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Abstract—Standard collaborative filtering approaches for top-
N recommendation are biased toward popular items. As a result,
they recommend items that users are likely aware of and under-
represent long-tail items. This is inadequate, both for consumers
who prefer novel items and because concentrating on popular
items poorly covers the item space, whereas high item space
coverage increases providers’ revenue.

We present an approach that relies on historical rating data
to learn user long-tail novelty preferences. We integrate these
preferences into a generic re-ranking framework that customizes
balance between accuracy and coverage. We empirically validate
that our proposed framework increases the novelty of recommen-
dations. Furthermore, by promoting long-tail items to the right
group of users, we significantly increase the system’s coverage
while scalably maintaining accuracy. Our framework also enables
personalization of existing non-personalized algorithms, making
them competitive with existing personalized algorithms in key
performance metrics, including accuracy and coverage.

I. INTRODUCTION

The goal in top-N recommendation is to recommend to
each consumer a small set of N items from a large collection
of items [1]. For example, Netflix may want to recommend
N appealing movies to each consumer. Collaborative Filtering
(CF) [2], [3] is a common top-N recommendation method. CF
infers user interests by analyzing partially observed user-item
interaction data, such as user ratings on movies or historical
purchase logs [4]. The main assumption in CF is that users
with similar interaction patterns have similar interests.

Standard CF methods for top-N recommendation focus on
making suggestions that accurately reflect the user’s preference
history. However, as observed in previous work, CF recom-
mendations are generally biased toward popular items, leading
to a rich get richer effect [5], [6]. The major reasons for
this are popularity bias and sparsity of CF interaction data
(detailed in Section VI). In a nutshell, to maintain accuracy,
recommendations are generated from the dense regions of the
data, where the popular items lie.

However, accurately suggesting popular items, may not be
satisfactory for the consumers. For example, in Netflix, an
accuracy-focused movie recommender may recommend “Star
Wars: The Force Awakens” to users who have seen “Star Wars:
Rogue One”. But, those users are probably already aware of
“The Force Awakens”. Considering additional factors, such
as novelty of recommendations, can lead to more effective
suggestions [1], [7], [8], [9], [10].

Focusing on popular items also adversely affects the satis-
faction of the providers of the items. This is because accuracy-
focused models typically achieve a low overall item space
coverage across their recommendations, whereas high item
space coverage helps providers of the items increase their
revenue [5], [7], [11], [12], [13], [14].

In contrast to the relatively small number of popular items,
there are copious long-tail items that have fewer observations
(e.g., ratings) available. More precisely, using the Pareto
principle (i.e., the 80/20 rule), long-tail items can be defined
as items that generate the lower 20% of observations [13].
Experimentally we found that these items correspond to almost
85% of the items in several datasets (Sections II-A and IV).

As previously shown, one way to improve the novelty of
top-N sets is to recommend interesting long-tail items [1],
[15]. The intuition is that since they have fewer observations
available, they are more likely to be unseen [16]. Moreover,
long-tail item promotion also results in higher overall coverage
of the item space [5], [7], [8], [10], [11], [12], [13], [17].
Because long-tail promotion reduces accuracy [6], there are
trade-offs to be explored.

This work studies three aspects of top-N recommendation:
accuracy, novelty, and item space coverage, and examines
their trade-offs. In most previous work, predictions of a
base recommendation algorithm are re-ranked to handle these
trade-offs [14], [17], [18], [19]. The re-ranking models are
computationally efficient but suffer from two drawbacks. First,
due to performance considerations, parameters that balance the
trade-off between novelty and accuracy are not customized per
user. Instead they are cross-validated at a global level. This
can be detrimental since users have varying preferences for
objectives such as long-tail novelty. Second, the re-ranking
methods are often limited to a specific base recommender that
may be sensitive to dataset density. As a result, the datasets
are pruned and the problem is studied in dense settings [14],
[20]; but real world scenarios are often sparse [4], [21].

We address the first limitation by directly inferring user
preference for long-tail novelty from interaction data. Esti-
mating these preferences using only item popularity statistics,
e.g., the average popularity of rated items as in [22], disregards
additional information, like whether the user found the item
interesting or the long-tail preferences of other users of the
items. We propose an approach that incorporates this informa-
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tion and learns the users’ long-tail novelty preferences from
interaction data.

This approach allows us to customize the re-ranking per
user, and design a generic re-ranking framework, which re-
solves the second limitation of prior work. In particular, since
the long-tail novelty preferences are estimated independently
of any base recommender, we can plug-in an appropriate one
w.r.t. different factors, such as the dataset sparsity.

Our top-N recommendation framework, GANC, is Generic,
and provides customized balance between Accuracy, Novelty,
and Coverage. Our work does not rely on any additional
contextual data, although such data, if available, can help
promote newly-added long-tail items [23], [24]. In summary:
• We examine various measures for estimating user long-

tail novelty preference in Section II and formulate an
optimization problem to directly learn users’ preferences
for long-tail items from interaction data in Section II-C.

• We integrate the user preference estimates into GANC
(Section III), and introduce Ordered Sampling-based Lo-
cally Greedy (OSLG), a scalable algorithm that relies on
user long-tail preferences to correct the popularity bias
(Section III-C).

• We conduct an extensive empirical study and evaluate
performance from accuracy, novelty, and coverage per-
spectives (Section IV). We use five datasets with varying
density and difficulty levels. In contrast to most related
work, our evaluation considers realistic settings that in-
clude a large number of infrequent items and users.

• Our empirical results confirm that the performance of re-
ranking models is impacted by the underlying base rec-
ommender and the dataset density. Our generic approach
enables us to easily incorporate a suitable base recom-
mender to devise an effective solution for both dense
and sparse settings. In dense settings, we use the same
base recommender as existing re-ranking approaches, and
we outperform them in accuracy and coverage metrics.
For sparse settings, we plug-in a more suitable base
recommender, and devise an effective solution that is
competitive with existing top-N recommendation meth-
ods in accuracy and novelty.

Section VI describes related work. Section VII concludes.

II. LONG-TAIL NOVELTY PREFERENCE

We begin this section by introducing our notation. We then
describe various models for measuring user long-tail novelty
preference (Section II-B).

A. Notation and data model

Let U denote the set of all consumers or users and I the
set of all items. We reserve u, s for indexing users, and i, j
for indexing items. Our dataset D, is a set of ratings of users
on various items, i.e., D = {rui : u ∈ U , i ∈ I}. Since every
user rates only a small subset of items, D is a small subset of
a complete rating matrix R, i.e., D ⊂ R ∈ R|U|×|I|.

We split D into a train set R and test set T . Let IR (IT )
denote items in the train (test) set, with IRu (ITu ) denoting the

Parameter Symbol

Dataset D
Train dataset R
Test dataset T
Set of users U
Set of items I
Set of long tail items in R L
Specific user u
Specific item i
Set of items of u in R IRu
Set of items of u in T ITu
Set of users of i in R URi
Set of users of i in T UTi
Rating of user u on item i rui
Size of top-N set N
Top-N set of u Pu

Collection of top-N sets for all users P
Long-tail novelty preference of user u acc. model m θmu
Accuracy function a(.)
Coverage function c(.)
Value function of user u vu(.)

TABLE I: Notation.

items rated by a single user u in the train (test) set. Let URi
(UTi ) denote users that rated item i in the train (test) set. For
each user, we generate a top-N set by ranking all unseen train
items, i.e., IR \ IRu .

We denote the frequency of item i in a given set A with fAi .
Following [14], the popularity of an item i is its frequency
in the train set, i.e., fRi = |URi |. Based on the Pareto
principle [13], or the 80/20 rule, we determine long-tail items,
L, as those that generate the lower 20% of the total ratings in
the train set, L ⊂ IR (i.e, items are sorted in decreasing
popularity). In our work, we use xi = xi−min(x)

max(x)−min(x) for
normalizing a generic vector x.

Table I summarizes our notation. We typeset the sets (e.g.,
A), use upper case bold letters for matrices (e.g., A), lower-
case bold letters for vectors (e.g., a), and lower case letters
for scalar variables (e.g., a).

B. Simple long-tail novelty preference models
Users have different preferences for discovering long-tail

items. Given the train set R, we need a measure of the user’s
willingness to explore less popular items. Let θmu denote user
u’s preference for long-tail novelty as measured by model m.

Figure 1 plots the average popularity of rated items vs. the
number of rated items (or user activity) for our datasets. As
user activity increases, the average popularity of rated items
decreases. This motivates an Activity measure θAu = |IRu |. But,
most users only rate a few items, and θAu does not indicate
whether those items were long-tail or popular.

Instead, we can define a Normalized Long-tail measure

θNu =
|IRu ∩ L|
|IRu |

(II.1)

which is the fraction of long-tail items in the user’s rated items.
The higher this fraction, the higher her preference for long-
tail items. However, θNu does not capture the user’s interest
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Fig. 1: For each user u, we consider the set of items rated by u in train IRu , and compute its average popularity ā =
1
|IRu |

∑
i∈IRu

fRi . The x-axis shows the binned normalized |IRu |, while the y-axis plots the mean of the corresponding ā values.
The average popularity of items rated decreases as the number of items rated increases.

(e.g, rating) in the items, and does not distinguish between
the various long-tail items.

To resolve both problems, we can use similar notions as in
TFIDF [25]. The rating an item receives from a particular
user reflects its importance for that user. To capture the
discriminative power of the item among the set of users and
control for the fact that some items are generally more popular,
we also incorporate an inverse popularity factor (|URi |) that is
logarithmically scaled. We define TFIDF-based measure using

θTu =
1

|IRu |
∑
i∈IRu

rui log

(
|U|
|URi |

)
(II.2)

This measure increases proportionally to the user rating rui,
but is also counterbalanced by the popularity of the item.
A higher θTu shows more preference for less popular items.
Although θTu considers both the user interest rui, and the item
popularity |URi |, it has no indication about the preferences of
the users in URi . To address this limitation, observe Eq. II.2
can be re-written as

θTu =
1

|IRu |
∑
i∈IRu

θui =

∑
i∈Iu wiθui∑
i∈Iu wi

(II.3)

where θui = rui log
(
|U|
|UR
i |

)
is a per-user-item long-tail

preference value, and wi = 1 for all items. Basically, θTu gives
equal importance to all items and is a crude average of θui.

We can generalize the idea in Eq. II.3. Specifically, for each
user, we consider a generalized long-tail novelty preference
estimate, θGu . We assume θGu is a weighted average of θui.
However, rather than imposing equal weights, we define wi to
indicate an item importance weight. Our second assumption
is that an item is important when its users do not regard it as
a mediocre item; when their preference for that item deviates
from their generalized preference. In other words, an item i
is important when

∑
u∈UR

i
(θui − θGu )2 is large. Since wi and

θGu influence each other, below we describe how to learn these
variables in a joint optimization objective.

C. Learning generalized long-tail novelty preference

We define εi =
[∑

u∈UR
i

1 −
(
θui − θGu

)2]
as the item

mediocrity coefficient. Assuming |θui − θGu | ≤ 1 (explained

later), the maximum of εi is obtained when θui = θGu . We
formulate our objective as:

O(w,θG) =
∑
i∈IR

wi
[ ∑
u∈UR

i

1−
(
θui − θGu

)2]
=
∑
i∈IR

wiεi

which is the total weighted mediocrity. Here, IR are the items
in train, URi denotes users that rated item i in the train set
(Section II-A), and θui is the per-user-item preference value,
computed from rating data. Our objective has two unknown
variables: θG ∈ R|U|, w ∈ R|I|. We use an alternating
optimization approach for optimizing w and θG. When op-
timizing w.r.t. w, we must minimize the objective function
in accordance with our intuition about wi. In particular, for
larger mediocrity coefficient, we need smaller weights. On the
other hand, when optimizing w.r.t. θG, we need to increase the
closeness between θGu and all θui’s, which is aligned with our
intuition about θGu . So, we have to maximize the objective
function w.r.t. θG. Our final objective is a minimax problem:

min
w

max
θG

O(w,θG)− λ1
∑
i∈IR

logwi (II.4)

where we have added a regularizor term
∑
i∈IR logwi to

prevent wi from approaching 0 [26].
When θG is fixed, we need to solve a minimization problem

involving only w. By taking the derivative w.r.t. wi we have

wi =
λ1∑

u∈UR
i

1−
(
θui − θGu

)2 =
λ1
εi

(II.5)

When w is fixed, we need to solve a maximization problem
involving θG. Taking the derivative w.r.t. θGu we derive

θGu =

∑
i∈IRu

wiθui∑
i∈IRu

wi
(II.6)

Essentially, Eq. II.5 characterizes an item’s weight, based on
the item mediocrity. The higher the mediocrity, the lower the
weight. Moreover, for every user u, θGu is a weighted average
of all θui. Note, in Eq. II.6, θGu = θTu when wi = 1 for all
items. Our generalized θGu incorporates both the user interest
and popularity of items (via θui), and the preferences of other
users of the item (via wi). Furthermore, since we need |θui−
θGu | ≤ 1, and prefer θGu ∈ [0, 1], we project all θui to the [0, 1]
interval before applying the algorithm. We also set λ1 = 1.



III. GANC: GENERIC RE-RANKING FRAMEWORK

We define user satisfaction based on the accuracy of the
top-N set and its coverage of the item space, so as to
introduce novelty and serendipity into recommendation sets.
We consider three components for our framework: 1) an accu-
racy recommender (ARec) that is responsible for suggesting
accurate top-N sets. 2) a coverage recommender (CRec) that is
responsible for suggesting top-N sets that maximize coverage
across the item space, and consequently promote long-tail
items. 3) the user preference for long-tail novelty θu ∈ [0, 1].
We use the template GANC(ARec,θ,CRec) to specify the
used components.

We define individual user value functions for a top-N set
Pu as

vu(Pu) = (1− θu)a(Pu) + θuc(Pu) (III.1)

where a(.) measures the score of a set of items according
to the accuracy recommender, and c(.) measures the score
of a set according to the coverage recommender. With slight
abuse of notation, let a(i) and c(i) denote the accuracy score
and coverage score of a single item i. We ensure a(i), c(i) ∈
[0, 1] to have the same scale. Furthermore, we define a(Pu) =∑
i∈Pu a(i) and c(Pu) =

∑
i∈Pu c(i).

The user value function in Eq. III.1 positively rewards
sets that increase coverage. Similar intuitions for encouraging
solutions with desirable properties, e.g., diverse solutions,
have been used in related work [27]. However, their trade-off
parameters are typically obtained via parameter tuning or cross
validation. By contrast, we impose personalization via the user
preference estimate, θu, that is learned based on historical
rating data. Next, we list the various base recommender models
integrated into GANC.

A. Accuracy recommender

The accuracy recommender provides an accuracy score,
a(i), for each item i. We experiment with three models
(Section IV-A provides details and setup configurations):

• Most popular (Pop) [1] is non-personalized and recom-
mends the most popular unseen items. It makes accurate
recommendations, but has low coverage and novelty [1].
Since it does not score items, we define a(i) = 1 if item i
is in the top-N set suggested by Pop, otherwise a(i) = 0.

• Regularized SVD (RSVD) [28] learns latent factors for
users and items by analyzing user-item interaction data
(e.g., ratings). The factors are then used to predict the
values of unobserved ratings. We use RSVD to compute
a predicted rating matrix R̂ ∈ R|U|×|I|. We normalize the
predicted rating vectors of all users to ensure r̂ui ∈ [0, 1],
and define a(i) = r̂ui.

• PureSVD (PSVD) [1] is also a latent factor model.
We follow the same procedure as RSVD, using PSVD
factors [1]. Note, PSVD scores correspond to associations
between users and items.

B. Coverage recommender

The coverage recommender provides a coverage score, c(i),
for each item i. We use three coverage recommenders:

• Random (Rand) recommends N unseen items randomly.
It has high coverage, but low accuracy [5]. We define
c(i) ∼unif(0, 1).

• Static (Stat) focuses exclusively on promoting less pop-
ular items. We define c(i) to be a monotone decreasing
function of fRi , the popularity of i in the train set R.
We use c(i) = 1√

fR
i +1

in our work. Note the gain of

recommending an item is constant.
• Dynamic (Dyn) allows us to better correct for the

popularity bias in recommendations. In particular, rather
than the train set R, we define c(i) based on the set of
recommendations made so far. Let P = {Pu}|U|u=1 with
|Pu| = N , denote the collection of top-N sets assigned
to all users, and A = {Au}|U|u=1 with Au ⊆ Pu, denote
a partial collection where a subset of users have been
assigned some items. We measure the long-tail appeal of
an item using a monotonically decreasing function of the
popularity of i in A, i.e., fAi . We use c(i) = 1√

fA
i +1

in our work. The main intuition is that recommending
an item has a diminishing returns property: the more the
item is recommended, the less the gain of the item in
coverage, i.e., c(i) = 1 when A = ∅, but decreases as the
item is more frequently suggested.

C. Optimization Algorithm for GANC

The overall goal of the framework is to find an optimal top-
N collection P = {Pu}|U|u=1 that maximizes the aggregate of
the user value functions:

max
P

v(P) =
∑
u∈U

vu(Pu) (III.2)

The combination of Rand and Stat with the accuracy rec-
ommenders in Section III-A, result in value functions that can
be optimized greedily and independently, for each user. Using
Dyn, however, creates a dependency between the optimization
of user value functions, where the items suggested to one user
depend on those suggested to previous users. Therefore, user
value functions can no longer be optimized independently.

Optimization algorithm for GANC with Dyn. Because Dyn
is monotonically decreasing in fAi , when used in Eq.III.1, the
overall objective in Eq. III.2 becomes submodular across users.
Maximizing a submodular function is NP-hard [29]. However,
a key observation is that the constraint of recommending N
items to each user, corresponds to a partition matroid over the
users. Finding a top-N collection P that maximizes Eq. III.2
is therefore an instance of maximizing a submodular function
subject to a matroid constraint (see Appendix B). A Locally
Greedy heuristic, due to Fisher et al. [30], can be applied:
consider the users separately and in arbitrary order. At each
step, select a user u arbitrarily, and greedily construct Pu



Algorithm 1: GANC with OSLG optimization
Input: N,S,U , I,R
Output: P

1 f ← 0,P ← ∅,θ ← Estimate from R (Section II);
2 S ← Sample S users from U acc. to KDE(θ);
3 Sort S in increasing θ;
// Performed sequentially for users in

sample
4 foreach u ∈ S do
5 Update Dyn function parameter f ;
6 Pu = Pu ∪ argmaxi∈I vu(Pu ∪ i) - vu(Pu);
7 foreach i ∈ Pu do fi = fi + 1;
8 F(θu) ← f ;
9 P = P ∪ Pu;

10 end
// Performed in parallel for users not

in sample
11 foreach u ∈ U \ S do
12 f̂ ← F (argmin(θs − θu)) for s ∈ S;
13 Update Dyn function parameter f̂ ;
14 Pu = Pu ∪ argmaxi∈I vu(Pu ∪ i) - vu P = P ∪Pu;
15 end
16 return P

for that user. Proceed until all users have been assigned top-
N sets. Locally Greedy produces a solution at least half
the optimal value for maximizing a submodular monotone
function subject to a matroid constraint [30].

However, locally greedy is sequential and has a compu-
tational complexity of O(|U|.|I|.N) which is not scalable.
Instead, we introduce a heuristic we call Ordered Sampling-
based Locally Greedy (OSLG). Essentially, we make two
modifications based on the user long-tail preferences: first,
proportionate to the distribution of user long-tail preferences
θ, we sample a subset of users, and run the sequential
algorithm on this sample only. Second, to allow the system
to recommend more established or popular products to users
with lower long-tail preference, instead of arbitrary order, we
modify locally greedy to consider users in increasing long-tail
preference.

Algorithm 1 shows GANC with OSLG optimization: We use
fi as a shorthand for fAi , the popularity of item i in the current
set of recommendations, used in Dyn. First, f is initialized and
user preferences θ are estimated (line 1). Next, we use Kernel
density estimation (KDE) [31] to approximate the Probability
density function (PDF) of θ, and use the PDF to draw a sample
S of size S from θ and find the corresponding users in U
(line 2). The sampled users are then sorted in increasing long-
tail preference (line 3), and the algorithm iterates over the
users. In each iteration, it updates the Dyn function (line 5)
and assigns a top-N set to the current user by maximizing
her value function (line 6). The Dyn function parameter f is
then updated w.r.t. the recently assigned top-N set (line 7).
Moreover, f is associated with the current long-tail preference

estimate θu, and stored (line 8). The algorithm then proceeds
to the next user. Since Dyn is monotonically decreasing in
fi, frequently recommended items are weighted down by the
value function of subsequent users. Consequently, as we reach
users who prefer long-tail items and discovery, their value
functions prefer relatively unpopular items that have not been
recommended before. Thus, the induced user ordering, results
in the promotion of long-tail items to the right group of users,
such that we obtain better coverage while maintaining user
satisfaction.

For each user not included in the sample set, u 6∈ S, we
find the most similar user s ∈ S , where similarity is defined
as |θs− θu| (line 12), and use F (θs) to compute the coverage
score (line 13), and assign a top-N set. Observe, the value
functions of u ∈ U \ S , are independent of each other, and
lines 12-14 can be performed in parallel. The computational
complexity of the sequential part drops to O(|S|.|I|.N) at the
cost of O(|S|.|I|) extra memory.

IV. EMPIRICAL EVALUATION

A. Experimental setup

Datasets and data split. Table II describes our datasets. We
use MovieLens 100K (ML-100K), 1 Million (Ml-1M), 10
Million (ML-10M) ratings [32], Netflix, and MovieTweetings
200K (MT-200K) [33]. In the MovieLens datasets, every
consumer has rated at least 20 movies (τ = 20), with
rui ∈ {1, . . . , 5} (ML-10M has half-star increments). MT-
200K contains voluntary movie ratings posted on twitter,
with rui ∈ {0, . . . , 10}. Following [34], we preprocessed this
dataset to map the ratings to the interval [1, 5]. Due to the
extreme sparsity of this dataset and to ensure every user has
some data to learn from, we filtered the users to keep those
with at least 5 ratings (τ = 5).

Our selected datasets have varying density levels. Addition-
ally, MT-200K and Netflix include a large number of difficult
infrequent users, i.e., in MT-200K, 47.42% (3.37% in Netflix)
of the users have rated fewer than 10 items, with the minimum
being 4. We chose these datasets to study performance in
settings where users provide few feedback [4], [21].

Next, we randomly split each dataset into train and test sets
by keeping a fixed ratio κ of each user’s ratings in the train
set and moving the rest to the test set [35]. This way, when
κ = 0.8, an infrequent user with 5 ratings will have 4 train and
1 test rating, while a user with 100 ratings, will have 80 train
ratings and the rest in test. For ML-1M and ML-10M, we set
κ = 0.5. For MT-200K, we set κ = 0.8. For Netflix, we use
their probe set as our test set, and remove the corresponding
ratings from train. We remove users in the probe set who do
not appear in train set, and vice versa.

Test ranking protocol and performance metrics. For testing,
we adopt the “All unrated items test ranking protocol” [36],
[5] where for each user, we generate the top-N set by ranking
all items that do not appear in the train set of that user (details
in Appendix C).



Dataset |D| |U| |I| d% L% κ τ

ML-100K 100K 943 1682 6.30 66.98 0.5 20
ML-1M 1M 6,040 3,706 4.47 67.58 0.5 20
ML-10M 10M 69,878 10,677 1.34 84.31 0.5 20
MT-200k 172,506 7,969 13,864 0.16 86.84 0.8 5
Netflix 98,754,394 459,497 17,770 1.21 88.27 - -

TABLE II: Datasets description. |D| is number of ratings in
dataset. Density is d% = |D|/(|U| ∗ |I|) × 100%. Long-tail
percentage is L% = (|L|/|IR|)× 100%. Train-test split ratio
per user is κ, τ is the minimum number of ratings per user.

Local
Ranking
Accuracy
Metrics

Precision@N = 1
N|U|

∑
u∈U |I

T+
u ∩ Pu|

Recall@N = 1
|U|
∑

u∈U
|IT +
u ∩Pu|
|IT +
u |

F-measure@N = Precision@N.Recall@N
Precision@N+Recall@N

Longtail
Promotion

LTAccuracy@N = 1
N|U|

∑
u∈U |L ∩ Pu|

StratRecall@N =

∑
u∈U

∑
i∈IT +

u ∩Pu

(
1

fR
i

)β
∑
u∈U

∑
i∈IT +

u

(
1

fR
i

)β
Coverage
Metrics

Coverage@N =
|∪u∈UPu|
|I|

Gini@N = 1
|I| (|I|+ 1− 2

∑|I|
j=1(|I|+1−j)f [j]∑|I|

j=1 f [j]
)

TABLE III: Performance Metrics. Notation is in Section II-A.
For gini, the vector f is sorted in non-decreasing order of
recommendation frequency of items, i.e., f [j] ≤ f [j + 1].

Table III summarizes the performance metrics. To measure
how accurately an algorithm can rank items for each user,
we use local rank-based precision and recall [37], [5], [36],
where each metric is computed per user and then averaged
across all users. Precision is the proportion of relevant test
items in the top-N set, and recall is the proportion of relevant
test items retrieved from among a user’s relevant test items. As
commonly done in the literature [37], [38], for each user u, we
define her relevant test items as those that she rated highly, i.e.,
IT+
u = {i : i ∈ ITu , rui ≥ 4}. Note, because the collected

datasets have many missing ratings, the hypothesis that only
the observed test ratings are relevant, underestimates the true
precision and recall [36]. But, this holds for all algorithms,
and the measurements are known to reflect performance in
real-world settings [36]. F-measure is the harmonic mean of
precision and recall.

We use Long-Tail Accuracy (LTAccuracy@N ) [20] to
measure the novelty of recommendation lists. It computes
the proportion of the recommended items that are unlikely
to be seen by the user. Moreover, we use Stratified Recall
(StratRecall@N ) [36] which measures the ability of a model
to compensate for the popularity bias of items w.r.t train set.
Similar to [36], we set β = 0.5. Note, LTAccuracy emphasizes
a combination of novelty and coverage, while Stratified Recall
emphasizes a combination of novelty and accuracy.

For coverage we use two metrics: Coverage@N is the ratio
of the total number of distinct recommended items to the total

number of items [20], [5]. A maximum value of 1 indicates
each item in I has been recommended at least once. Gini [39],
measures the inequality among values of a frequency distribu-
tion f . It lies in [0, 1], with 0 representing perfect equality, and
larger values representing skewed distributions. In Table III,
f is the recommendation frequency of items, and is sorted in
non-decreasing order, i.e., f [j] ≤ f [j + 1].

Other algorithms and their configuration. We compare
against, or integrate the following methods in our framework 1.

• Rand is non-personalized and randomly suggests N un-
seen items from among all items. It obtains high coverage
and novelty, but low accuracy [5].

• Pop [1] is a non-personalized algorithm. For ranking
tasks, it obtains high accuracy [1], [5], since it takes
advantage of the popularity bias of the data. However,
Pop makes trivial recommendations that lack novelty [1].

• RSVD [40] is a latent-factor model for rating pre-
diction. We used LIBMF, with L2-Norm as the loss
function, and L2-regularization, and Stochastic Gradient
Descent (SGD) for optimization. We also tested the
same model with non-negative constraints (RSVDN) [28],
but did not find significant performance difference. We
omit RSVDN from our results. We performed 10-fold
cross validation and tested: number of latent factors
g ∈ {8, 20, 40, 50, 80, 100}, L2-regularization coeffi-
cients λ ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, learning rate
η ∈ {0.002, 0.003, 0.01, 0.03}. For each dataset, we
used the parameters that led to best performance (see
Appendix A).

• PSVD [1] is a latent factor model, known for achiev-
ing high accuracy and novelty [1]. In PSVD, miss-
ing values are imputed by zeros and conventional
SVD is performed. We used Python’s sparsesvd
module and tested number of latent factors g ∈
{10, 20, 40, 60, 100, 150, 200, 300}. We report results for
two configurations: one with 10 latent factors (PSVD10),
and one with 100 latent factors (PSVD100).

• CoFiRank [41] is a ranking prediction model that can
optimize directly the Normalized Discounted Cumulative
Gain (NDCG) ranking measure [42]. We used the source
code from [41], with parameters set according to [41]:
100 dimensions and λ = 10, and default values for
other parameters. We experimented with both regression
(squared) loss (CofiR100) and NDCG loss (CofiN100).
Similar to [43], [44], we found CofiR100 to perform
consistently better than CofiN100 in our experiments
on ML-1M and ML-100K. We only report results for
CofiR100.

• Ranking-Based Techniques (RBT) [14] maximize cov-
erage by re-ranking the output of a rating prediction
model according to a re-ranking criterion. We imple-
mented two variants: one that re-ranks a few of the items

1We report the default configurations specified in the original work for most
algorithms.



in the head according to their popularity (Pop criterion),
and another which re-ranks according to the average
rating (Avg criterion). As in [14], we set Tmax = 5 in
all datasets. The parameter TR controls the extent of re-
ranking. We tested TR ∈ [4, 4.2, 4.5], and found TR = 4.5
to yield more accurate results. Furthermore, because our
datasets contain a wider range of users compared to [14],
we set TH = 1 on all datasets, except ML-10M and
Netflix, where we set TH = 0. To refer to RBT variants,
we use RBT(ARec,Re-ranking criterion).

• Resource allocation [20] is an method for re-ranking
the output of a rating prediction model. It has two
phases: 1) resources are allocated to items according to
the received ratings, and 2) the resources are distributed
according to the relative preferences of the users, and
top-N sets are generated by assigning a a 5D score
(for accuracy, balance, coverage, quality, and quantity
of long-tail items) to every user-item pair. We use the
variants proposed in [20], which are combinations of
the scoring function (5D) with the rank by rankings
(RR) and accuracy filtering (A) algorithms (Section 3.2.2
in [20]). We use the template 5D(ARec,A,RR) to show
the different combinations, where A and RR are optional.
We implemented and ran all four variants with default
values set according to [20]: k = 3.|I| and q = 1.

• Personalized Ranking Adaptation (PRA) [22] is a
generic re-ranking framework, that first estimates user
tendency for various criteria like diversity and novelty,
then iteratively and greedily re-ranks items in the head of
the recommendations to match the top-N set with the user
tendencies. We compare with the novelty-based variant of
this framework, which relies on item popularity statistics
to measure user novelty tendencies. We use the the mean-
and-deviation based heuristic, that is measured using the
popularity of rated items, and was shown to provide
comparable results with other heuristics in [22]. For
the configurable parameters, we followed [22]: Sample
set size Su ∈ min(|IRu |, 10), the exchangeable set size
|Xu| ∈ {10, 20}, and used “optimal swap” strategy with
maxSteps = 20. We use the template PRA(ARec, |Xu|)
to refer to variants of PRA.

B. Distribution of long-tail novelty preferences

Figure 2 plots the histogram of various long-tail preference
models. We observe θAu is skewed to the right. This is due to
the sparsity problem, where the majority of users rate a few
items. θNu is also skewed to the right across all datasets, due to
both the popularity bias and sparsity problems [37], [45]. On
the other hand, θGu is normally distributed, with a larger mean
and a larger variance, on all datasets. In the experiments in
Section IV-C, we study the effect of these preference models
on performance.

C. Performance of GANC with Dyn coverage recommender

When Dyn is integrated in GANC, we use OSLG optimiza-
tion. We run variants of GANC that involve randomness (e.g.,

sampling-based variants) 10 times and report the average.

Effect of sample size. The sample size S is a system-
wide hyper-parameter in the OSLG algorithm, and should be
determined w.r.t. preference for accuracy or coverage, and the
accuracy recommender. For tuning S, we run experiments on
ML-1M, and assess its effect on F-measure and coverage. As
shown in Figures 3 and 4, increasing S, increases coverage
and decreases the F-measure of most accuracy recommenders.
Regarding RSVD, the scores output by this model lead to
the initial decrease and later increase of F-measure. Since we
want to maintain accuracy, we fix S = 500 in the rest of our
experiments, although a larger S can be used.

Effect of the user long-tail novelty preference model, the
accuracy recommender, and their interplay. We evaluate
GANC with Dyn coverage, i.e., GANC(ARec, θ, Dyn), while
varying the accuracy recommender ARec, and the long-tail
novelty preference model θ. We examine the following long-
tail preference models:
• Random θR randomly initializes θRu (10 times per user).
• Constant θC assigns the same constant value C to all

users. We report results for C = 0.5.
• Normalized Long-tail θN (Eq. II.1) measures the pro-

portion of long-tail items the user has rated in the past.
• Tfidf-based θT (Eq. II.2) incorporates user interest and

popularity of items.
• Generalized θG (Eq. II.6) incorporates user interest,

popularity of items, and the preferences of other users.
Due to sampling (S = 500), we run each variant 10 times

(with random shuffling for θC) and average over the runs. We
run the experiments on ML-1M.

Figure 5 shows performance of GANC(ARec, θ, Dyn) as
θ and the accuracy recommender (ARec) are varied. Across
all rows, as expected, the accuracy recommender on its own,
typically obtains the best F-measure. Moreover, θR and θC

often have the lowest F-measure. Different variants of GANC
with θN ,θT , and θG are generally in the middle, which shows
that these preference estimates are better than θR and θC

in terms of accuracy. For Stratified Recall, similar trends as
accuracy are observed in the ranking of the algorithms. The
trends are approximately the same as we vary the accuracy
recommender in Figures 5.b, 5.c, and 5.d.

V. COMPARISON WITH OTHER RECOMMENDATION MODELS

We conduct two rounds of experiments: first, we evaluate re-
ranking frameworks that post-process rating-prediction mod-
els, then we study general top-N recommendation algorithms.
For GANC, we run variants that involve randomness (e.g.,
sampling-based variants) 10 times, and report the average.

A. Comparison with re-ranking methods for rating-prediction

Standard re-ranking frameworks typically use a rating pre-
diction model as their accuracy recommender. In this section,
we use RSVD as the underlying rating prediction model,
and analyze performance across datasets with varying density
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Fig. 2: Histogram of long-tail novelty preference models. Observe θAu is skewed toward smaller values because of sparsity,
i.e., the majority of users rate a few items. θNu is also biased toward smaller values, due to a combination of popularity bias
and sparsity. θTu and θGu are less biased and more normally distributed and alleviate both problems.

200 400 600 800

Sample Size

0.055

0.060

0.065

0.070

0.075

F
-m

ea
su

re
@

5

F-measure@5

Coverage@5

0.4

0.6

0.8

C
ov

er
ag

e@
5

(a) PSVD100

200 400 600 800

Sample Size

0.1205

0.1210

0.1215

0.1220

F
-m

ea
su

re
@

5

F-measure@5

Coverage@5

0.15

0.20

0.25

0.30

0.35

0.40

C
ov

er
ag

e@
5

(b) PSVD10

200 400 600 800

Sample Size

0.07095

0.07100

0.07105

0.07110

0.07115

0.07120

F
-m

ea
su

re
@

5

F-measure@5

Coverage@5

0.010

0.015

0.020

0.025

0.030

0.035

C
ov

er
ag

e@
5

(c) Pop

200 400 600 800

Sample Size

0.0210

0.0215

0.0220

0.0225

F
-m

ea
su

re
@

5

F-measure@5

Coverage@5

0.3

0.4

0.5

0.6

0.7

0.8

C
ov

er
ag

e@
5

(d) RSVD

Fig. 3: Performance of GANC(ARec, θG, Dyn) with OSLG optimization, as sample size (S) is varied. The accuracy
recommender ARec is indicated in each sub-figure. Dataset is ML-1M.
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(d) RSVD

Fig. 4: Performance of GANC(ARec, θG, Dyn) with OSLG optimization, as sample size (S) is varied. The accuracy
recommender ARec is indicated in each sub-figure. Dataset is MT-200K.

levels. We compared the standard greedy ranking strategy
of RSVD with 5D(RSVD), 5D(RSVD, A, RR), RBT(RSVD,
Pop), RBT(RSVD, Avg), PRA(RSVD,10), PRA(RSVD,20),
GANC(RSVD, θT , Dyn), and GANC(RSVD, θG, Dyn). We
report results for N = 5, since users rarely look past the
items at the top of recommendation sets. Table IV shows top-
5 recommendation performance.

Regarding RSVD, the model obtains high LTAccuracy,
but under-performs all other models in coverage and gini.
Essentially, RSVD picks a small subset of the items, including
long-tail items, and recommends them to all the users. After
all, RSVD model is trained by minimizing Root Mean Square
Error (RMSE) accuracy measure, which is defined w.r.t. avail-
able data and not the complete data [46]. Therefore, when
the model is used to choose a few items (N ) from among
all available items, as is required in top-N recommendation
problems, it does not obtain good overall performance.

In dense settings (ML-1M), GANC outperforms other mod-

els in all metrics except LTAccuracy. In sparse settings, except
on ML-10M, GANC has at least one variant in the top 2
methods w.r.t. F-measure. In both sparse and dense settings,
except on ML-10M, GANC has at least one variant in the
top 2 methods w.r.t. stratified recall. Other methods, e.g., 5D,
focus exclusively on LTAccuracy and reduce F-measure and
stratified recall.

In summary, the performance of RSVD depends on the
dataset density. On the sparse datasets, it does not provide
accurate suggestions w.r.t. F-measure, and subsequent re-
ranking models make less accurate suggestions. Although
another reason for the smaller F-measure values on datasets
like ML-10M (and Netflix), is the larger item space size. Top-
5 recommendation, corresponds to a very small proportion of
the overall item space. Re-ranking a rating prediction model
like RSVD, is mostly effective for dense settings. However,
our framework is generic, and enables us to plug-in a different
accuracy recommender. We show the results for this in the next
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Fig. 5: Performance of GANC(ARec, θ, Dyn), with fixed sample size S = |500|, different accuracy recommenders (ARec), and
different long-tail preference models (θ). Dataset is ML-1M. The trends are approximately the same as we vary the accuracy
recommender in Figures 5.a, 5.b, 5.c, and 5.d. In each row, ARec typically achieves the highest F-measure, but performs poorly
w.r.t. coverage and gini. Variants of our framework that use θG, θT , θN , obtain higher f-measure levels compared to those that
use θR and θC . They also improve stratified recall, independent of the accuracy recommender. Stratified Recall emphasizes
novelty and accuracy

.



Alg. F@5 S@5 L@5 C@5 G@5 Score

M
L

-1
00

K

RSVD 0.0279 (2) 0.0098 (4) 0.6649 (4) 0.0707 (8) 0.9886 (9) 5.4 (4)
5D(RSVD) 0.0013 (9) 0.0014 (9) 0.9260 (1) 0.2586 (3) 0.9000 (3) 5.0 (2)
5D(RSVD, A, RR) 0.0071 (8) 0.0035 (8) 0.7669 (2) 0.1171 (7) 0.9783 (8) 6.6 (6)
RBT(RSVD, Pop) 0.0136 (7) 0.0043 (7) 0.7362 (3) 0.1284 (6) 0.9759 (7) 6.0 (5)
RBT(RSVD, Avg) 0.0201 (6) 0.0075 (6) 0.6271 (5) 0.1938 (4) 0.9583 (5) 5.2 (3)
PRA(RSVD, 10) 0.0252 (5) 0.0103 (3) 0.5642 (6) 0.1171 (7) 0.9674 (6) 5.4 (4)
PRA(RSVD, 20) 0.0255 (4) 0.0095 (5) 0.5544 (7) 0.1379 (5) 0.9581 (4) 5.0 (2)
GANC(RSVD, θT , Dyn) 0.0310 (1) 0.0127 (1) 0.5064 (9) 0.6260 (2) 0.7669 (2) 3.0 (1)
GANC(RSVD, θG, Dyn) 0.0260 (3) 0.0122 (2) 0.5501 (8) 0.8716 (1) 0.6242 (1) 3.0 (1)

M
L

-1
M

RSVD 0.0208 (3) 0.0050 (6) 0.7091 (3) 0.0758 (9) 0.9923 (9) 6.0 (6)
5D(RSVD) 0.0008 (9) 0.0006 (9) 0.9579 (1) 0.1927 (4) 0.9468 (3) 5.2 (4)
5D(RSVD, A, RR) 0.0167 (6) 0.0052 (5) 0.6649 (5) 0.1360 (6) 0.9752 (6) 5.6 (5)
RBT(RSVD, Pop) 0.0091 (8) 0.0022 (8) 0.8019 (2) 0.1125 (8) 0.9872 (8) 6.8 (7)
RBT(RSVD, Avg) 0.0155 (7) 0.0044 (7) 0.6816 (4) 0.2261 (3) 0.9704 (4) 5.0 (3)
PRA(RSVD, 10) 0.0207 (4) 0.0053 (4) 0.6268 (6) 0.1171 (7) 0.9800 (7) 5.6 (5)
PRA(RSVD, 20) 0.0205 (5) 0.0055 (3) 0.5976 (7) 0.1436 (5) 0.9714 (5) 5.0 (3)
GANC(RSVD, θT , Dyn) 0.0244 (1) 0.0077 (1) 0.5139 (9) 0.5113 (2) 0.8947 (2) 3.0 (2)
GANC(RSVD, θG, Dyn) 0.0213 (2) 0.0072 (2) 0.5355 (8) 0.6492 (1) 0.8754 (1) 2.8 (1)

M
L

-1
0M

RSVD 0.0147 (1) 0.0021 (1) 0.6775 (5) 0.0066 (9) 0.9992 (9) 5.0 (4)
5D(RSVD) 0.0000 (9) 0.0000 (7) 1.0000 (1) 0.1248 (3) 0.9609 (1) 4.2 (2)
5D(RSVD, A, RR) 0.0024 (8) 0.0007 (6) 0.9421 (2) 0.0489 (5) 0.9968 (5) 5.2 (5)
RBT(RSVD, Pop) 0.0086 (6) 0.0012 (5) 0.8062 (3) 0.0210 (6) 0.9973 (7) 5.4 (6)
RBT(RSVD, Avg) 0.0087 (5) 0.0013 (4) 0.8039 (4) 0.0614 (4) 0.9945 (4) 4.2 (2)
PRA(RSVD, 10) 0.0116 (2) 0.0020 (2) 0.5888 (7) 0.0085 (8) 0.9978 (8) 5.4 (6)
PRA(RSVD, 20) 0.0110 (3) 0.0020 (2) 0.5992 (6) 0.0115 (7) 0.9972 (6) 4.8 (3)
GANC(RSVD, θT , Dyn) 0.0091 (4) 0.0019 (3) 0.5861 (8) 0.2158 (2) 0.9920 (3) 4.0 (1)
GANC(RSVD, θG, Dyn) 0.0057 (7) 0.0012 (5) 0.5704 (9) 0.2477 (1) 0.9910 (2) 4.8 (3)

M
T-

20
0K

RSVD 0.0002 (5) 0.0004 (4) 0.9991 (2) 0.0029 (9) 0.9995 (9) 5.8 (9)
5D(RSVD) 0.0000 (6) 0.0000 (5) 0.9996 (1) 0.0597 (3) 0.9789 (3) 3.6 (3)
5D(RSVD, A, RR) 0.0002 (5) 0.0005 (3) 0.9433 (5) 0.0206 (5) 0.9970 (6) 4.8 (6)
RBT(RSVD, Pop) 0.0002 (5) 0.0005 (3) 0.9988 (3) 0.0154 (6) 0.9968 (5) 4.4 (5)
RBT(RSVD, Avg) 0.0005 (2) 0.0008 (1) 0.9701 (4) 0.0273 (4) 0.9957 (4) 3.0 (2)
PRA(RSVD, 10) 0.0003 (4) 0.0008 (1) 0.9202 (6) 0.0058 (8) 0.9985 (8) 5.4 (8)
PRA(RSVD, 20) 0.0004 (3) 0.0008 (1) 0.8038 (8) 0.0082 (7) 0.9974 (7) 5.2 (7)
GANC(RSVD, θT , Dyn) 0.0004 (3) 0.0005 (3) 0.7720 (9) 0.2143 (2) 0.9775 (2) 3.8 (4)
GANC(RSVD, θG, Dyn) 0.0007 (1) 0.0006 (2) 0.8106 (7) 0.2185 (1) 0.9755 (1) 2.4 (1)

N
et

fli
x

RSVD 0.0023 (1) 0.0019 (2) 0.6772 (6) 0.0062 (8) 0.9997 (8) 5.0 (3)
5D(RSVD) 0.0000 (8) 0.0001 (7) 0.9968 (1) 0.3523 (1) 0.9463 (1) 3.6 (1)
5D(RSVD, A, RR) 0.0012 (5) 0.0011 (5) 0.7862 (4) 0.1854 (2) 0.9928 (2) 3.6 (1)
RBT(RSVD, Pop) 0.0010 (7) 0.0010 (6) 0.8199 (2) 0.0044 (9) 0.9991 (7) 6.2 (6)
RBT(RSVD, Avg) 0.0011 (6) 0.0010 (6) 0.8054 (3) 0.0290 (5) 0.9978 (5) 5.0 (3)
PRA(RSVD, 10) 0.0020 (3) 0.0017 (3) 0.6697 (8) 0.0115 (7) 0.9991 (7) 5.6 (5)
PRA(RSVD, 20) 0.0018 (4) 0.0017 (3) 0.6722 (7) 0.0158 (6) 0.9987 (6) 5.2 (4)
GANC(RSVD, θT , Dyn) 0.0021 (2) 0.0020 (1) 0.5792 (9) 0.0979 (4) 0.9975 (4) 4.0 (2)
GANC(RSVD, θG, Dyn) 0.0012 (5) 0.0016 (4) 0.6938 (5) 0.1522 (3) 0.9962 (3) 4.0 (2)

TABLE IV: Top-5 recommendation performance for re-ranking a rating prediction model, RSVD. The metrics are
(F)measure@5, (S)tratified Recall@5, (L)TAccuracy@5, (C)overage@5, and (G)ini@5. Bolded entries show the best value
for each metric, with relative rank of each algorithm on each metric inside parenthesis. For all models, improving trade-offs
is better on dense datasets. Regarding our two variants of GANC (with fixed sample size S = 500), they outperform others in
all metrics except LTAccuracy, in dense settings (ML-1M). On all datasets, our models obtain the lowest average rank across
all metrics (last column). Overall, the results suggest a different accuracy recommender should be used in sparse settings.

section. Moreover, all re-ranking techniques increase coverage,
but reduce accuracy. 5D(RSVD) obtains the highest novelty
among all models, but reduces accuracy significantly. On most
datasets, GANC significantly increases coverage and decreases
gini, while maintaining reasonable levels of accuracy.

B. Comparison with top-N item recommendation models

As shown previously, in sparse settings, re-ranking frame-
works that rely on rating prediction models do not generate
accurate solutions. In this section we plug-in a different

accuracy recommender w.r.t. dataset density. On MT-200K,
we plug-in Pop. On all other datasets we plug-in PSVD100 as
the accuracy recommender. For GANC, we use three variants
which differ in their coverage recommender: GANC(ARec,
θG, Dyn), GANC(ARec, θG, Stat) and GANC(ARec, θG,
Rand). We also compare to the generic re-ranking framework,
PRA(ARec, 10). For both GANC and PRA, we always plug-
in the same accuracy recommender. Furthermore, we compare
with standard top-N recommendation algorithms: Rand, Pop,
RSVD, CofiR100, PSVD10, PSVD100.
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Fig. 6: Accuracy vs Coverage vs Novelty. The head of the arrow shows our main model GANC(ARec, θG, Dyn) with sample
size S = 500, while the bottom shows the underlying accuracy recommender (ARec). On MT-200K ARec is Pop. On other
datasets it is PSVD-100. Note, RSVD is consistently dominated by all other models in F-measure and coverage.

Figure 6 compares accuracy, coverage and novelty trade-
offs. On all datasets, Rand achieves the best coverage and
gini, but the lowest accuracy. Similar to [1], [5], we find the
non-personalized method Pop, which takes advantage of the
popularity bias of the data, is a strong contender in accuracy,
but under-performs in coverage and novelty.

Regarding GANC, Figure 6 shows the best improvements
in coverage are obtained when we use either Rand or Dyn
coverage recommenders. Stat is generally not a strong cover-
age recommender, e.g, GANC(ARec, θG, Stat) obtains high
novelty (LTAccuracy) on ML-10M, but does not lead to
significant improvements in coverage. This is because Stat has
constant gain for long-tail promotion and focuses exclusively
on recommending (a small subset of the) long-tail items.
Our main model is GANC(ARec, θG, Dyn). An interesting
observation is that on MT-200K, both GANC(ARec, θG, Dyn)
and GANC(ARec, θG, Rand), that use the non-personalized
accuracy recommender Pop as ARec, are competitive with
algorithms like PSVD100 or CofiR100.

VI. RELATED WORK

We provide an overview of related work here. A detailed
description of baselines and methods integrated in our frame-
work is provided in Section IV.

Accuracy-focused rating prediction CF models aim to
accurately predict unobserved user ratings [47], [3]. Accuracy
is measured using error metrics such as RMSE or Mean Ab-
solute Error that are defined w.r.t. the observed user feedback.

Generally, these methods are grouped into memory-based or
model-based [47]. Earlier memory-based or neighbourhood
models used the rating data directly to compute similarities
between users [48] or items [49]. However, these models are
not scalable on large-scale datasets like Netflix. Model-based
methods instead train a parametric model on the user-item
matrix. Matrix Factorization models [47], [40], a.k.a. Singular
Value Decomposition (SVD) models, belong to this group and
are known for both scalablility and accuracy [1]. These models
factorize the user-item matrix into a product of two matrices;
one maps the users (U), and the other maps items (I), into
a latent factor space of dimension g � min(|U|, |I|). Here,
each user u, and each item i, are represented by a factor
vector, pu ∈ Rg , and qi ∈ Rg , respectively. Ratings are
estimated using r̂ui = qTi pu. Due to the large number of
missing values in the user-item matrix, the regularized squared
error on the observed ratings is minimized. The resulting
objective function is non-convex, and iterative methods such
as Stochastic Gradient Descent (SGD) or Alternating Least
Squares (ALS) [40], [50], [51] can be used to find a local
minimum. From this group, we use RSVD and RSVDN [40],
[28], in Section IV.

Accuracy-focused ranking prediction CF models focus
on accurately compiling ranked lists. The intuition is that
since predicted rating values are not shown to the user, the
focus should be on accurately selecting and ranking items.
Accordingly, accuracy is measured using ranking metrics,
like recall and precision, that can be measured either on the



observed user feedback, or on all items [1], [36]. For ranking
tasks, Pop obtains high precision and recall [1], [5]. PSVD [1]
and CoFiRank [41] are well-known latent factor models for
ranking, with others in [43], [35]. We use Pop, PSVD, and
CofiRank in Section IV.

Multi-objective methods devise new models that optimize
several objectives, like coverage and novelty, in addition to
accuracy [5], [6], [13], [38], [52]. In [38], items are assumed
to be similar if they significantly co-occur with the same
items. This leads to better representations for long-tail items,
and increases their chances of being recommended. A new
performance measure that combines accuracy and popularity
bias is proposed in [6]. This measure can be gradually tuned
towards recommending long-tail items. More recently, the idea
of recommending users to items as a means of improving
sales diversity, and implicitly, recommendation novelty, while
retaining precision, has been explored in [5]. In comparison
to both [6], [38], we focus on targeted promotion of long-tail
items. While [5] focuses on neighbourhood models for top-N
recommendation, our framework is generic and independent of
the recommender models. Graph-based approaches for long-
tail item promotion are studied in [13], [52]. They construct a
bipartite user-item graph and use a random walk to trade-off
between popular and long-tail items. Rather than devise new
multi-objective models, we post-process existing models.

Re-ranking methods post-process the output of a standard
model to account for additional objectives like coverage and
diversity rather than devising a new model. These algorithms
are very efficient. [9] explores re-ranking to maximize diver-
sity within individual top-N . It shows that users preferred
diversified lists despite their lower accuracy. However, diversi-
fying individual top-N sets does not necessarily increase cov-
erage [17], [38]. Re-ranking techniques that directly maximize
coverage and promote long-tail items are explored in [11],
[14], [20], [22]. In contrast to [11], [14], [20] that re-rank
rating prediction models, our framework is generic and is
independent of the base recommendation model. Furthermore,
our long-tail personalization is independently learned from
interaction data. PRA [22] is also generic framework for re-
ranking, although we differ in our long-tail novelty prefer-
nce modelling. We use RBT [14], Resource allocation [20],
PRA [22] as baselines since we share similar objectives.

Modelling user novelty preference is studied in [17], [22],
[53], [54], [55]. As explained in [53], an item can be novel in
three ways: 1) it is new to the system and is unlikely to be seen
by most users (cold-start), 2) it existed in the system but is
new to a single user, 3) it existed in the system, was previously
known by the user, but is a forgotten item. [53], [55] focus on
definitions 2 and 3 of novelty, which are useful in settings
where seen items can be recommended again, e.g., music
recommendation. For defining users’ novelty preferences, tag
and temporal data are used in [53], [55]. A logistic regression
model is used to predict user novelty preferences in [53],
while [55] learn a curiosity model for each user based on her

access history and item tags. In [54], gross movie earnings are
assumed to reflect movie popularity, and are used to define a
personal popularity tendency (PPT) for each user. The idea is
to match the PPT of each user with the PPT of recommended
items [54]. The major difference between our work and [53],
[54], [55] is that we focus on the cold-start definition of
novelty (definition 1), we do not use contextual or temporal
information to define users’ tendencies for novelty, and we
consider domains where each item is accessed at most once
(seen items cannot be recommended).

In [17], users are characterized based on their tendency
towards disputed items, defined as items with high average
rating and high variance. These items are claimed to be in the
long-tail. We differ in terms of long-tail novelty definition,
and consequently our preference estimates. Furthermore, [17]
independently solve a constrained convex optimization prob-
lem for each user, with the user’s disputed item tendency as
a constraint. [18], [19] use a user risk indicator to decide
between a personalized and a non-personalized model; both
focus on accuracy. In contrast, we combine accuracy and
coverage models. Furthermore, while their risk indicators are
optimized via cross validation, we learn the users’ long-tail
preferences.

PRA [22] models user preference for long-tail novelty using
on item popularity statistics. In contrast, we consider addi-
tional information, like if the user found the item interesting,
and the long-tail preferences of other users of the item.

CF interaction data properties and test ranking protocol
are two important aspects to consider in recommendation
setting. CF interaction data suffers from popularity bias [37].
In the movie rating domain, for instance, users are more likely
to rate movies they know and like [1], [6], [36], [37], [46].
As a result, the partially observed interaction data is not a
random subset of the (unavailable) complete interaction data.
Furthermore, many real-world CF interaction datasets [33],
[4], [21], [56] are sparse, and the majority of items and users
have few observations available. Due to the popularity bias
and sparsity of datasets, many accuracy-focused CF models
are also biased toward recommending popular items.

Moreover, some accuracy evaluation protocols are also
biased and tend to reward popularity biased algorithms [1],
[5], [36]. In [36], the main evaluation protocols are assessed
in detail, and the “All unrated items test ranking protocol”
is described to be closer to the accuracy the user experience
in real-world recommendation setting, where performance
is measured using the complete data rather than available
data [36]. Following [36], [5], and w.r.t. the additional experi-
ments we conducted in Appendix C, we chose the “All unrated
items test ranking protocol” for experiments in Section IV.

VII. CONCLUSION

This paper presents a generic top-N recommendation frame-
work for trading-off accuracy, novelty, and coverage. To
achieve this, we profile the users according to their pref-
erence for long-tail novelty. We examine various measures,



and formulate an optimization problem to learn these user
preferences from interaction data. We then integrate the user
preference estimates in our generic framework, GANC. Ex-
tensive experiments on several datasets confirm that there are
trade-offs between accuracy, coverage, and novelty. Almost all
re-ranking models increase coverage and novelty at the cost of
accuracy. However, existing re-ranking models typically rely
on rating prediction models, and are hence more effective
in dense settings. Using a generic approach, we can easily
incorporate a suitable base accuracy recommender to devise an
effective solution for both sparse and dense settings. Although
we integrated the long-tail novelty preference estimates into
a re-ranking framework, their use-case is not limited to these
frameworks. In the future, we intend to explore the temporal
and topical dynamics of long-tail novelty preference, particu-
larly in settings where contextual information is available.
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APPENDIX

A. Regularized SVD configuration

R-SVD R-SVDN

Dataset η λ g RMSE η λ g RMSE

ML-100K 0.03 0.05 100 0.935 0.03 0.05 100 0.935
ML-1M 0.03 0.05 100 0.868 0.03 0.05 100 0.875
ML-10M 0.003 0.005 20 0.872 0.003 0.005 20 0.872
MT-200k 0.01 0.01 40 0.761 0.01 0.01 40 0.761
Netflix 0.002 0.05 100 0.979 0.002 0.05 100 0.979

TABLE V: R-SVD and R-SVDN parameters on different
datasets. g is the number of latent factors, η is the learning
rate, λ is the L2-reqularization coefficient.

Table V provides details for the setup of Regularized SVD
(R-SVD) and the same model with non-negative constraints (R-
SVDN). We use LIBMF [28] with L2-Norm as the loss func-
tion, and L2-regularization, and SGD for optimization. We per-
formed 10-fold cross validation and tested: number of latent
factors g ∈ {8, 20, 40, 50, 80, 100}, L2-regularization coeffi-
cients λ ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, learning rate η ∈
{0.002, 0.003, 0.01, 0.03}. For each dataset, we used the parameters
that led to best performance.

B. Analysis of Fully Sequential Dynamic Coverage
In this section, we show the problem of finding a top-N collection

P = {Pu}|U|u=1 that maximizes Eq. III.2, is an instance of maximizing
a submodular function subject to a matroid constraint.

Matroids. A set system is a pair (I,F), where I denotes a ground
set of elements and F = {A : A ⊆ I}, is a collection of subsets of
I. A set system is an independence system if it satisfies 1) ∅ ∈ F ,
2) A ⊆ B ∈ F then A ∈ F . A matroid is an independence system
that also satisfies the property A,B ∈ F and |B| > |A| then ∃i ∈
B \ A with A ∪ {i} ∈ F . A uniform matroid, is a special class of
matroids that satisfies F = {A : A ⊆ I, |A| ≤ N}, that is all
basis are maximal. A partition matroid satisfies F = {A : A =
∪N

i=1Ai,Ai ⊆ Ii, |Ai| ≤ li,∪Ii = I}.

Lemma A.1. The constraint of recommending N items to each user,
corresponds to a partition matroid over the users.

Proof: Define a new ground set N = {(u, i) : u ∈ U , i ∈ I}.
Define Nu = {(u, i) : i ∈ I}, u ∈ U and let lu = N,∀u ∈ U . Let

M = (U ,F) where F = {P
′
: P

′
= ∪u∈UP

′
u,P

′
u ⊆ Nu, |P

′
u| ≤

lu,∪Nu = N}. P
′

form independent sets of a partition matroid.

Submodularity and Monotonicity. Let I denote a ground set of
items. Given a set function f : 2I → R, δ(i|A) := f(A∪{i})−f(A)
is the marginal gain of f at A with regard to item i. Furthermore, f is
submodular if and only if δ(i|A) ≥ δ(i|B), ∀A ⊆ B ⊆ I, ∀i ∈ I\B.
It is modular if f(A ∪ i) = f(A) + f(i), ∀A ⊂ I, i ∈ I \ A. In
addition, f is monotone increasing if f(A) ≤ f(B), ∀A ⊆ B ⊆ I.
Equivalently, a function is monotone increasing if and only if ∀A ⊆ I
and i ∈ I, δ(i|A) ≥ 0 [57]. Submodular functions have the following
concave composition property:

Theorem A.1. Using dynamic coverage, the objective function v(.)
in Eq.III.2 is submodular monotone increasing w.r.t. sets of user-item
pairs.

Proof: Consider the ground setN , defined in Lemma A.1. Based
on any set P

′
⊆ N , define P

′
u = {i|(u, i) ∈ P

′
}. We can rewrite

the objective function with dynamic coverage as

v(P
′
) =

∑
u

vu(P
′
u)

=
∑
u

(1− θu)a(P
′
u) + θuc(P

′
u)

=
∑
u

(1− θu)
∑
i∈P′

u

a(i) + θu
∑
i∈P′

u

c(i) (A.1)

=
∑
u

(1− θu)
∑
i∈P′

u

r̂ui + θu
∑
i∈P′

u

1√
1 + fP

′

i

(A.2)

where fP
′

i is the number of times item i is recommended in P
′
. For

submodularity consider any A ⊆ B ⊂ N , and a pair (u, i) ∈ N \B.
We have

fAi ≤ fBi
1√

1 + fAi
≥ 1√

1 + fBi

(1− θu)r̂ui + θu
1√

1 + fAi
≥ (1− θu)r̂ui + θu

1√
1 + fBi

δ(i|A) ≥ δ(i|B)

Therefore, due to the submodularity of the coverage function, the
overall value function v(.) is submodular.

For monotonicity, both a(.) and c(.) map a set of items Pu to
the [0, 1] range, and are additive in terms of the number of items
(line A.1). So, they are both monotonically increasing, i.e., adding
a new element i ∈ I \ Pu to the set Pu can only increase their
value. Since θu is also in [0, 1], vu(.) is monotonically increasing.
v(.) is therefore submodular monotone increasing since it is a sum
of submodular monotone increasing functions.
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Fig. 7: Comparing the trade-offs for top-5 recommendation,
when using different ranking protocols. Dataset is ML-100K.

C. Effect of test ranking protocol on performance metrics

In our empirical study, we studied off-line recommendation perfor-
mance of top-N recommendation algorithms from three perspectives:
accuracy, novelty, and coverage (Section IV-A). The choice of test
ranking protocol [36] is also an important aspect in off-line evalua-
tions. The test ranking protocol describes which items in the test set
are ranked for each user [36]. We use the definitions in [36]:
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Fig. 8: Comparing the trade-offs for top-5 recommendation,
when using different ranking protocols. Dataset is ML-1M.

• Rated test-items ranking protocol: for each user, we only rank
the observed items in the test set of that user.

• All unrated items ranking protocol: for each user, we rank
all items that do not appear in the train set of that user.

In [36], it was shown that the choice of test ranking protocol can
affect accuracy measurements considerably. Specifically, accuracy is
measured either by error metrics (e.g., RMSE and MAE) or ranking



metrics (e.g., recall and precision) in recommendation settings [36].
Error metrics are defined w.r.t. the observed user feedback only.
Rating prediction models that optimize these metrics in the train
phase, e.g., R-SVD, typically adopt the rated test-items ranking
protocol in the test phase. However, error metrics are not precise
indicators of accuracy, since they only consider the subset of items
that have feedback. But in real-world applications, the system must
find and rank a few items (N ) from among all items [1], [36].

Ranking metrics can be measured on the observed user feedback,
or on all items. When measured on the observed user feedback, these
metrics can be strongly biased because of the popularity bias of
datasets [37], [1], [6], [5], [36]. Therefore, in top-N recommendation
settings, these metrics are measured using the all-items ranking
protocol, to better reflect accuracy as experienced by users in real-
world applications [36], [5].

We extend the empirical study of [36] by evaluating the effect of
the test ranking protocol on accuracy, coverage, and novelty. We use
standard accuracy-focused CF models (introduced in Section VI). We
set N = 5, and ran experiments on ML-100K and Ml-1M datasets,
shown in Figures 7 and 8, respectively.

We analyze Figure 8, which shows the results on the ML-1M
dataset (Figure 7 has similar trends). The first observation is that all
algorithms obtain higher F-measure scores using the rated test-item
ranking protocol. In particular, for the all unrated items ranking pro-
tocol, Figure 8.a, F-measure lies in [0, 0.2] (with the corresponding
precision in [0, 0.5] in Figure 8.c ). For the rated test-items ranking
protocol F-measure lies in [0.2, 0.4] (with precision in [0.6, 0.9]) .
As a specific example, consider Rand which randomly suggests items
according to the ranking protocol. As expected, random suggestion
from among all items has low F-measure and precision. However,
random suggestion from among the test items of each user, leads to
an average F-measure of almost 0.25 (precision approximately 0.6).
This demonstrates the bias of the rated test-items ranking protocol.
Similar to [1], we observe Pop is a strong contender in accuracy
metrics, using both test protocols [1]. Recent work in [21] also
confirmed that Pop outperformed more sophisticated algorithms for

tourists datasets, that are sparse and where the users have few and
irregular interests (only visit popular locations). In addition, although
R-SVD and R-SVDN are less accurate using the all unrated items
ranking protocol, they obtain the highest F-measure scores using the
rated test-items ranking protocol. This is because these models are
optimized w.r.t. the observed user feedback. Therefore, the rated test-
items ranking protocol is to their advantage because it also considers
only the observed user feedback.

Coverage is also affected by the ranking protocol. The rated test-
items ranking protocol results in better coverage for all algorithms
except Random. This is because random suggestion from among a
user’s test items, is a more constrained algorithm compared to random
from among all train items. Regarding the effect of the ranking
protocol on LTAccuracy, it lies in [0, 1] for the all unrated test items
ranking protocol, but drops to [0, 0.2] for the rated test-items ranking
protocol.

Regarding the trade-off between metrics, irrespective of the rank-
ing protocol, we observe that Pop makes accurate yet trivial recom-
mendations that lack novelty, as indicated by the low LTaccuracy
and coverage in Figure 8. For the PureSVD models (P-SVD), on
ML-100K and ML-1M, increasing the number of factors reduces
F-measure, and results in an increase in coverage and LTAccu-
racy. Among all baselines, CoFiRank with regression loss (CofiR10,
CofiR100) has reasonable coverage, precision, and long-tail accuracy.

Overall, our experiments in this section confirm the findings of
prior work [1], [36], [37]: due to the popularity bias of recom-
mendation datasets, rank-based precision is strongly biased when
it is measured using the rated test-items ranking protocol. This is
demonstrated by the results of Pop, which achieves an F-measure of
0.3 on ML-100K and ML-1M, with even higher precision scores on
those datasets. It outperforms personalized models like CoFiRank.
However, using the all-items ranking protocol, the performance of
these models aligns better with expectation. Following prior research
on top-N recommendation [36], [5], we conducted the experiments
in Section IV using the all-items ranking protocol.
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