can persist beyond B packets. The entire trace is then
queued and the mean queue length recorded. Again ten
replications are performed to assess the repeatability.
Figure 3 (left) shows this experiment on the CAIDA

data. Again there are ten repetitions of each blocksize
and the graph shows mean of the means and the stan-
dard deviation of the means above and below. Note the
small scale on the y axis. Even for very small block sizes
the variation in the queuing performance is not great.
Beyond a block size of 1,000 the correlation seems unim-
portant to the queuing performance and the resultant
mean queue size is the same to several decimal places.
By contrast, in figure 3 (right) for the LRD simulation

all scales of correlation theoretically affect queuing per-
formance (within the bounds implied by the fact that
only a finite sample of data is used). Here, the relation-
ship between correlation and queuing is clearly shown.
Correlations of block sizes up to 10,000 packets are im-
portant to the queuing performance of the simulated
data.
Figure 4 shows the same experiment on the Bellcore

4
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Figure 4: Mean queue size versus blocksize for

Bellcore data.
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Figure 5: Mean queue size versus blocksize for

real data with high load.

data. Again the LRD method used drastically over pre-
dicts the level of queuing compared to the real data
when the same mean arrival rate and Hurst parame-
ter is used. Again the same result is seen only a small
difference in the amount of queuing when the correla-
tions are broken up. The correlations of long time scale
are unimportant in the real data but important in the
artificial data.
Again the question might be asked would the same

conclusion hold true for the real data if the bandwidth
used for the experiment were reduced. Figure 5 (left)
shows this for the Bellcore data with the bandwidth re-
duced so the queue occupancy is 5 (right) shows this for
the CAIDA data (with an even higher queue occupancy
of 0.62). In the CAIDA data there seems to be a very
clear transition from important correlation scales (at
lengths below 2000 packets) and unimportant correla-
tion scales (above). Indeed this transition is so marked
it raises questions about whether something in the data
capture process or in the system itself would cause this.
In the case of the Bellcore data, more timescales are
important but not nearly so many as in the long-range
dependent data of figure 4 (right).
The conclusion of this section is clear. The claim

that correlations over long scales is important to queu-
ing behaviour is not true of the CAIDA data and ar-
guably true of the Bellcore data only when the system
occupancy is extremely high.

6. CONCLUSIONS
This paper criticises long-range dependence as a use-

ful model for packet traffic. Firstly, a theoretical prob-
lem with a class of models used to simulate LRD is
shown. This class of models predicts either no queuing
or an infinite expected queue length when fed into an
infinite buffer. At the very least, experimenters should
be aware of this problem to ensure that simulations are
not affected by it (the answer given by the simulation is
a product of the runtime of the simulation rather than
a stable reflection of queuing performance). The effect
is shown to be different to the queuing performance of
real traffic. In the second part of the paper it is shown
using simulated queuing on real traffic that for real traf-
fic traces long-range correlations are not important for
queuing behaviour except with extremely high traffic.
These results should be replicated on more traffic traces
to work out how general this conclusion is.
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