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Abstract

The problem of multiple sensors simultaneously acquiring measurements of a single object can be found in many

applications. In this paper, we present the optimal recovery guarantees for the recovery of compressible signals from

multi-sensor measurements using compressed sensing. In the first half of the paper, we present both uniform and

nonuniform recovery guarantees for the conventional sparse signal model in a so-called distinct sensing scenario. In

the second half, using the so-called sparse and distributedsignal model, we present nonuniform recovery guarantees

which effectively broaden the class of sensing scenarios for which optimal recovery is possible, including to the so-

called identical sampling scenario. To verify our recoveryguarantees we provide several numerical results including

phase transition curves and numerically-computed bounds.

I. I NTRODUCTION

In compressed sensing (CS) it is conventional to consider recovery of ans-sparse signalx ∈ CN from single-

sensor measurements of the form

y = Ax+ e, (1.1)

whereA ∈ Cm×N ande ∈ Cm is noise. As is well-known, for appropriate (i.e. incoherent) A, exact recovery ofx

is possible with a number of measurements scaling linearly in s. In this paper, we consider the extension of (1.1)

to a multi-sensor CS problem [1] wherein the measurements take the form

y = Ax+ e, A =











A1

...

AC











, y =











y1
...

yC











, e =











e1
...

eC











. (1.2)

HereAc ∈ Cmc×N is the matrix corresponding to the measurements taken in thecth sensor andec ∈ Cmc is noise.

Throughout this paper, we assume that the measurement matrices in the individual sensors take the form

Ac = ÃcHc,

where Ãc ∈ C
mc×N are standard CS matrices (e.g. a random subgaussian, subsampled isometry or random

convolution), andHc ∈ CN×N are fixed, deterministic matrices, referred to assensor profilematrices. These
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matrices model environmental conditions in the sensing problem; for example, a communication channel between

x and the sensors, the geometric position of the sensors relative to x, or the effectiveness of the sensors tox. As

in standard CS, our recovery algorithm will be basis pursuit:

min
z∈CN

‖z‖1 subject to‖Az − y‖2 ≤ η, (1.3)

Hereη > 0 is such that‖e‖2 ≤ η.

A. Applications

Multi-sensor problems of the form (1.2) arise in numerous ofapplications, and are used to alleviate a variety of

problems in single-sensor acquisition. In Magnetic Resonance Imaging (pMRI), for example, parallel acquisition

is often employed over single-coil MRI techniques to reducescan duration. The most general system model in

pMRI can be formulated as (1.2) [2], [3], [4], withHc being diagonal matrices corresponding to the coil sensitivity

profiles.

On the other hand, in multi-view imagingC cameras with differing alignments simultaneously image a single

object, thus allowing a higher-resolution or higher-dimensional image to be recovered. Applications include satellite

imaging, remote sensing, three-dimensional imaging, super-resolution imaging and more. Following the work of

[5], [6], this can be understood in terms of the above framework, with the sensor profilesHc corresponding to

geometric features of the scene.

The well-known problem of derivative sampling – with applications to super-resolution and seismic imaging –

can also be viewed in terms of (1.2). The benefits of a multi-sensor system in this setting are in reducing the total

cost of the acquisition problem or in enhancing the accuracyof the recovered images. Similarly, in wireless sensor

networks, a parallel acquisition setup may be used to reducethe total power consumption.

For further discussion and applications, see [1].

B. Contributions

In this paper, building on our previous work [1], [7], we present a series of recovery guarantees for (1.2)–(1.3).

Throughout, our aim is to determine optimal measurement conditions which depend linearly on the sparsitys and

are independent of the number of sensorsC. If this holds, one confirms the benefit of a multi-sensor system over

a single-sensor system, since the average number of measurements per sensorm/C decreases linearly withC.

In the first part of the paper, we consider adistinct sampling scenario. In this setting, the matricesÃ1, . . . , ÃC

are independent; that is, drawn independently from possibly different distributions. We present both a nonuniform

recovery guarantee and a new uniform recovery guarantee forthe sparse signal model. In the second part of the

paper we address the more challenging scenario ofidentical sampling, whereinm1 = . . . = mC = m/C and the

matricesÃ1 = . . . = ÃC = Ã ∈ Cm/C×N . In other words, the measurement process in each sensor is identical, the

only difference being in the sensor profilesHc. Using the so-called sparse and distributed signal model, we present

a nonuniform recovery guarantee for this problem. Finally,we confirm our theoretical results via phase transition

curves.
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C. Notation

We write ‖·‖p for the vectorp-norm and‖ · ‖p→p for the matrixp-norm. If ∆ ⊆ {1, . . . , N} then we writeP∆

for the orthogonal projectionP∆ ∈ CN×N with (P∆x)j = xj , j ∈ ∆, and (P∆x)j = 0 otherwise. We also use

the notationA . B or A & B to mean there exists a constantc > 0 independent of all relevant parameters (in

particular, the number of sensorsC) such thatA ≤ cB or A ≥ cB respectively.

A vector z ∈ CN is s-sparse for some1 ≤ s ≤ N if ‖z‖0 = |{j : zj 6= 0}| ≤ s. We write Σs for the set of

s-sparse vectors and, for an arbitraryx ∈ C
N , write σs(x)1 = min {‖x− z‖1 : z ∈ Σs}, for the error of the best

ℓ1-norm approximation ofx by ans-sparse vector.

II. D ISTINCT SAMPLING AND SPARSE VECTORS: NONUNIFORM RECOVERY

A. Setup

Our setup in this section is based on ideas from [8] for single-sensor CS. Suppose thatG is a distribution of

vectors inCN . We say thatG is isotropic if

E(aa∗) = I, a ∼ G,

and we define the coherenceµ(G) to be the smallest constant such that‖a‖2 ≤ µ(G) almost surely fora ∼ G.

Suppose now thatG1, . . . , GC are isotropic distributions of vectors inCN , whereGc represents the sensing in

the cth sensor, and defineF1, . . . , FC so thatac ∼ Fc if ac = H∗
c ãc for ãc ∼ Gc. We assume that the matricesHc

satisfy thejoint isometry condition

C−1

C
∑

c=1

H∗
cHc = I. (2.4)

For eachc, drawac,1, . . . , ac,m/C i.i.d. from Fc and form the measurement matrix

A =
1√
m











A1

...

AC











, Ac =











a∗c,1
...

a∗c,m/C











, c = 1, . . . , C. (2.5)

Note that this setup allows us to consider a wide range of different sensing vectors̃ac, including not only subgaussian

random sensing, but also subsampled isometries (e.g. subsampled DFT) and random convolutions [8].

B. Nonuniform recovery guarantee

Our first recovery guarantee is the following:

Theorem 2.1 (Nonuniform recovery for distinct sampling with sparsity model). Let x ∈ CN , 0 < ǫ < 1 and

N ≥ s ≥ 2. Suppose thatH1, . . . , HC satisfy (2.4) and drawA according to§II-A. If y = Ax+ e with ‖e‖2 ≤ η,

then for any minimizer̂x of

min
z∈CN

‖z‖1 subject to‖Az − y‖2 ≤ η,

we have

‖x− x̂‖2 . σs(x)1 +
√
sη,
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with probability at least1− ǫ, provided

m & s · µ ·
(

max
c=1,...,C

‖Hc‖21→1

)

· L,

whereµ = maxc=1,...,C µ(Gc).

Proof: Corollary 3.1 of [1] gives that the conditions of the result hold, providedm & s·(maxc=1,...,C µ(Fc))·L.

Let ac ∼ Fc and writeac = H∗
c ãc whereãc ∼ Gc. Then

|(ac)i| ≤
N
∑

j=1

|(Hc)j,i||(ãc)j | ≤ ‖ãc‖∞‖Hc‖1→1.

Thusµ(Fc) ≤ µ(Gc)‖Hc‖21→1, as required.

This result isnonuniformin the sense that each random draw ofA guarantees recovery of a fixed vector, as

opposed to all vectors, which is the case in a uniform guarantee.

C. Examples

Theorem 2.1 asserts recovery from a number of measurements that is independent ofC, provided‖Hc‖1→1 . 1.

In other words, when this condition holds, the number of measurement per sensor (equal tom/C) scales like1/C.

To elaborate, we now consider several examples of differentsensor profilesHc. As discussed in [1,§I-B], the

environmental conditions encompassed by theHc can often be modelled by either diagonal or circulant structures.

Hence these will form the primary examples in this paper.

1) Diagonal sensor profiles:Suppose thatHc = diag(hc) ∈ CN×N and let‖hc‖∞ = maxi=1,...,N |hc,i|. Then

‖Hc‖1→1 = ‖hc‖∞. Hence if

max
c=1,...,C

‖hc‖∞ . 1,

we obtain an optimal recovery guarantee. Note that the sensor profiles must satisfy (2.4), i.e.
∑C

c=1
|hc,i|2 = C,

∀i. In particular,1 ≤ ‖hc‖2∞ ≤ C, ∀c.
2) Circulant sensor profiles:Let Hc ∈ CN×N be circulant matrices with symbolshc ∈ CN . Then‖Hc‖1→1 =

‖hc‖1. Hence, if

max
c=1,...,C

‖hc‖1 . 1,

we achieve an optimal recovery guarantee. Note that if all the entries ofhc have the same sign, then the joint

isometry condition (2.4) implies that1 ≤ ‖hc‖21 ≤ C, ∀c.

III. D ISTINCT SAMPLING AND SPARSE VECTORS: UNIFORM RECOVERY FOR SUBGAUSSIAN SENSING MATRICES

We now specialize the setup of§II-A to the case of subgaussian sensing vectorsãc, so that the matricesAc are of

the formAc = ÃcHc whereÃc ∈ R
m/C×N are subgaussian random matrices (possibly with different subgaussian

parameters). Our aim is to prove a uniform recovery guarantee based on a concentration inequality for the matrix

A (Lemma 3.3).
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A. Uniform recovery guarantee

We first recall the following standard definition (see, for example, [9, Def. 9.4]):

Definition 3.2 (Isotropic subgaussian random vector). A random vectorY on RN is isotropic ifE|〈Y, x〉|2 = ‖x‖2

for all x ∈ RN . Furthermore, if for allx ∈ RN with ‖x‖ = 1 the random variable〈Y, x〉 is subgaussian with

subgaussian parameterα > 0 independent ofx 1 , i.e.

E(exp(θ〈Y, x〉)) ≤ exp(αθ2), ∀‖x‖ = 1, ∀θ ∈ R, (3.6)

thenY is referred to as a subgaussian random vector.

Lemma 3.3 (Concentration inequality for subgaussian sensing). For each c = 1, . . . , C, let Ãc ∈ Rm/C×N be

a random matrix with independent, isotropic, and subgaussian rows with the same subgaussian parameterαc in

(3.6). LetHc ∈ RN×N satisfy the joint isometry condition (2.4) and suppose thatA is as in (2.5). Then, for all

x ∈ RN and 0 < t < 1, we have

P

(∣

∣

∣‖Ax‖2 − ‖x‖2
∣

∣

∣ ≥ t‖x‖2
)

≤ 2 exp
(

−ζt2m
)

where

ζ =
(

32α2
maxΞ

2
dist max {2, exp(1/(4αmin))} + 8αmaxΞdist

)−1
.

αmax = maxc=1,...,C{αc}, αmin = minc=1,...,C{αc} andΞdist = maxc=1,...,C ‖Hc‖22→2.

Proof: Suppose that‖x‖ = 1 without loss of generality. Let̃ac,i ∈ RN , i = 1, . . . ,m/C, denote the rows of

Ãc and define

Zc,i = |〈ãc,i, Hcx〉|2 − ‖Hcx‖2,

for i = 1, . . . ,m/C andc = 1, . . . , C. Sinceãi,c is isotropic,

E(Zc,i) = ‖Hcx‖2 − ‖Hcx‖2 = 0.

Also, sinceC−1
∑C

c=1
H∗

cHc = I, we have

‖Ax‖2 − ‖x‖2 = m−1

C
∑

c=1

m/C
∑

i=1

|〈ãc,i, Hcx〉|2 − C−1

C
∑

c=1

‖Hcx‖2

= m−1

C
∑

c=1

m/C
∑

i=1

Zc,i.

Hence

P

(∣

∣

∣‖Ax‖2 − ‖x‖2
∣

∣

∣ ≥ t
)

= P





∣

∣

∣

∣

∣

∣

C
∑

c=1

m/C
∑

i=1

Zc,i

∣

∣

∣

∣

∣

∣

≥ mt



 .

1 A random variable is subgaussian ifP(|X| ≥ t) ≤ βe−κt
2

for t > 0, and subexponential ifP(|X| ≥ t) ≤ βe−κt for t > 0. Recall

also that a mean zero random variableX is subgaussian if and only ifE(exp(θX)) ≤ exp(µθ2), ∀θ ∈ R. In this case, one hasβ = 2 and

κ = 1/(4µ).
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We first note that theZc,i’s are independent, due to independence of theãc,i’s. We now claim that theZc,i’s are

subexponential random variables. To see this, we first show that 〈ãc,i, Hcx〉 is a subgaussian random variable. If

Hcx = 0 for somec, thenZc,i = 0 for i = 1, . . . ,m/C. Otherwise, ifHcx 6= 0, we proceed as follows. Note that

E (exp(θ〈ãc,i, Hcx〉)) ≤ exp(αcθ
2‖Hcx‖2),

sinceãc,i is isotropic and subgaussian. Thus,〈ãc,i, Hcx〉 is a subgaussian random variable with parametersβ = 2

andκc = (4αc‖Hcx‖2)−1. We now show thatZc,i is subexponential with parameters

βc = max{2, exp(1/(4αc))} , κc =
(

4αc‖Hc‖22→2

)−1
. (3.7)

To see this, observe that

P(|Zc,i| ≥ t) = P
(∣

∣|〈ãc,i, Hcx〉|2 − ‖Hcx‖2
∣

∣ ≥ t
)

= P
(

|〈ãc,i, Hcx〉|2 ≥ t+ ‖Hcx‖2 ∪

|〈ãc,i, Hcx〉|2 ≥ ‖Hcx‖2 − t
)

.

If t > ‖Hcx‖2 then

P(|Zc,i| ≥ t) = P
(

|〈ãc,i, Hcx〉|2 ≥ t+ ‖Hcx‖2
)

≤ P

(

|〈ãc,i, Hcx〉| ≥
√
t
)

,

and, therefore, we have

P(|Zc,i| ≥ t) ≤ 2 exp(−κct),

since〈ãc,i, Hcx〉 is subgaussian. For0 < t ≤ ‖Hcx‖2, we have the following trivial bound:

P(|Zc,i| ≥ t) ≤ 1 ≤ exp
(

κc(‖Hc‖22→2 − t)
)

.

Combining with the previous estimate, we deduce thatZc,i is subexponential with parameters as in (3.7).

Notice thatκc ≥ κ = (4αmaxΞdist)
−1 and βc ≤ β = max{2, exp(1/(4αmin))}. According to the Bernstein

inequality for subexponential random variables [9, Cor. 7.32], it now follows that

P





∣

∣

∣

∣

∣

∣

C
∑

c=1

m/C
∑

i=1

Zc,i

∣

∣

∣

∣

∣

∣

≥ mt



 ≤ 2 exp

(

− (κmt)2/2

2βm+ κmt

)

≤ 2 exp
(

−ζmt2
)

,

where in the second step we use the fact that0 < t < 1.

Recall that a matrixA ∈ Cm×N satisfies the Restricted Isometry Property (RIP) of orders if there exists

0 < δ < 1 such that(1 − δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2, ∀x ∈ Σs. If δ = δs ∈ (0, 1) is the smallest constant

respectively such that RIP holds, then we refer toδs as thesth Restricted Isometry Constant (RIC) ofA. We now

have the following:
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Theorem 3.4 (RIP based on concentration inequality). Let A be as in Lemma 3.3 and0 < δ, ǫ < 1. If

m & δ−2 ·
(

max
c=1,...,C

‖Hc‖22→2

)2

·
(

s · log(2N/s) + log(2ǫ−1)
)

, (3.8)

then with probability at least1− ǫ, the RICδs of A satisfiesδs < δ.2

Proof: Due to (2.4), it follows thatC ≥ Ξdist ≥ 1 and thereforeζ−1 . Ξ2
dist. We now use a standard result

on the RIP for matrices satisfying concentration inequalities (see [9, Thm. 9.11], for example).

We remark that the RIP of order2s implies stable and robust recovery, uniform inx ∈ CN , when solving (1.3).

Hence Theorem 3.4 provides the first uniform recovery resultfor the parallel acquisition model (1.2)–(1.3). This

result also gives conditions for an optimal recovery guarantee. ProvidedΞdist . 1, the total number of measurements

m is independent of the number of sensorsC. Note that1 ≤ Ξdist ≤ C in general, as was observed in the proof

of Theorem 3.4.

Remark 3.5 (Universality) Suppose that the setup in Theorem 3.4 is given. IfU ∈ RN×N is any deterministic

orthogonal matrix, then the matrixAU also satisfies the same concentration inequality asA. Hence (3.8) implies

stable and robust signal recovery for not only sparsity in the canonical domain, but also sparsity in any orthogonal

transform domain (e.g. DCT or wavelet).

B. Examples

As in §II-C, we now consider the case of diagonal and circulant sensor profile matrices.

1) Diagonal sensor profiles:WhenHc = diag(hc) ∈ RN×N , we have‖Hc‖2→2 = ‖hc‖∞. Therefore, if

max
c=1,...,C

‖hc‖2∞ . 1

we can obtain an optimal recovery guarantee. Observe that this is exactly the same condition as discussed in§II-C
for the nonuniform recovery guarantee.

2) Circulant sensor profiles:Suppose thatHc ∈ RN×N are circulant matrices with symbolshc ∈ RN . Based

on the spectral decomposition, we can writeHc asHc = Φ∗ΛcΦ, whereΦ ∈ CN×N is the unitary discrete Fourier

transform (DFT) matrix andΛc = diag(λc) is the diagonal matrix of eigenvalues ofHc. Since‖Hc‖2→2 = ‖λc‖∞
andλc =

√
NΦhc,we have‖Hc‖2→2 = ‖λc‖∞ ≤ ‖hc‖1. Hence, if

max
c=1,...,C

‖hc‖∞ . 1,

we obtain an optimal recovery guarantee. As in the previous case, we note that this is exactly the same condition

as discussed in§II-C for the nonuniform recovery guarantee.

2Note that the constant in (3.8) implied by the symbol& depends onαmin andαmax (we suppress this dependence for ease of presentation).
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C. Discussion: Nonuniform versus uniform

Both the nonuniform recovery results in§II and the uniform recovery results in§III assert that distinct sampling

in parallel acquisition can decrease the numbers of measurements required per sensor linearly inC, subject to the

joint isometry condition (2.4) and specific coherence conditions on theHc’s. Interestingly, the nonuniform case

stipulates a bound on the matrix1-norms‖Hc‖1→1 (Theorem 2.1) whereas in the uniform case one has a bound on

the matrix2-norms‖Hc‖2→2 (Theorem 3.4). For both circulant and diagonal sensor profiles, however, these result

in the same conditions.

This aside, there are several other important differences between the results. The nonuniform recovery guarantee

can be applied to all types of standard CS matrices (e.g., random subgaussian, subsampled isometry or random

convolution), however, it does not apply to the case where the sparsity is in a transform domain. Conversely, the

uniform recovery result considers eal subgaussian measurements only, but guarantees signal recovery when the

sparsity occurs in any orthogonal transform domain (see Remark 3.5).

IV. B EYOND SPARSITY AND DISTINCT SAMPLING: NONUNIFORM RECOVERY BASED ON SPARSE AND

DISTRIBUTED VECTORS

So far, we have only considered the recovery of sparse vectors in the distinct sampling scenario. While there

are many constructions of sensor profile matrices which giveprovably optimal recovery guarantees, unfortunately

it is also straightforward to devise reasonable sensor profiles for which optimal recovery of all sparse vectors is not

possible. A particular issue is related to clustering: namely, the possibility for the nonzeros of a sparse vector to

potentially accumulate in one portion of the signal. Certain choices of sensor profilesHc can attenuate the signal

x that clusters, meaning that most of the sensors give no information [1]. Perhaps unsurprisingly, this situation is

typically more pronounced in the case of identical sampling. To overcome this issue, we now present (nonuniform)

recovery guarantees in both the distinct and identical sampling scenarios for a more constrained signal model which

prohibits such clustering. For ease of presentation, we focus on the case of diagonal sensor profiles only in this

section.

A. Signal model

We now introduce the new signal model:

Definition 4.6 (Sparsity in levels). Let I = {I1, . . . , ID} be a partition of{1, . . . , N} andS = (s1, . . . , sD) ∈ ND

where sd ≤ |Id|, d = 1, . . . , D. A vector z ∈ CN is (S, I)-sparse in levels if|{j : zj 6= 0} ∩ Id| ≤ sd for

d = 1, . . . , D.

Note that sparsity in levels was first introduced in [10] as a way to consider the asymptotic sparsity of wavelet

coefficients (see also [11]).

Definition 4.7 (Sparse and distributed vectors). Let I = {I1, . . . , ID} be a partition of{1, . . . , N} and1 ≤ s ≤ N .

For 1 ≤ λ ≤ D, we say that ans-sparse vectorz ∈ CN is sparse andλ-distributed with respect to the levelsI if
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z is (S, I)-sparse in levels for someS = (s1, . . . , sD) satisfying

max
d=1,...,D

{sd} ≤ λs/D.

We denote the set of such vectors asΣs,λ,I and, for an arbitraryx ∈ C
N , write σs,λ,I(x)1 for the ℓ1-norm error

of the best approximation ofx by a vector inΣs,λ,I .

Note that we are interested in the case thatλ is independent ofD; that is, when the none ofsd’s greatly exceeds

s/D.

B. Distinct sampling with diagonal sensor profiles

The setup is as in§II-A except we now assume thatHc = diag(hc), hc = {hc,i}Ni=1 ∈ CN are diagonal sensor

profiles.

Corollary 4.8 ([7, Cor. 3.5]). Let I = {I1, . . . , ID} be a partition of{1, . . . , N}, 1 ≤ λ ≤ D, 2 ≤ s ≤ N , x ∈ CN

and 0 < ǫ < 1. Suppose thatH1, . . . , HC are diagonal matrices satisfying the joint isometry condition (2.4) and

draw A as in (2.5). Ify = Ax + e, ‖e‖2 ≤ η, then for any minimizer̂x of

min
z∈CN

‖z‖1 subject to‖Az − y‖2 ≤ η,

we have

‖x− x̂‖2 . σs,λ,I(x)1 +
√
sη,

with probability at least1− ǫ, provided

m & λ · s · µ ·Υdist · L,

whereµ = maxc=1,...,C µ(Gc) and

Υdist = D−1 max
c=1,...,C

D
∑

d=1

‖hc‖∞‖PIdhc‖∞.

C. Identical sampling with diagonal sensor profiles

The setup for identical sampling differs from that of§II-A. Let G be an isotropic distribution of vectors inCN .

Draw ã1, . . . , ãm/C i.i.d. from G and form the matrix

Ã =











ã∗1
...

ã∗m/C











.

Now let Hc ∈ CN×N be matrices satisfying the joint isometry condition

C
∑

c=1

H∗
cHc = I, (4.9)
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(a) Distinct sampling (b) Identical sampling

Fig. 1. Empirical phase transitions for random Fourier sensing with banded diagonal sensor profile matrices andC = 1, 2, 3, 4 sensors. Phase

transition curves with the empirical success probability≈ 50% are presented (for details of phase transition experiment,see [1]). For both

sampling scenarios, the empirical probability of successful recovery increases asC increases. The results are in agreement with our theoretical

results.

and form the matrix

A =

√

C

m











A1

...

AC











, Ac = ÃHc, c = 1, . . . , C. (4.10)

Corollary 4.9 ([7, Cor. 3.6]). Let I = {I1, . . . , ID} be a partition of{1, . . . , N}, 1 ≤ λ ≤ D, and2 ≤ s ≤ N . Let

x ∈ CN , 0 < ǫ < 1 andHc ∈ CN×N , c = 1, . . . , C, be diagonal matrices satisfying the joint isometry condition

(4.9) and drawA according to (4.10). Ify = Ax + e, ‖e‖2 ≤ η, then for any minimizer̂x of

min
z∈CN

‖z‖1 subject to‖Az − y‖2 ≤ η,

we have

‖x− x̂‖2 . σs,λ,I(x)1 +
√
sη,

with probability at least1− ǫ, provided

m & λ · s · µ ·Υidt · L,

whereµ = µ(G) and

Υidt =
C

D
max

i=1,...,N

D
∑

d=1

max
j∈Id

∣

∣

∣

∣

∣

C
∑

c=1

hc,ihc,j

∣

∣

∣

∣

∣

.

V. EXAMPLES

We now consider several examples of explicit sensor profile matrices to illustrate our various recovery guarantees.
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A. Diagonal sensor profiles

1) Piecewise constant sensor profiles:The following example was first presented in [1]. LetI = {I1, . . . , ID}
be a partition of{1, . . . , N}, whereD ≤ C, and suppose thatV = {Vc,d : c = 1, . . . , C, d = 1, . . . , D} ∈ CC×D

is an isometry, i.e.V ∗V = I. Define the sensor profile matricesHc =
√

C
M

∑D
d=1

Vc,dPId , whereM = 1 (distinct)

or M = C (identical), so that theHc satisfy their respective joint isometry conditions.

For distinct sampling, observe that‖hc‖2∞ ≤ Cµ(V ), whereµ(V ) = maxc,d |Vc,d|2 is the coherence ofV . Hence

we obtain optimal uniform and nonuniform guarantees (see Theorems 3.4 and 2.1 respectively) for the recovery of

s-sparse vectors ifV is incoherent, i.e.µ(V ) . C−1.3

Conversely, for identical sampling, if we setD = C then it follows thatΥidt = 1 (sinceV is an isometry).

Hence we obtain an optimal nonuniform recovery guarantee for the sparse and distributed signal model.4

2) Banded sensor profile:Let I = (I1, . . . , ID) be a partition and suppose that thehc are banded, i.e.

supp(hc) ⊆
r2
⋃

d=−r1

Ic+d,

for some fixedr1 ∈ N and r2 ∈ N (note thatIc+d = 0 if c + d < 0 or c + d > C). As discussed in [7,§IV-B],

one obtains an optimal recovery guarantee for both distinctand identical sampling in this case with the sparse and

distributed signal model withD = C levels, providedr1 + r2 is independent ofC. A specific example of this

setup is a smooth sensor profile with compact support [1, Fig.1(c)], which corresponds to a sharply decaying coil

sensitivity in a one-dimensional (1D) example of pMRI; see [2] for details. The optimal recovery guarantee for this

example is verified in Fig. 1(b).

3) Global and oscillatory sensor profiles:As opposed to banded sensor profiles, we now consider global,

oscillatory profiles of the formhc,i = exp(2πici/N)/
√
M for i = 1, . . . , N and c = 1, . . . , C. These types of

profiles can be used to model a wireless sensor network application in the case where the wireless channel between

a source and sensors is time varying. Since‖hc‖∞ = 1, we deduce optimal uniform and nonuniform sparse signal

recovery guarantees for distinct sampling with these profiles. On the other hand, for identical sampling one can

computeΥidt for different values ofC andD. If D = 1 thenΥidt scales linearly withC, implying that optimal

recovery of sparse vectors cannot be ensured. However, as shown in Fig. 2,Υidt remains bounded whenD = C.

This implies an optimal recovery of sparse and distributed vectors.

B. Circulant sensor profiles

Finally, in Fig. 3, we consider circulant sensor profile matrices, corresponding to a 1D example of the multi-view

imaging application. The circulant matrices were constructed with eigenvalues uniformly distributed on the unit

circle, so that‖hc‖1 . 1 wherehc is the symbol ofHc. As discussed in§II-C and §III-B, this gives optimal

uniform and nonuniform recovery guarantees in the case of distinct sampling, thus explaining the results in Fig.

3Note that sinceV is an isometry, we haveC−1 ≤ µ(V ) ≤ 1.

4It is straightforward to see that optimal recovery of all sparse vectors is not possible for identical sampling with thisclass of sensor profiles

[7].
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Fig. 2. ComputedΥidt values with different numbers ofC (C ∈ {2, 4, 8, . . . , 128, 256}, D = C, andN = 512): Different from worst

case bound in [1, Cor. 4.2],Υidt does not increase inC asC increases, i.e. the number of measurements required per sensor decreases asC

increases.
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(a) Distinct sampling (b) Identical sampling

Fig. 3. Empirical phase transitions for random Gaussian sensing with circulant sensor profile matrices andC = 1, 2, 3, 4 sensors. Phase

transition curves with the empirical success probability≈ 50% are presented (for details of phase transition experiment,see [1]). For both

sampling scenarios, the empirical probability of successful recovery increases asC increases. The results (a) are in agreement with our theoretical

results in distinct sampling.

3(a). Interestingly, Fig. 3(b) suggests that identical sampling also exhibits an optimal recovery guarantee, although

we have no proof of this fact.
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