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Abstract

The problem of multiple sensors simultaneously acquirirgasurements of a single object can be found in many
applications. In this paper, we present the optimal regogeiarantees for the recovery of compressible signals from
multi-sensor measurements using compressed sensinge Ifirsh half of the paper, we present both uniform and
nonuniform recovery guarantees for the conventional gpsignal model in a so-called distinct sensing scenario. In
the second half, using the so-called sparse and distritsi¢gdl model, we present nonuniform recovery guarantees
which effectively broaden the class of sensing scenaripsvfich optimal recovery is possible, including to the so-
called identical sampling scenario. To verify our recovgnarantees we provide several numerical results including
phase transition curves and numerically-computed bounds.

I. INTRODUCTION
In compressed sensing (CS) it is conventional to considevery of ans-sparse signat € CV from single-

sensor measurements of the form
y = Ax + e, (1.2)

whereA € C™*N ande € C™ is noise. As is well-known, for appropriate (i.e. incohejes, exact recovery of:
is possible with a number of measurements scaling linearly. in this paper, we consider the extension[of](1.1)
to a multi-sensor CS problernl[1] wherein the measuremehésttee form
Ay U1 €1
y=Az+e, A= 1 |, y=| : |, e=| I [|. (1.2)
Ac Yo ec
Here A, € C*N is the matrix corresponding to the measurements taken in‘thgensor an@,. € C™- is noise.

Throughout this paper, we assume that the measurementesain the individual sensors take the form
Ac = Ach

where A, € C™*N are standard CS matrices (e.g. a random subgaussian, slbdaisometry or random

convolution), andH,. € CN*V are fixed, deterministic matrices, referred to sensor profilematrices. These
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matrices model environmental conditions in the sensindplpro; for example, a communication channel between
2 and the sensors, the geometric position of the sensor$vectatz, or the effectiveness of the sensorsatoAs

in standard CS, our recovery algorithm will be basis pursuit
min ||z||; subject to||Az — yll2 <7, (1.3)
zeCN

Heren > 0 is such that|e||2 < 7.

A. Applications

Multi-sensor problems of the forni (1.2) arise in numerousyoplications, and are used to alleviate a variety of
problems in single-sensor acquisition. In Magnetic Resoedmaging (pMRI), for example, parallel acquisition
is often employed over single-coil MRI techniques to redscan duration. The most general system model in
PMRI can be formulated a (1.2)I[2[.1[3].][4], witH. being diagonal matrices corresponding to the coil seritsitiv
profiles.

On the other hand, in multi-view imaging cameras with differing alignments simultaneously imagenagls
object, thus allowing a higher-resolution or higher-disienal image to be recovered. Applications include sa&telli
imaging, remote sensing, three-dimensional imaging, rsegewlution imaging and more. Following the work of
[5], [6], this can be understood in terms of the above frantewwith the sensor profile¢. corresponding to
geometric features of the scene.

The well-known problem of derivative sampling — with applions to super-resolution and seismic imaging —
can also be viewed in terms df (1.2). The benefits of a mutisee system in this setting are in reducing the total
cost of the acquisition problem or in enhancing the accutddye recovered images. Similarly, in wireless sensor
networks, a parallel acquisition setup may be used to rethe¢otal power consumption.

For further discussion and applications, see [1].

B. Contributions

In this paper, building on our previous woiK [1]][7], we pees a series of recovery guarantees Forl(1[2)}3(1.3).
Throughout, our aim is to determine optimal measuremendlitions which depend linearly on the sparsityand
are independent of the number of sens6rdf this holds, one confirms the benefit of a multi-sensor esysbver
a single-sensor system, since the average number of meanieper senson/C decreases linearly withy.

In the first part of the paper, we considedistinct sampling scenario. In this setting, the matrices . .., Ac
are independent; that is, drawn independently from possilifferent distributions. We present both a nonuniform
recovery guarantee and a new uniform recovery guarantethéosparse signal model. In the second part of the
paper we address the more challenging scenarideasftical sampling, whereinn; = ... = mgc = m/C and the
matricesAd, = ... = Ac = A € C™/*N _|n other words, the measurement process in each sensaniscial, the
only difference being in the sensor profilég. Using the so-called sparse and distributed signal modepresent
a nonuniform recovery guarantee for this problem. Finallg, confirm our theoretical results via phase transition

curves.



C. Notation

We write [|-[|,, for the vectorp-norm and|| - ||, for the matrixp-norm. If A C {1,..., N} then we write Px
for the orthogonal projectio®a € CV*N with (Pax); = x;, j € A, and (Paz); = 0 otherwise. We also use
the notationA < B or A 2 B to mean there exists a constant- 0 independent of all relevant parameters (in
particular, the number of sensof such thatd < ¢B or A > ¢B respectively.

A vector z € CV is s-sparse for somé < s < N if ||z]o = |[{j : 2; # 0}| < s. We write & for the set of
s-sparse vectors and, for an arbitrarye CV, write o5(z); = min {||z — z||; : z € ¥}, for the error of the best

£1-norm approximation of: by an s-sparse vector.
1. DISTINCT SAMPLING AND SPARSE VECTORSNONUNIFORM RECOVERY
A. Setup
Our setup in this section is based on ideas froim [8] for sksglesor CS. Suppose th@tis a distribution of
vectors inCN. We say thatG is isotropic if
E(aa™) =1, a~ G,

and we define the coherenpéG) to be the smallest constant such that|> < 1(G) almost surely for ~ G.
Suppose now thatiy, ..., G are isotropic distributions of vectors i, whereG, represents the sensing in
the ¢t sensor, and defing,, ..., F¢ so thata. ~ F. if a. = H*a,. for a. ~ G.. We assume that the matricés.

satisfy thejoint isometry condition

C
C'y H:H =1 (2.4)
c=1

For eache, drawac. 1, . . ., ¢ m/c i.1.d. from F. and form the measurement matrix

A=—=1 1 |, A= : ., c=1...C (2.5)

a:m/c
Note that this setup allows us to consider a wide range oddifft sensing vectois, including not only subgaussian

random sensing, but also subsampled isometries (e.g.raphsdh DFT) and random convolutioris [8].

B. Nonuniform recovery guarantee

Ouir first recovery guarantee is the following:

Theorem 2.1 (Nonuniform recovery for distinct sampling with sparsityodel). Letz € CV, 0 < ¢ < 1 and
N > s > 2. Suppose thatfy, ..., Ho satisfy [2.%) and dravA according tofl[-Al If y = Az + e with ||e]|s < 7,
then for any minimizei: of

min |z||; subject to|| Az — yl|2 < 7,
zeCN

we have

[z = 2|2 < os(2)1 + Vs,



with probability at leastl — ¢, provided

mz s (7R ) -2

wherep = maxc=1,..c p(Ge).

Proof: Corollary 3.1 of [1] gives that the conditions of the resudtd providedmn > s-(max.—1,.. ¢ u(Fe))- L.

Let a, ~ F, and writea, = H}a. wherea. ~ G.. Then

N
|(a0)i| < Z |(H0)j,i||(d0)j| < ||chooHHc||l—>1-
j=1

Thusu(F,) < u(G.)||H.||3_,,, as required. [
This result isnonuniformin the sense that each random drawAfguarantees recovery of a fixed vector, as

opposed to all vectors, which is the case in a uniform guasmant

C. Examples

Theoren 21l asserts recovery from a number of measurentaits independent of', provided|| H, |11 < 1.
In other words, when this condition holds, the number of messent per sensor (equalto/C) scales likel /C.
To elaborate, we now consider several examples of diffesensor profilesi.. As discussed in[J1§I-B], the
environmental conditions encompassed by thecan often be modelled by either diagonal or circulant stmas.
Hence these will form the primary examples in this paper.

1) Diagonal sensor profilesSuppose that. = diag(h.) € CN*V and let||h.||oc = maxi—1,__n |hei|. Then
|He|l1=1 = ||hello- Hence if

Juax [helloo S 1,

ERRER)

we obtain an optimal recovery guarantee. Note that the semsdiles must satisfy[(214), i.eECC:1 |hes)? = C,
Vi. In particular,1 < ||h.||% < C, Ve.

2) Circulant sensor profilesLet H. € CN*¥ be circulant matrices with symbols. € CV. Then||H.|[11 =
[hc|l1- Hence, if

max _ [[hef1 S 1,
c=1,...,C

we achieve an optimal recovery guarantee. Note that if @lehtries ofh. have the same sign, then the joint

isometry condition[(2]4) implies that < ||h.||? < C, Ve.

[11. DISTINCT SAMPLING AND SPARSE VECTORSUNIFORM RECOVERY FOR SUBGAUSSIAN SENSING MATRICES

We now specialize the setup @li-Alto the case of subgaussian sensing veciQrsso that the matriced.. are of
the formA,. = A.H. where A, € R™/“*N are subgaussian random matrices (possibly with differengaussian
parameters). Our aim is to prove a uniform recovery guaeabésed on a concentration inequality for the matrix
A (Lemmal33B).



A. Uniform recovery guarantee

We first recall the following standard definition (see, foample, [9, Def. 9.4]):

Definition 3.2 (Isotropic subgaussian random vectod) random vectod” on R is isotropic if E[(Y, z)|? = ||z||?
for all x € RY. Furthermore, if for allz € RY with ||z|| = 1 the random variablg(Y, z) is subgaussian with

subgaussian parameter > 0 independent ot i , i.e.
E(exp((Y,x))) < exp(ab?), Vx| =1, V0 € R, (3.6)
thenY is referred to as a subgaussian random vector.

Lemma 3.3 (Concentration inequality for subgaussian sensirgy eachc = 1,...,C, let A, € R™/C*N pe
a random matrix with independent, isotropic, and subgarssows with the same subgaussian parametgiin
(38). LetH,. € RV*YN satisfy the joint isometry conditioh (2.4) and suppose thas as in [Z5). Then, for all

xRN and0 < t < 1, we have

P ([l42]” = llz]2| = tlz]?) < 2exp (—¢tm)
where

— — -1
C = (32a1211ax‘:(21ist max {23 exp(l/(4amin))} + 8amaX:‘di$t) .
Omax — MaXe=1,..., C{ac} Qmin = mlnc 1,..., C{ac} and Edist = MaXe=1,...,C HH ||2*>2

Proof: Suppose thafx|| = 1 without loss of generality. Let., € RY, i =1,...,m/C, denote the rows of
A, and define
Zc,i = |<dc,i7ch>|2 - HHCx”Q?

fori=1,...,m/C andc=1,...,C. Sincea;  is isotropic,
E(Zc;) = |Hez||* — || Hea||* =

Also, sinceC~' Y% | H:H, = I, we have

c m/C

1Az|* = 2> = m™" Y Y (e, Hew) 1Z|IH z||?

c=1 i=1
c m/C

== m_l Z Z Zc,i-
c=1 i=1

Hence
c m/C

P ([0l = ol 2 £) =P |03 Zes| Zmt

c=1 i=1

1 A random variable is subgaussianff|X| > t) < Be*"“2 for t > 0, and subexponential (| X| > t) < Be~*t for t > 0. Recall
also that a mean zero random varialeis subgaussian if and only E(exp(6X)) < exp(u6?), ¥ € R. In this case, one has = 2 and

K= 1/(4p).



We first note that the&Z. ;'s are independent, due to independence ofdhgs. We now claim that theZ. ;'s are
subexponential random variables. To see this, we first shew(&. ;, H.x) is a subgaussian random variable. If

H.x =0 for somec, thenZ,.; =0 fori=1,...,m/C. Otherwise, ifH.x # 0, we proceed as follows. Note that
E (exp(8(ac,i, Hew))) < exp(act?||Hez|?),

sincea,,; is isotropic and subgaussian. Thya, ;, H.z) is a subgaussian random variable with parametes2

andr. = (4a.||H.z||*)~t. We now show thatZ. ; is subexponential with parameters
Be = max{2,exp(l/(4ac))}, ko= (dacl|Hel3L0) (37
To see this, observe that
P(|Ze,il > t) = P (|[(@c,i, Hew) [ = [|Hex ||| > t)
=P ([{ac,, Hex)” > t + | Hez||* U
(e, Hew)* > || Heal|® — t) .
If ¢+ > | H.x||* then
P(|Ze,il > t) =P (|(Ge,i, Hew)|* > t + || Hex|?)
< P (@, How) 2 Vi)

and, therefore, we have

P(|Z.:| > t) < 2exp(—Kct),
since (a.;, H.z) is subgaussian. Fdr < ¢ < ||H.z||?, we have the following trivial bound:
P(lzc,il >t) <1< eXp(Kc(HHc||§_>2 - t)) .

Combining with the previous estimate, we deduce that is subexponential with parameters as[in}(3.7).

Notice thatk. > k = (damax=dist)  and . < S = max{2,exp(1/(4damim))}. According to the Bernstein

inequality for subexponential random variables [9, CoB2T. it now follows that

c m/C 2
(kmt)*/2
P Zeil >mt ] <2 -
22 umm exp( 28m + st
< 2exp (—(mtz) ,
where in the second step we use the fact thatt < 1. ]

Recall that a matrixA € C™*V satisfies the Restricted Isometry Property (RIP) of orgef there exists
0 < d < 1 such that(1 — 6)[|z[|? < ||Az||* < (1 + 0)||=||?, Vz € Xs. If § = 6, € (0,1) is the smallest constant
respectively such that RIP holds, then we refeptas thes™ Restricted Isometry Constant (RIC) df We now

have the following:



Theorem 3.4 (RIP based on concentration inequality)et A be as in LemmBa3l3 an@l< §,¢ < 1. If

2
mz 7% max IHIELa) - (5 og2/s) + og(2e ) (3.8)

c=1,...,

then with probability at least — ¢, the RICJ, of A satisfiesis < 6H

Proof: Due to [2.4), it follows thatC > Zg4;c > 1 and therefore = < =2,.. We now use a standard result
on the RIP for matrices satisfying concentration ineqigasi{see[[D, Thm. 9.11], for example). ]
We remark that the RIP of ord@s implies stable and robust recovery, uniformzire CV, when solving[[IB).
Hence Theorerh 3.4 provides the first uniform recovery resulthe parallel acquisition model (1.2)=(1L.3). This
result also gives conditions for an optimal recovery gutg@rProvideEqis < 1, the total number of measurements
m is independent of the number of sens6fsNote thatl < Z4;5; < C' in general, as was observed in the proof

of Theoren{34.

Remark 3.5 (Universality) Suppose that the setup in TheorEml 3.4 is giveri/ IE RY*¥ is any deterministic
orthogonal matrix, then the matriAU also satisfies the same concentration inequalitylasience [[3.B) implies
stable and robust signal recovery for not only sparsity em¢hnonical domain, but also sparsity in any orthogonal

transform domain (e.g. DCT or wavelet).

B. Examples

As in JI=C] we now consider the case of diagonal and circulantepgofile matrices.

1) Diagonal sensor profilesWhen H,. = diag(h.) € RV*N, we have||H.||2—2 = ||h¢||o. Therefore, if

hell?2. <1
c:l,...,c“ ellse S

we can obtain an optimal recovery guarantee. Observe tisaistiexactly the same condition as discussefliCl
for the nonuniform recovery guarantee.

2) Circulant sensor profilesSuppose thafl. € RV*Y are circulant matrices with symbols. € R". Based
on the spectral decomposition, we can wiife as H. = ®*A.®, where® € CV*V is the unitary discrete Fourier
transform (DFT) matrix and\. = diag(\.) is the diagonal matrix of eigenvalues Hf.. Since|| H,||2—2 = || A¢||oo

and \. = V' N®h.we have||H.||s—2 = | Xe]loo < ||he]l1. Hence, if

C:Hll?fc [Pelloo S 1,

we obtain an optimal recovery guarantee. As in the previase cwe note that this is exactly the same condition

as discussed if[-C] for the nonuniform recovery guarantee.

°Note that the constant i (3.8) implied by the sympotlepends ofv,,;, andamax (We suppress this dependence for ease of presentation).



C. Discussion: Nonuniform versus uniform

Both the nonuniform recovery results §illand the uniform recovery results ffilllassert that distinct sampling
in parallel acquisition can decrease the numbers of measms required per sensor linearlydh subject to the
joint isometry condition[{Z]4) and specific coherence ctods on theH.'s. Interestingly, the nonuniform case
stipulates a bound on the matrixnorms||H.||; _,; (TheorenfZl) whereas in the uniform case one has a bound on
the matrix2-norms|| H.||2—2 (Theoreni34). For both circulant and diagonal sensor pyffiowever, these result
in the same conditions.

This aside, there are several other important differeneésden the results. The nonuniform recovery guarantee
can be applied to all types of standard CS matrices (e.gdoransubgaussian, subsampled isometry or random
convolution), however, it does not apply to the case wheeestarsity is in a transform domain. Conversely, the
uniform recovery result considers eal subgaussian measmts only, but guarantees signal recovery when the

sparsity occurs in any orthogonal transform domain (see dRei®.5).

IV. BEYOND SPARSITY AND DISTINCT SAMPLING NONUNIFORM RECOVERY BASED ON SPARSE AND

DISTRIBUTED VECTORS

So far, we have only considered the recovery of sparse \geatothe distinct sampling scenario. While there
are many constructions of sensor profile matrices which grewably optimal recovery guarantees, unfortunately
it is also straightforward to devise reasonable sensorlesdior which optimal recovery of all sparse vectors is not
possible. A particular issue is related to clustering: rnigtbee possibility for the nonzeros of a sparse vector to
potentially accumulate in one portion of the signal. Certeloices of sensor profiled. can attenuate the signal
z that clusters, meaning that most of the sensors give nonr&ton [1]. Perhaps unsurprisingly, this situation is
typically more pronounced in the case of identical samplifigovercome this issue, we now present (nonuniform)
recovery guarantees in both the distinct and identical §ampcenarios for a more constrained signal model which
prohibits such clustering. For ease of presentation, wasan the case of diagonal sensor profiles only in this

section.

A. Signal model
We now introduce the new signal model:
Definition 4.6 (Sparsity in levels)LetZ = {I;,...,Ip} be a partition of{1,..., N} andS = (si,...,sp) € NV

wheres; < |I4|, d = 1,...,D. A vectorz € CV is (S,Z)-sparse in levels ifi{j: z; #0} NI < sq for
d=1,...,D.

Note that sparsity in levels was first introduced[in][10] asaywo consider the asymptotic sparsity of wavelet

coefficients (see alsd [11]).

Definition 4.7 (Sparse and distributed vectardetZ = {I1,...,Ip} be a partition of{1,..., N} and1 < s < N.

For 1 < X < D, we say that ans-sparse vector € CV is sparse and\-distributed with respect to the levelsif



z is (S8,Z)-sparse in levels for som8 = (s, ..., sp) satisfying
< .
d:Inl,{.ij).(’D{Sd} < Xs/D

We denote the set of such vectorsdas, 7 and, for an arbitraryx CN, write osx,z(x)1 for the ¢1-norm error

of the best approximation af by a vector inX; » 7.

Note that we are interested in the case thé independent oD; that is, when the none af;’'s greatly exceeds
s/D.
B. Distinct sampling with diagonal sensor profiles

The setup is as ifl[zAlexcept we now assume thdf,. = diag(h.), h. = {h.i}Y, € CV are diagonal sensor

profiles.

Corollary 4.8 ([7, Cor. 3.5]) LetZ = {I,...,Ip} be a partition of{1,..., N}, 1 <A< D,2<s< N,z € CV
and 0 < e < 1. Suppose thaffy, ..., Ho are diagonal matrices satisfying the joint isometry coitit(2.4) and

draw A as in [Z5). Ify = Az + e, |le||2 < n, then for any minimizef: of
min |z||; subject to|| Az — yl|2 < 7,
zeCN
we have
[ = &ll2 S osxz(@)1 + Vs,
with probability at leastl — ¢, provided
m2AN-s- - Yaist - L,

wherep = max.—1,.. ¢ p(G.) and
D
Taist = D! c:Hll,aX,C; ||hCHOOHPIdhC”00

C. ldentical sampling with diagonal sensor profiles

The setup for identical sampling differs from that @Al Let G be an isotropic distribution of vectors i@" .

Draw ay, ..., @y, c 1i.d. from G and form the matrix

~x
am/C

Now let H, € CV*¥ be matrices satisfying the joint isometry condition

C
S HiH.=1, (4.9)
c=1
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1 7
—0C =1
—_—C =
0.8
Cc=3
—C =4
= 0.6
~—
w
I
v 0.4
0.2
0
02 04 06 08 02 04 06 08
6 =m/CN 6 =m/CN
(a) Distinct sampling (b) Identical sampling

Fig. 1. Empirical phase transitions for random Fourier s@psvith banded diagonal sensor profile matrices @he- 1, 2, 3, 4 sensors. Phase
transition curves with the empirical success probabitity50% are presented (for details of phase transition experines,[1]). For both
sampling scenarios, the empirical probability of sucadssfcovery increases & increases. The results are in agreement with our thedretica

results.

and form the matrix

A=y/=| |, A=AH, c¢=1,...,C (4.10)

Corollary 4.9 ([7,, Cor. 3.6]) LetZ = {I1,...,Ip} be a partition of{1,..., N}, 1 <A< D,and2 < s < N. Let
reCN,0<e<landH. € CN*N ¢=1,...,C, be diagonal matrices satisfying the joint isometry coiodit

(49) and drawA according to [Z1D0). lfy = Ax + e, |le||2 < 5, then for any minimizef: of
min ||z||; subject to||Az — y|l2 <,
zeCN

we have
|z —2ll2 S gsxz()1 +Vsn,

with probability at leastl — ¢, provided
WLE:A'S'/L~XHdt~L,

wherep = u(G) and
C D
e = N 2

C
X2 Pt

V. EXAMPLES

We now consider several examples of explicit sensor profé&ioes to illustrate our various recovery guarantees.
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A. Diagonal sensor profiles

1) Piecewise constant sensor profiléBhe following example was first presented lin [1]. lB& {I1,...,Ip}
be a partition of{1,..., N}, whereD < C, and suppose thdt = {V,.4:c=1,...,C,d =1,...,D} € C&*P
is an isometry, i.eV*V = I. Define the sensor profile matricég. = \/%Zle Ve,aPr,, whereM =1 (distinct)
or M = C (identical), so that the?, satisfy their respective joint isometry conditions.

For distinct sampling, observe thigk.||2, < Cu(V), whereu(V) = max, 4 |Veq|? is the coherence df . Hence
we obtain optimal uniform and nonuniform guarantees (sesofdm$ 34 and 2.1 respectively) for the recovery of
s-sparse vectors it is incoherent, i.eu(V) < C—1

Conversely, for identical sampling, if we sé&t = C then it follows thatY;q; = 1 (sinceV is an isometry).
Hence we obtain an optimal nonuniform recovery guarante¢hi® sparse and distributed signal matiel.

2) Banded sensor profiletet Z = (I1,...,Ip) be a partition and suppose that the are banded, i.e.

ra
supp(he) C U Ieta,

d=—r,
for some fixedr; € N andrs € N (note thatl..4 =0 if c+d < 0 or c+d > C). As discussed in_[7§IV-B],

one obtains an optimal recovery guarantee for both distindtidentical sampling in this case with the sparse and
distributed signal model withD = C' levels, providedr; + 2 is independent of”. A specific example of this
setup is a smooth sensor profile with compact support [1, Hic)], which corresponds to a sharply decaying coil
sensitivity in a one-dimensional (1D) example of pMRI; S8efpr details. The optimal recovery guarantee for this
example is verified in Fid.11(b).

3) Global and oscillatory sensor profilesAs opposed to banded sensor profiles, we now consider global,
oscillatory profiles of the fornh,. ; = exp(2wici/N)/v/M for i = 1,...,N andc = 1,...,C. These types of
profiles can be used to model a wireless sensor network agiplicin the case where the wireless channel between
a source and sensors is time varying. Sifigg||.. = 1, we deduce optimal uniform and nonuniform sparse signal
recovery guarantees for distinct sampling with these @®fiDn the other hand, for identical sampling one can
computeT;q, for different values ofC and D. If D = 1 then Y4, scales linearly withC', implying that optimal
recovery of sparse vectors cannot be ensured. However,oamsh Fig.[2, Tiq; remains bounded wheP = C.

This implies an optimal recovery of sparse and distributectars.

B. Circulant sensor profiles

Finally, in Fig.[3, we consider circulant sensor profile ritas, corresponding to a 1D example of the multi-view
imaging application. The circulant matrices were cong&doavith eigenvalues uniformly distributed on the unit

< 1 where h, is the symbol ofH.. As discussed irfll=C] and {[lI-B] this gives optimal

~

circle, so that||h.|x

uniform and nonuniform recovery guarantees in the case sifndt sampling, thus explaining the results in Fig.

3Note that sincé is an isometry, we have€—1 < u(V) < 1.

41t is straightforward to see that optimal recovery of all rsgavectors is not possible for identical sampling with tisss of sensor profiles

7).
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Tiae

50 100 150 200 25
C

Fig. 2. ComputedY;q; values with different numbers af' (C € {2,4,8,...,128,256}, D = C, and N = 512): Different from worst
case bound in(J1, Cor. 4.2](;4; does not increase i@ asC increases, i.e. the number of measurements required pgorséecreases as

increases.
1
—C= —C=1
—0C = —_—C =
0.8
C=3 C=3
—C = —C =4
= = 0.6
~ N
w w
I I
w v 04
0.2
0
02 04 06 08 02 04 06 08
6 =m/CN 6 =m/CN
(a) Distinct sampling (b) Identical sampling

Fig. 3.  Empirical phase transitions for random Gaussiarsisgnwith circulant sensor profile matrices a6tl= 1, 2, 3,4 sensors. Phase
transition curves with the empirical success probabitity50% are presented (for details of phase transition experines,[1]). For both
sampling scenarios, the empirical probability of sucagssfcovery increases & increases. The results (a) are in agreement with our thealret

results in distinct sampling.

B(a). Interestingly, Fid.13(b) suggests that identical slimy also exhibits an optimal recovery guarantee, altthoug
we have no proof of this fact.
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