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ABSTRACT

Commonly, HoG/SVM classifier uses rectangular images for
HoG feature descriptor extraction and training. This means
significant additional work has to be done to process irrele-
vant pixels belonging to the background surrounding the ob-
ject of interest. While some objects may indeed be square or
rectangular, most of objects are not easily representable by
simple geometric shapes. In Bitmap-HoG approach we pro-
pose in this paper, the irregular shape of object is represented
by a bitmap to avoid processing of extra background pixels.
Bitmap, derived from the training dataset, encodes those por-
tions of an image to be used to train a classifier. Experimental
results show that not only the proposed algorithm decreases
the workload associated with HoG/SVM classifiers by 75%
compared to the state-of-the-art, but also it shows an average
increase about 5% in recall and a decrease about 2% in preci-
sion in comparison with standard HoG.

Index Terms— HoG, object detection, image classifica-
tion, bitmap

1. INTRODUCTION

Histogram of oriented Gradients (HoG) feature descriptors
are used in computer vision for a decade. It was first proposed
by Dalal et al. [1] for pedestrian detection in static images,
although it was expanded later to include human detection in
videos, as well as to detect a variety of animals and objects in
static imagery. When first introduced, HoG feature descrip-
tors brought about a significant improvement in the state-of-
the-art in object detection. This improvement in accuracy was
accompanied by a large increase in the computational burden,
which limited adoption in embedded solutions particularly.

Ke and Sukthankar [2] reduced the dimensionality of
SIFT feature descriptor using the Principal Component Anal-
ysis (PCA), whilst they kept it distinctive, robust to image de-
formations, with faster matching. Inspired by this technique,
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a number of successful studies [3, 4, 5, 6] reduced the di-
mensionality of HoG descriptor. Zhu et al. [7] integrated a
cascade of fast rejectors into HOG, with features chosen from
blocks at multiple sizes, locations and aspect ratios. Effective
rejector cascades, based on coarse to fine feature hierarchies,
were introduced by Zhang et al. [8] and Pedersoli et al. [9].
These concepts were further refined by Pedersoli et al. [10] to
accelerate object detection with deformable parts models.

Dollár et al. [11] identified the computational bottleneck
of many detectors as being the image pyramid. Yamauchi
et al. [12] focused on reducing memory requirements of HoG
descriptors by reducing their dimensionality through gener-
ation of binary patterns and by capturing size relationships
of HoG features including wild card support in an AdaBoost
cascade to improve generalisation. Liu et al. [13] contributed
a set of ”Related HoG” (R-HOG) features. Arróspide and
Salgado [14] presented how v-HoG works particularly well
for vehicles, and recommend classifier fusion as a promis-
ing direction for further progress [15]. Kim and Cho [16]
recognised that many of the calculations in vanilla HoG and
its overlapping blocks are redundant, and can be diminished
without any impact on detection accuracy.

Further to eliminating the runtime efficiency of HoG-like
descriptors attained in afore-mentioned works, the current pa-
per introduces a novel approach where the descriptor extrac-
tion becomes a two-fold process. The training phase defines
the expected shape of the objects’ boundaries, then the de-
scriptor extraction uses this prior knowledge to represent the
exact topology and extent of object, as advised by the shape-
prior. In this way, the background noise of object encoding
phase is suppressed while the runtime is eliminated. The rest
of this paper is outlined as follow: Section 2 presents moti-
vation. The proposed algorithm, evaluation, and conclusions
are discussed in Sections 3, 4 and 5, respectively.

2. MOTIVATION

The main application of HoG, when it is used in conjunction
with a classifier such as SVM (so-called HoG/SVM), is ob-
ject detection and classification. Detection, though, involves
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repeatedly stepping the HoG window across the test image,
which manifolds the HoG’s computational cost. Moreover,
HoG calculation contains no intrinsic sense of the scale and
objects can occur at multiple scales in image. Hence, the HoG
calculation should be stepped and repeated across each level
of a scale pyramid (e.g. 38 levels for 1080p images, the scal-
ing factor of 1.05, and default HoG window). Using the com-
mon scaling factor value of 1.05 [1] or 1.2 [17], the test
image is repeatedly down-scaled until the scaled image can
no longer accommodate a complete HoG window. Clearly,
this scaling process intensifies the computational cost of the
HoG/SVM. Many optimisations from changing the scale fac-
tor to modifying the block-size in which the HoG window is
stepped across the scaled image have been suggested to prune
the search space and hence limit the computational effort.

The HoG descriptor calculation traditionally implies pro-
cessing of all foreground and background pixels inside the
HoG rectangular window (Fig. 1(a)). The natural extension
of this could be limitation of window to the bounding box of
object (Fig. 1(b)). Since it eliminates part of the background,
it involves less pixels in descriptor computation and thus it
alleviates HoG computational cost, reasonably. If this does
anything good, even further background elimination, which
yields (kind of) sparse bounding contour representation of
object (Fig. 1(c)), can bring more amendment in computa-
tions. Focusing on only the pixels within this irregular shape
is imagined to deliver Less mW, bandwidth, and crucially the
dot-product, which is very important for embedded systems.

(a) (b) (c)
Fig. 1. The Bitmap Descriptor Hypothesis: (a) Standard
HoG window; (b) Hog window limited to the bounding box
around10; (c) Bitmap-HoG irregular pattern.

Informed by efficiency of bitmaps in sparse-matrix multi-
plication, it is used to encode the underlying sparse pattern of
object. This improved version of HoG, bitmap-HoG (bHoG)
hereafter in this paper, improves descriptor’s length and thus
the computational cost and speed of descriptor computation.

3. BITMAP-HOG (BHOG)

When pedestrian matters, without the lose of generality, the
training images of its popular datasets such as INRIA [17]
and Daimler [18] contain non-trivial amounts of background
in addition to the pedestrian in the foreground. This redundant
background area can possibly confound the detector and re-
duce its effectiveness, apart from the extra computation that it
adds. Although L2 normalization makes the HoG descriptor
background invariant, it cannot solve its computational com-
plexity problem. While, removing the background in bHoG

can deliver a significant reduction in descriptor’s length and
thus the computational costs. This improvement is accepted
if bHoG/SVM can deliver at least the same performance
as HoG/SVM. To evaluate this, the so-called hypothesized
bitmap foreground area should be identified first.

(a) (b) (c) (d) (e)

Fig. 2. Average image of Daimler dataset over image number
equal to: (a) 2; (b) 100; (c) 500; (d) 5000; (e) 15660;

The rule-of-thumb idea for estimating the bitmap area is
to average the training images of a pedestrian dataset. Appar-
ently, averaging of a few hundred images should be enough
to attain the bitmap area. As expected, the average of around
500 training samples of Daimler dataset (Fig. 2(c)) delivers
the objective bitmap area. Figs. 3(a) and 3(b) show the av-
erage image for the Daimler and INRIA datasets over their
whole images, respectively. Clearly, the most relevant infor-
mation relating to the pedestrians in images of these datasets
lies within the red polygon of Fig. 3(c) (the bitmap area).

(a) (b) (c) (d) (e)

Fig. 3. Bitmap area: (a) Daimler dataset average image; (b)
INRIA dataset average image; (c) Bitmap area; (d) Bitmap
area vs cells; (e) Only the cells inside bitmap area.

3.1. bHoG implementation

bHoG is calculated only for the irregular shape of bitmap
rather than the regular-shaped rectangle of standard HoG. The
naive approach would be forming a new rectangle image by
concatenating the inner cells of bitmap and then calculating
the HoG descriptor for this new image. However, this idea
creates a different and possibly wrong result. To understand
why, it should be noticed that HoG descriptor is calculated for
blocks, which are the pre-specified 2⇥2 (usually) neighbour-
ing cells. Since HoG window is rectangle, all possible blocks
of neighbouring cells (starting from top left corner of the win-
dow, striding to the right repeatedly toward the bottom right
corner) are used in descriptor computation. However, it is not
the case for bHoG and only the blocks with the cells inside the
bitmap area (bHoG eligible blocks) are the mater. Since, the
naive idea changes the relative relationship of the cells, the
number of blocks as well as the times each cells are involved



Fig. 4. The Bitmap HoG (bHoG) Descriptor Method.

in bHoG calculation are changed, which leads to wrong re-
sult. Accordingly, it is necessary to know the bitmap inner
cells, the relative location of the cells regarding the bitmap,
and particularly the possible bHoG eligible blocks. Fig. 4 vi-
sualizes the way that our hypothesized bitmap idea is applied
with respect to the 64⇥ 128 pixel HoG window.

On the other hand, decomposing the whole rectangular
training image into the cells (as it is in HoG) may make find-
ing the bitmap inner cells complicated (Fig. 3(d)). This com-
plication is due to the cells located on the border of bitmap
(so-called border cells), which might be outside of bitmap
partially. It would be challenging then to decide if these cells
are the inner or outer cells. Also, it makes finding the bHoG
eligible blocks hard. This would be too severe for higher cell
sizes particularly so that bitmap is less probable to have an in-
teger number of inner cells. Obviously, the border cells prob-
lem depends on the parameters of HoG and would not happen
if the image size is a multiple of cell size (see Fig. 3(a)).

As a remedy, only the bounding box around the bitmap
area (the green, dashed box in Fig. 3(c)), can be decomposed
into the cells to form the bitmap inner cells. It makes sense
because only these cells are the target of bHog and the rest of
image is not utilized in the bHoG descriptor calculation and
assembly. Moreover, the bounding box might not be a multi-
ple of the cell size depending on the size of cells. Thus, the
bounding box should be rounded up or down to compensate
for this (e.g. yellow bounding box in Fig. 3(e)).

Given the bitmap and HoG parameters (we use Dalal
et al. [1]’s default parameter in this paper), bHoG descriptor
is calculated by concatenating the HoG feature of the eligi-
ble blocks. To handle it efficiently, a binary matrix (called
BitMap (BM) matrix) is defined to identify which cells of the
bounding box are inside the bitmap (Fig. 5(c)). Any entry
of this matrix is 1 if the corresponding cell belongs to the
bitmap, otherwise it would be 0. In order to determine the
eligible blocks, the BM matrix is convolved with a 2 ⇥ 2
kernel of ones matrix. Obviously, size of kernel depends
on the number of cells in each block as well as the blocks
overlap. The entries of the resultant convolved matrix (Fig.
5(d)) would be between 0 and 4 then. Applying a filtering
stage that keep only 4-value entries of BM matrix produces
the Contributed Blocks (CB) matrix (Fig. 5(e)) that identify

the bHoG eligible blocks. In Fig. 5(f), the eligible blocks are
shown by white dots in their centre. The blue square in the
middle of bitmap is an example eligible block.

(a) (b) (c) (d) (e) (f)

Fig. 5. bHoG computation for cell size = [4 4], block size
= [2 2], and block overlap = [1 1]: (a) decomposed image;
(b) bounding box, bitmap, and cells; (c) BM matrix; (d) con-
volved BM matrix; (e) CB matrix; (f) eligible blocks.

3.2. Scaling the Bitmap and Bounding Box

As the images of various datasets have differing sizes, a fixed-
size bounding box and bitmap would not be general enough
to provide the correct bitmap. In order to tackle this, it is
necessary to find the location as well as the size of both the
bounding box and the associated bitmap area for any new size
of image using a kind of scaling factor. If the size of refer-
ence image in Fig. 3(c) (Daimler dataset) and the new image
(INRIA dataset) are 96 ⇥ 48 and 134 ⇥ 70 respectively, the
scaling factor S in x and y direction are calculated as follows:

S

x

=
70

48
= 1.458 , S

y

=
134

96
= 1.395 (1)

Despite scaling the bounding box and bitmap, their sizes
should be regulated by rounding up or down in order to be
an integer multiple of the cell size. Figs. 6(a)-6(d) show the
scaling and rounding process versus different cell sizes for
an image from INRIA dataset. Fig. 6(d) shows the scaled
bounding box in green against its rounded up and down ver-
sions as cyan and magenta. Scaling the bounding box scales
the bitmap area correspondingly. However, it may displace
the vertices of bitmap polygon somewhere inside the cells in-
stead of occurring on the corner of cells. This will cause the
previously discussed border cell problem. To avoid this, any
vertex of bitmap polygon is rounded to the closest vertex of
cell that it falls in. The scaled and rounded bitmap versus cell
size are shown in Figs. 6(a)-6(d) in red and magenta, respec-
tively. Given the scaled and rounded bitmap, the CB matrix is



(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 6. (a-d) Scaling versus cell size for a training image of INRIA dataset; (e-h) extracted bHoG features versus the cell size.

used then to extract bHoG descriptor. Figs. 6(e)-6(h) present
the extracted bHoG features against the cell sizes.

4. EVALUATIONS

The proposed bHoG algorithm is compared with HoG here.

4.1. Length and Run-time Comparison

To evaluate the improvements that the proposed bHoG ap-
proach delivers in terms of the length of descriptor as well as
the run-time speed, it is compared with the standard HoG and
HoG over the bounding box of bitmap. Although HoG over
object’s bounding box is not the main objective of this re-
search, it is presented to authenticate the way that bHoG was
hypothesized. As Table 1 shows, descriptor length and run-
time improvement is started from HoG over bitmap bounding
box and subsequently is culminated on bHoG.

Table 1. Length and run-time versus cell size: HoG, HoG
over the bounding box of bitmap, and bHoG.

Descriptor Standard HoG HoG over bounding box bHoG
Cell size Length Time (sec) Length Time (sec) Length Time (sec)

[2 2] 80784 0.312271 32436 0.12712 23184 0.094339
[4 4] 18432 0.083592 7488 0.034892 5220 0.025698
[8 8] 3780 0.025807 1872 0.013434 1116 0.009102

[16 16] 756 0.01336 432 0.008152 180 0.004959

4.2. Precision and Recall Evaluation

A binary pedestrian classification task is composed using the
linear SVM method. In this regard, two classes of pedes-
trian and non-pedestrian are defined for both the training and
test sets (Daimler and INRIA datasets, respectively). On this
basis, the performance of two HoG/SVM and bHoG/SVM
classifiers are compared. In other words, the system is trained
using the Daimler dataset and the INRIA images are used for
the test. Precision and Recall are considered as the evalu-
ation factors in this regard. As can be seen from Table 2,
bHoG delivers approximately the same performance as HoG
in terms of precision and recall, i.e., an average increase about
5% in recall and a decrease about 2% in precision in compar-
ison with HoG. Moreover, Fig. 7 compares the RoC curve of
bHoG and HoG. As can be seen, bHoG has equivalent perfor-
mance to classical HoG while cutting memory and computa-
tional requirements by up to 4x.

Table 2. Performance comparison between HoG and bHoG
for block size = [2 2], block overlap = [1 1].

Cell size Descriptor TP TN FP FN Precision Recall

[2 2]
HoG 951 216 84 175 0.918841 0.844583

bHoG 994 189 111 132 0.899548 0.882771

[4 4]
HoG 943 236 64 183 0.936445 0.837478

bHoG 1030 204 86 96 0.922939 0.914742

[8 8]
HoG 1031 224 76 95 0.931346 0.915631

bHoG 1084 173 127 42 0.895128 0.9627

[16 16]
HoG 1035 193 107 91 0.906305 0.919183

bHoG - - - - - -

Fig. 7. Comparing the ROC curve of bHoG and HoG.

5. CONCLUSIONS

In this paper, we have proposed an improved HoG approach
using the bitmaps to represent the irregular shape of objects.
Experimental results on INRIA and Daimler datasets for
pedestrian detection, show that the workload associated with
HoG/SVM classifiers can be reduced by 75% compared to
the state-of-the-art as the bitmap encodes only those pixels
or blocks within the reference image useful to the HoG cal-
culation. It has a knock-on effect of reducing the descriptor
size required to encode the histogram bins corresponding to
the useful pixels/blocks. This performance is gained while
there is an average increase about 5% in recall and a decrease
about 2% in precision in comparison with the standard HoG.
Indeed, the implementation of the detector itself is not opti-
mised allowing significant scope for increasing performance.
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