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ABSTRACT
Atmospheric turbulence can significantly degrade the quality
of images acquired by long-range imaging systems by caus-
ing spatially and temporally random fluctuations in the index
of refraction of the atmosphere. Variations in the refractive in-
dex causes the captured images to be geometrically distorted
and blurry. Hence, it is important to compensate for the visual
degradation in images caused by atmospheric turbulence. In
this paper, we propose a deep learning-based approach for
restring a single image degraded by atmospheric turbulence.
We make use of the epistemic uncertainty based on Monte
Carlo dropouts to capture regions in the image where the net-
work is having hard time restoring. The estimated uncertainty
maps are then used to guide the network to obtain the restored
image. Extensive experiments are conducted on synthetic and
real images to show the significance of the proposed work.
Code is available at : https://github.com/rajeevyasarla/ AT-Net

Index Terms— Atmospheric turbulence degradation, im-
age restoration, deep learning.

1. INTRODUCTION

Atmospheric turbulence can significantly degrade the qual-
ity of images acquired by long-range visible and thermal
imaging systems by causing spatially and temporally ran-
dom fluctuations in the index of refraction of the atmosphere.
Variations in the refractive index causes the captured images
to be geometrically distorted and blurry [1} [2]. Hence, it is
very important to compensate for the visual degradation in
images caused by atmospheric turbulence. Adaptive optics-
based techniques can be used to compensate for turbulence
effects in images. However, they require very large, com-
plex, fragile, and expensive hardware. On the other hand,
image processing-based approaches are cheap and effective.
In this paper, we pose the turbulence degraded image restora-
tion problem as a nonlinear regression problem, where the
optimal parameters are learned from synthetically generated
data. As a function approximator, we propose to use Deep
Convolutional Neural Networks (DCNN5s).
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Fig. 1. Sample image restoration results comparing TDRN
with the proposed metod, AT-Net.

TDRN [18]

Under the assumption that the scene and the imaging sen-
sor are both static and that observed motions are due to the air
turbulence alone, the image degradation due to atmospheric
turbulence can be mathematically formulated as follows [3}
41151 16L 7]

Vi =Gr(Hy(x)) + €, k=1,---, M, (D

where x denotes the ideal image, y is the k-th observed
frame, G and Hj represent the deformation operator and
air turbulence-caused blurring operator, respectively and €y,
denotes additive noise. The deformation operator is assumed
to deform randomly and Hj, correspond to a space-invariant
diffraction-limited point spread function (PSF). As can be
seen from (I, atmospheric turbulence has two main degrada-
tions on the observed images: geometric distortion and blur.
Various optics-based [8, |9, [1] and image processing-based
(10, [1L1) 44 1120 (131 15, 114} {150 [7, 116, [17] turbulence removal
algorithms have been proposed in the literature. In general,
most image processing methods follow a similar pipeline:
lucky region fusion or non-rigid image registration, and blind
deconvolution.

In many applications of long-range imaging, such as
surveillance, we are faced with a scenario where we have to
restore a single image degraded by atmospheric turbulence.
In this case, we have the following observation model,

y = GHEX)) +e, 2)

where the subscript & has been removed from (T)). This is an
extremely ill-posed problem as we have to overcome the ef-
fects of both blur and geometric distortion from a single im-
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Fig. 2. An overview of the proposed AT-Net atmospheric turbulence degraded image restoration method.

age. Our prior work [18]] was one of the first deep learning-
based attempts in the literature to recover a single image de-
graded by atmospheric turbulence. In [18] we first estimate
the prior information regarding the amount of geometric dis-
tortion and blur at each pixel using two separate networks
based on Monte Carlo dropouts [19]. The estimated priors
are then used by a restoration network called, Turbulence Dis-
tortion Removal Network (TDRN), to restore an image. Al-
though this framework is capable of alleviating blur and ge-
ometric distortion caused by atmospheric turbulence, it re-
quires the design and optimization of three separate networks
— image deblurring network to estimate the blur prior, geo-
metric distortion removal network to estimate the distortion
prior and TDRN to restore an image.

Rather than dealing with geometric distortion and blurry
degradation separately, in this paper we improve our work in
[[L8] by developing an approach that estimates only a single
prior (in terms of uncertainty) corresponding to a combina-
tion of both blur and geometric distortions in turbulence de-
graded images. The estimated uncertainty maps are then used
to guide the network to obtain the restored image. Extensive
experiments are conducted on synthetic and real images to
show the significance of the proposed work. Figure|[I]presents
a comparison between TDRN and the improved version of
TDRN proposed in this paper, which we call AT-Net (Atmo-
spheric Turbulence distortion removal Network). As can be
seen from this figure, the new approach is able to recover de-
tails in the image better than [[18]].

2. PROPOSED METHOD

Figure [2] gives an overview of the proposed restoration net-
work. Given pairs of clean and atmospheric turbulence dis-
torted images, {yx,Xx}A_,, we train two networks similar
to AT-Net for restoration. We refer to them as AT-Net; and
AT-Net. By applying Monte Carlo dropout in every layer
of AT-Net;, we can formulate the epistemic uncertainty [[19]]
and use the corresponding variance as a prior information.
For example, given a turbulence distorted image y, we pass
it as an input to AT-Net; S times and obtain a set of outputs
{p:}_,, where i corresponds to the ith instance of dropout

(@) (b)
Fig. 3. Image priors in terms of uncertainty maps on sample
turbulence distorted images. (a) Turbulence degraded images.
(b) Blur prior [18]]. (c) Geometric distortion prior [18]. (d)
Distortion map estimated using the proposed method.

with corresponding parameters 8" and p; = AT-Net, (y; 6").
We define the distortion prior d as the variance of the outputs
{p:};_,, ie. d = variance({p;}{_;). As explained in [19]
this variance is defined as the model uncertainty. However,
in our case we use it as a measure of the ability or compe-
tence of the network in addressing image restoration. Hence
a high variance value at a pixel location in d means that the
restoration network is not able to reconstruct the underlying
clean image properly at that pixel in the output image. Fig-
ure [3 compares the variance maps estimated by the proposed
method with blur and geometric distortion variance maps
estimated by our previous work [18]. We can clearly see
that the combined prior closely resembles the degradations
that are present in the input image compared to the blur and
geometric deformation priors.

AT-Net;. The goal of the AT-Net; network is to estimate the
uncertainty maps corresponding to the input degraded images.
To this end, AT-Net; is trained to restore degraded images.
In particular, AT-Net; is constructed using the UNet [20]
architecture with Res2Block as the basic building block [21]].
AT-Net; consists of the following layers,

Res2Block(3,64)-Downsample-Res2Block(64,64)-Downsample-

Res2Block(64,64)
-Res2Block(64,64)-Res2Block(64,64)-Res2Block(64,64)-
Res2Block(64,64)



-Upsample-Res2Block(64,64)-Upsample-Res2Block(64,16)-
Res2Block(16,3),

where Downsample means average pooling layer and Res2Block

(m,n) denotes Res2Block with m input channels and n out-
put channels.

AT-Net.  Given turbulence degraded image y, turbulence
variance map d is first computed using AT-Net;. Then, y
and d are used as inputs to AT-Net to obtain the restored
image X, i.e X = AT-Net(x,d). The AT-Net network archi-
tecture consists of the following layers, Conv2d 3 x 3(5,16)-
Res2Block(16,64)- Downsample
Res2Block(64,64)-Downsample-Res2Block(64,64)
-Res2Block(64,64)-Res2Block(64,64) -Res2Block(64,64)
-Res2Block(64,64)-Upsample-Res2Block(64,64)
-Upsample-Res2Block(64,3),
where Conv2d 3 x 3(m, n) denotes a 3 x 3 convolutional layer
with m input channels and n output channels.

The loss function we use to train both AT-Net; and AT-
Net networks is a combination of the perceptual loss and the
L1 loss

L=L1+ )\pﬁp, 3)

where £1 = ||X—x||1 and £, = || F(X)— F(x)||3. Here, F(.)
denotes the features from layer pool3 of a pretrained VGG-
Face network [22]. In our experiments, we set )\, equal to
0.002.

3. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed AT-Net method on
both synthetic and real-world datasets [[18]]. The performance
of different methods on the synthetic data is evaluated in
terms of Peak Signal-to-Noise Ratio (PSNR), Structural Sim-
ilarity Index (SSIM) and dygg. Here, dy g is defined as
feature distance between the restored image X and the ground
truth clean image x. We use the outputs of pool5 layer from
the VGG-Face [22] to compute dy g¢. Furthermore, in order
to show the significance of different face restoration methods,
we perform face recognition on the restored images using Ar-
cFace [23]]. The performance of the proposed AT-Net method
is compared against the following recent state-of-the-art face
image restoration methods [24} 25/ 126] and generic single im-
age deblurring methods [27, 28]]. Note that we re-train these
methods using the same turbulence degraded images that are
used to train our network. While re-training the networks,
we followed the training procedure including the parameter
selection mentioned in those respective papers.

Training Details. We collected 2,000 clean Face images
for training AT-Net from the Helen dataset [29]. In addi-
tion, 25,000 images were randomly selected from the CelebA
dataset [30]. Atmospheric turbulence degraded images are
generated using the turbulence synthesis approach presented
in [15,18]]. As a result, we generated 1.5 million pairs (i.e.

{ 1.5%x10° : :
Vi, X;};0" ) of turbulence distorted images and corre-

sponding clean images for training the AT-Net; and AT-Net
networks. Given y, we estimate d (turbulence variance-map)
using AT-Net; where we set S = 10. Adam optimizer with
learning rate of 2 x 10~* and a batch-size of 10 is used for
training both networks. We train AT-Net; and AT-Net for
2 x 10° and 1.5 x 109 iterations, respectively.

Testing. The synthetic test set contains 24,000 images from
Helen and 24,000 images from CelebA as test images (i.e. in
total 48,000 test images denoted by D;.s:). In addition, we
use 600 real-world turbulence distorted images collected by
the US Army in a variety of different atmospheric conditions
as another test set.

Table 1. Quantitative results in terms of PSNR, SSIM, and
dy g on the synthetic datasets. PSNR/SSIM higher the bet-
ter, and dy ¢ lower the better

Deturbulence CelebA Helen
Method PSNR | SSIM | dyge | PSNR | SSIM | dvga
Turbulence-distorted 2243 | 0.731 | 5.13 | 22.35 | 0.667 | 6.11
Pix2Pix [311(CVPR 2017) 2251 | 0.738 | 528 | 22.62 | 0.671 | 5.83
Pan et al. [24](ECCV 2014) 20.73 | 0.679 | 6.04 | 20.01 | 0.627 | 7.28
Shen et al. [25](CVPR 2018) 23.08 | 0.745 | 472 | 23.01 | 0.681 | 5.14
Yasarla et al. [26](TIP 2020) 24.06 | 0.768 | 4.11 | 23.81 | 0.702 | 4.49
Kupyn et al. [27](CVPR 2018) 2354 | 0.748 | 4.1 2328 | 0.693 | 498
Zhang et al. [281(CVPR 2019) 24.16 | 0.770 | 3.94 | 23.95 | 0.709 | 4.36
TDRN[18] (trained with £1,£,) | 25.04 | 0.802 | 3.57 | 24.47 | 0.725 | 4.17
AT-Net (ours) 25.31 | 0.810 | 3.09 | 24.95 | 0.750 | 3.80

Table 2. Top-1, Top-3 and Top-5 face recognition accuracies
on a real-world dataset.

Method Top-1 | Top-3 | Top-5
Turbulence-distorted 38.10 | 49.32 | 56.13
Pix2Pix [31](CVPR 2017) 37.82 | 50.76 | 57.41
Pan et al. [24] (ECCV 2014) 35.67 | 45.18 | 50.79
Shen et al. [25](CVPR 2018) 3991 | 52.21 | 58.17
Yasarla et al. [26](TIP 2020) 42.31 | 57.72 | 64.40
Kupyn et al. [27](CVPR 2018) 40.72 | 54.86 | 62.28
Zhang et al. [28](CVPR 2019) 44.76 | 60.96 | 69.75
TDRN[18] (trained with £, L£,) | 47.16 | 62.91 | 72.87
AT-Net (ours) 48.38 | 63.96 | 73.83

Results on Synthetic Data. Results corresponding to differ-
ent methods on synthetic data are shown in Table[T|and Fig[4]
(Rows 3 & 4). Higher PSNR/SSIM and lower dy ¢ corre-
spond to better quality of the reconstructed images. As can
be seen from Fig 4] (Rows 3 & 4) and Table [T} AT-Net out-
performs the state-of-the-art face image restoration methods.
In particular, generic deblurring methods [27, 28] are not able
to perform well due to the lack of prior information. On the
other hand, methods that make use of some prior information
about the face [24} 25 126]] are unable perform better because
of improper prior estimation from the input images. AT-Net
outperforms the state-of-the-art methods including our prior
method [18]], which clearly demonstrates the effectiveness of
the proposed method.

Results on Real-world Data. We also evaluate the perfor-
mance of different methods on several real-world turbulence



Fig. 4. Image restoration results on sample real-world (rows 1-2) and synthetic (rows 3-4) turbulence distorted images. Com-
pared to the other methods, the proposed AT-Net method produces sharp and clean face images.

distorted images collected by the US Army, published in our
previous work [18]]. Fig[](Rows 1 & 2) illustrate the quali-
tative performance of different methods on two sample real-
world turbulence distorted face images from this dataset. As
can be seen from this figure, state-of-the-art restoration meth-
ods produce artifacts and blurry outputs especially around the
mouth, eyes, and nose regions of the face. On the other hand,
AT-Net is able to recover details of the face better and signif-
icantly improves the visual quality.
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Fig. 5. Image restoration results on sample real-world turbu-
lence distorted non-face images
Additionally, we perform face recognition task on real-
world turbulence distorted images using ArcFace [23]. The
most similar faces (i.e. Top-K nearest matches) from the
restored image are selected from the gallery set (set of dif-
ferent clean images corresponding to 100 identities) to check
whether they belong to the same identity or not. Results cor-
responding to this experiment are shown in Table 2] As can
be seen from this table, AT-Net is able to restore real-world
images better and preserves identity in the restored images
better than the other methods. In particular, AT-Net gives

more than 1% improvement in Rank 1, 3 and 5 accuracy
compared to our previous method [18]).

Results on Real-world Non-face Images. Finally, we
conducted experiments on non-face real-world atmospheric-
turbulence degraded images to show that our method can be
used to restore non-face images as well. As can been seen
from Fig[5] AT-Net is able to restore better quality images as
compared to our previous work [18].

4. CONCLUSION

We proposed AT-Net to address the atmospheric turbulence
distortion removal problem from a single image. This work
can be viewed as an extension of our previous approach [18].
Rather than having two separate networks for estimating blur
and geometric deformation uncertainties, we only use a single
network to estimate the overall distortion introduced by tur-
bulence. As a result, the proposed method reduces the com-
plexity and at the same time is able to provide on par or bet-
ter results compared to previous state-of-the-art methods. We
conducted extensive experiments using synthetic and real data
to show that AT-Net network mitigates the geometric defor-
mation and blur introduced by turbulence, and restores better
quality images.
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