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Abstract— Although deep reinforcement learning has recently
been very successful at learning complex behaviors, it requires
a tremendous amount of data to learn a task. One of the
fundamental reasons causing this limitation lies in the nature of
the trial-and-error learning paradigm of reinforcement learning,
where the agent communicates with the environment and pro-
gresses in the learning only relying on the reward signal. This is
implicit and rather insufficient to learn a task well. On the con-
trary, humans are usually taught new skills via natural language
instructions. Utilizing language instructions for robotic motion
control to improve the adaptability is a recently emerged topic
and challenging. In this paper, we present a meta-RL algorithm
that addresses the challenge of learning skills with language
instructions in multiple manipulation tasks. On the one hand,
our algorithm utilizes the language instructions to shape its in-
terpretation of the task, on the other hand, it still learns to solve
task in a trial-and-error process. We evaluate our algorithm
on the robotic manipulation benchmark (Meta-World) and it
significantly outperforms state-of-the-art methods in terms of
training and testing task success rates. Codes are available at
https://tumi6robot.wixsite.com/million.

I. INTRODUCTION

In recent years, deep reinforcement learning (RL) has been
applied very successfully to hard control tasks like playing
video games [1]–[4], acquiring locomotion skills [5]–[7]
and, robotic manipulation tasks [8]–[10]. However, learning
these tasks often requires enormous amounts of environment
interactions, which makes it impractical for many applications.
For example, learning to manipulate a Rubik’s cube for a
robotic hand, OpenAI reported a cumulative experience of
14,000 years for simulated interactions [10]. On the contrary,
humans are able to manipulate the cube nearly instantaneously,
as they have learned how to manipulate objects in general
beforehand.

Meta-reinforcement learning (meta-RL) aims to design
an efficient reinforcement learning algorithm to mimic the
human learning ability that learns new tasks quickly [11]–
[13]. Meta-RL algorithms achieve this by conditioning the
policy on past experience and inferring the task information
based on the received rewards [14]. Unfortunately, meta-RL
algorithms perform poorly on diverse sets of tasks [15], since
they solely rely on rewards to communicate the task to the
agent, which is especially problematic when the rewards are
sparse or indistinguishable among similar tasks. Therefore,
providing additional information about the task to the agent
offers a promising way to help the learning of new tasks.

Natural language provides a rich and intuitive way for
humans and robots to interact with each other, due to the
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Fig. 1. A visualization of the ML10 benchmark from Meta-World. The
first two rows show the training tasks and the last row shows the testing
tasks. The figure is adapted from [15].

possibility of referring to abstract concepts. When a human
worker is given a new task, they are usually told what to do
by language, which specifies the task goal or the required
skill. Therefore, the worker will not have to try every possible
action sequence to figure out the goal, but purposefully aim
at solving the specified task. Although language is the most
intuitive way for humans to understand tasks, the topic of
controlling a robot using language instructions is rather new
and poorly understood.

With the fast development of algorithms in natural language
processing, more and more studies that attempt to control
robots via language instructions are beginning to emerge. Shao
et al. proposed an imitation learning algorithm Concept2Robot
[16], which aims to enable the robot to learn manipulation
skills from language instructions and visual appearances of
the task in two stages. In the first stage, Concept2Robot
uses a video-based action classifier to generate a prediction
score of the corresponding target task, which is served
as a proxy reward to train the single-task policy. In the
second stage, a multi-task policy is trained through imitation
learning to imitate all the single-task policies. Stepputtis et
al. [17] introduced an imitation learning model that directly
maps labeled language instructions and visual observations
to manipulation skills. Brucker et al. [18] proposed a flexible
language based interface for human-robot collaboration,
which allows a user to reshape existing trajectories for an
autonomous agent. On the basis of imitating a large number
of existing trajectories, the agent can generalize and adapt
to new trajectories guided by the language. Lynch et al. [19]
invented another algorithm that learns from existing expert
demonstrations and adapt to solve tasks via multi-modal
information to create the goal, such as languages or images.
Clearly, we can see most existing algorithms learn language-
conditioned skills via the concept of imitation learning, where
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Fig. 2. Overview of our algorithm. Actions at are sampled from the distribution π(at|o0:t). The dotted lines indicate how the memory segment in the
GTrXL influences the hidden states. The memory segment before the first observation of the episode is initialized as a sequence of zero vectors. States with
a double circle are terminal states. In our experiments we use a larger size of the GTrXL such that the agent can still use the observations from the first
instruction phase to compute the last few actions of an episode.

large numbers of expert trajectories are required. This once
again highly involves hand-crafted or engineered data and
lacks the advantage of the trial-and-error learning paradigm,
with which the agent can explore and learn the task by itself.

To this end, we establish a meta-RL algorithm that
addresses the challenge of learning skills with language
instructions in multiple manipulation tasks. We introduce
the Meta reInforcement Learning algorithm using Language
InstructiON (MILLION), which mimics the human-like
learning manner and greatly improves the asymptotic perfor-
mance in the challenging benchmark Meta-World. We base
our method on three concepts.

• First, we propose a meta-RL learning paradigm that
contains an instruction phase and a trial phase. In the
instruction phase, the language description of the task
is given to the agent, so that it can understand the
goal of the task. In the trial phase, with the stored
task information, the agent can explore and attempt to
solve the task as standard reinforcement learning.

• Second, we build the architecture of our algorithm via
three functional modules. The language instruction is
encoded by a pre-trained language module and then
taken as an input for a transformer module, where the
information is stored and processed. The on-policy RL
algorithm V-MPO is used to update the policy network
and the value network.

• Experiment results demonstrate that MILLION signifi-
cantly outperforms state-of-the-art algorithms on the
challenging robotic manipulation benchmark (Meta-
World [15], Figure 1), in terms of training and testing
success rate. Previous works only achieve less than 50%
success rate on the training tasks and less than 40%
on the testing tasks, while MILLION achieves almost
perfect performance on the training tasks and can solve

about half of the testing tasks.

II. METHODOLOGY

In this work, our goal is to propose a method that can
provide the task information to the agent via instructions and
learns to solve the task using trial-and-error RL algorithms.
First, our policy network should be able to accept free-
form language instructions of tasks as the input. Second,
our method should use such instructions to communicate
to the agent about what the task entails, instead of using
extensive numbers of expert trajectories as other imitating
learning based methods. Third, our method should enable the
agent to successfully master diverse skills across broad tasks
during training and adapt to unseen tasks during testing.

A. Overview

The architecture of MILLION is shown in Figure 2 and
briefly explained as follows.

• First, an episode starts with an instruction phase, during
which the language instructions are encoded as the
observation using the pre-trained language model GloVe
[20] and fed into the transformer module. The action
generated by the policy network and the reward collected
from the environment are simply ignored, since there is
no interaction during the instruction phase.

• Second, after the instruction phase, a trial phase is started,
during which the agent interacts with the environment
by following the task’s Markov decision process (MDP).
If the agent solves the task successfully, the environment
will be reset and another trial phase starts. In the case
of an unsuccessful trial, another instruction phase will
start right after the trial phase, which resembles a real
world scenario where a human operator might try a
slightly different instruction to communicate the task to
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Fig. 3. Example of a language instruction during the instruction phase.

the agent. The whole episode will be terminated after a
fixed number of trial phases.

• Finally, a new task is sampled and the same procedure
will be executed.

B. Language Instruction Phase

We consider the problem of learning an instruction-
conditioned control policy π(a|s, I(τ)), where I represents
language instructions about task τ . a is the selected action
conditioned on the observation s. The instructions should
be encoded into a sequence of vectors [w1, w2, . . . , wn] =
I(τ), where wi ∈ Rn, n ∈ N. We assume two phases in one
training episode, namely, the instruction phase during which
the task information is provided to the agent and the trial
phase during which the agent interacts with the environment.
The additional task information I(τ) is only given to the
agent in instruction phases, which can be expressed as{
I(τ) = [w1, w2, . . . , wn]1×n , if instruction phase
I(τ) = [0, . . . , 0]1×n , if trial phase

(1)
During the instruction phase, the agent receives the encoded
vectors in sequence and does not interact with the envi-
ronment, thus the actions generated by the policy and the
environment rewards are ignored. While in the trial phase,
the agent does not receive new instructions, but interacts with
the environment via the actions and rewards, therefore, I(τ)
is set as zero.

We provide free-form language instructions as the source of
instructions, e.g., “open the drawer” for the drawer opening
task, and “press the button” for the button pressing task.
For every task, we create a set of language instructions l
with similar key words. Some examples of the language
instructions that we use for the ML10 benchmark are listed
in Table I. At the beginning of the instruction phase, a new
language instruction will be sampled for the current task τ . To
capture the information represented in the natural-language
command, we first use the GloVe algorithm [21] to convert
the language instruction l into a sequence of fixed size vector
W = [w0, ..., wT ] = I(l) with wi ∈ R50, encoding up to T
words with their respective 50-dimensional word embedding.
This means that, at time step t of the instruction phase, the
observation will be wt. After T time steps the trial phase
will start. An example of the instruction phase is visualized

Instruction Trial Trial Trialπ(at|o0:t)

Episode starts
Three trials

“Fold the towel" Episode ends

An successful trial

Instruction Trial Instruction Trialπ(at|o0:t)

Episode starts

“Fold the towel" “Fold the towel twice"

...

An unsuccessful trial

Fig. 4. The visualization of the phase sequence. Each episode starts with
the instruction phase and follows with the trial phase. In case a trial is not
able to solve the task, a new instruction phase will be added to enhance the
understanding of the task.

in Figure 3. It should be noted that, to make the observations
have the same length between the instruction phase and trial
phase, a vector of zero is concatenated to the joint positions.

C. Trial Phase

The trial phase is defined as steps of environmental inter-
actions between two resets of the environment by following
the task’s MDP. The action policy Π and value policy V are
updated by maximizing the accumulated rewards in the trial
phase. The reset of the environment can be triggered by two
conditions, namely, reaching a terminal state or reaching the
maximum time-steps. As illustrated in Figure 4, we start each
episode with an instruction phase and end the episode after
three trial phases. In the event of an successful trial in which
the agent solves the task, we continue the training with a new
trial phase. In the event of an unsuccessful trial phase, we
continue the training with a new instruction phase in which a
similar language instruction is given to the agent. Following
the same procedure, one trial phase will be initiated after
each instruction phase.

TABLE I
EXAMPLES OF LANGUAGE INSTRUCTIONS FOR ML10

Task Language Instructions
reach reach to goal_pos, reach goal_pos

push push goal_pos, push to goal_pos
push object to goal_pos

pick-place pick and place at goal_pos
pick object and place at goal_pos

door-open pull goal_pos, open door, pull to goal_pos

drawer-open pull goal_pos, pull to goal_pos
pull back to goal_pos

drawer-close push goal_pos, push to goal_pos
push forward to goal_pos

button-press-topdown push object down to goal_pos, press button
press down, press button down



Algorithm 1 MILLION
1: policy πθ(a|s), state-value function V πφ (s)

2: initialize FIFO buffer B̃ with capacity b ∗ Ttarget
3: while not converged do
4: Update πθold ← πθ
5: for learning step l = 1..Ttarget do
6: for trajectory number i = 1...b do
7: Select instruction I(τ) for random task τ
8: Encode I(τ) in language phase
9: Do MDPs in trial phase with πθold(a|s, I(τ))

to generate trajectory Ωτ , and add Ωτ to B̃
10: Bbatch = Sample b trajectories from B̃
11: Reward normalize Bbatch
12: Compute loss L(φ, θ, η, αµ, αΣ) from Bbatch
13: Update φ, θ, η, αµ, αΣ with gradient step

D. Reward Normalization

In multi-task RL or meta RL, one policy is trained to
solve multiple tasks, from which the rewards typically have
different magnitudes, for instance, in Meta-World (version
1), the task press-button-v1 has a reward varying from 0 to
10, 000 while put-on-shelf-v1 has a reward varying from 0 to
10. This makes the learning extremely difficult and inefficient.
A well-used solution is to clip the reward to a specified range.

Preserving outputs precisely, while adaptively rescaling
targets (Pop-Art) [22] can be used to normalize the learning
targets for the value function for every task individually.
Inspired by Pop-Art, we also update the value function of
our network as follows. The value function is used to predict
the reward return Gt and is approximated as

fθ,σ,µ,w,b(x) = σ(Whθ/W,b + b) + µ, (2)

where h is the neural network with the weights θ. W and b
are parameters to normalize the prediction of the network. µ
and σ are used to track the mean and standard deviation of
the returns Gt. Then, µ and σ are updated as

µt = (1− β)µt−1 + βGt

σt =
√
νt − µ2

t

νt = (1− β)νt−1 + β(Gt)
2

(3)

where β is a training hyper-parameter. To keep the learning
stationary, we update W and b as{

Wt = σt−1

σt
Wt−1

bt = σtbt−1+µt−1−µt

σt

. (4)

E. V-MPO with Improved Sample Efficiency

The policy is trained using the on-policy algorithm Max-
imum a Posteriori Policy Optimization (V-MPO). V-MPO
is very sample inefficient. It requires a lot of environment
interactions during training. We improve the sample efficiency
by modifying the V-MPO algorithm slightly to reuse sampled
environment interactions more often. The original V-MPO
algorithm uses every environment trajectory only for one
gradient update. We change this by keeping a small FIFO

buffer with the last Ttarget × b trajectories, where b is the
batch size for the gradient updates. Then we randomly sample
batches from this buffer for gradient updates.

The overall MILLION algorithm is given in Algorithm 1.

III. EXPERIMENTS

In this section, we evaluate the performance of our method
on the well-known Meta-World benchmark that consists of
50 complex manipulation tasks. First, we apply MILLION
to the ML10 benchmark to compare the performance against
state-of-the-art meta-RL algorithms in terms of training and
testing success rate. Second, we provide an ablation study on
ML10 to validate the proposed concepts. Last, we conduct
experiments on the most challenging benchmark ML45 to
show its broad effectiveness and generalization capability.

A. Meta-World Benchmark

Meta-World [15] is a collection of 50 diverse robotic
manipulation tasks built on the MuJoCo physics simulator
[23]. It contains two widely-used benchmarks, namely, ML10
and ML45. The ML10 contains a subset of the ML45 training
tasks, which are split into 10 training tasks and 5 test tasks,
and the ML45 consists of 45 training tasks and 5 test tasks.
Most tasks contain some kind of object that should be
manipulated with the robot arm and adopt the control strategy:

• The action space A contains the desired 3D Cartesian
positions of the end-effector and a normalized control
command for the gripper.

• The state space S contains the 3D Cartesian positions of
the end-effector, the positions of the manipulable objects,
and the goal position. The state space is always nine
dimensional.

• A success metric function is provided for each task,
which defines the competition condition of the corre-
sponding task.

• For each task, a well-shaped reward function is provided
with a similar structure across all tasks, which makes
the tasks individually solvable for recent RL algorithms.

We make two additional changes to the Meta-World
benchmark to reduce the training time. First, inspired by
[24], we repeat actions twice during the trial phase to reduce
the trial length across all the tasks, which enables a shorter
sequence length for the transformer model, and therefore
reduces the computation requirements significantly. It should
be noted that the reported number of environment steps in
our results corresponds to the number of observations the
agent has seen. Second, we add a scalar to the observations
during the trial phase, which indicates the remaining time in
the trial. This helps the agent to learn a better value function,
because the Meta-World environments have a time dependent
termination condition [25]. The time observation is computed
as steps in one trial

maximum steps per trial . During the instruction phase, a zero
value is concatenated to the observation instead.

There are two versions of Meta-World. Note that, in the
first version of Meta-World, three tasks had to be removed
from the benchmark, because the scripted policies provided
by Meta-World did not work well to solve the tasks. This



tra
in

av
era

ge
rea

ch

pre
ss

bu
tto

n

op
en

do
or

clo
se

dra
wer

pu
sh

ba
sk

etb
all

op
en

wind
ow

pic
k an

d pla
ce

tes
t av

era
ge

op
en

dra
wer

clo
se

do
or

sw
ee

p int
o go

al

pla
ce

on
to

sh
elf

pu
ll

lev
er

0

20

40

60

80

100

A
ve

ra
ge

d
Su

cc
es

s
R

at
e

(%
)

MILLION PEARL RL2-PPO MAML-TRPO
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Fig. 6. Maximum per-task success rates on ML10 V2. MILLION shows the highest performance on the training tasks (98.3%) and the test tasks (55.4%).

includes peg-insert-side-v1, lever-pull-v1 and bin-picking-
v1. Another task, sweep-v1, had to be removed because the
reward function did not encourage the agent to solve the task.
But for the second version of Meta-World, we keep all the
tasks accessible for training and testing.

B. ML10 Benchmark

We first tested our method on the ML10 benchmark to
show its performance when the agent receives a language
instruction instead of only observing the reward signal. The
language instructions are short sentences that describe the
goal of the task. For each task in ML10, we designed multiple
simple language instructions.

According to the reported results from [15], we listed the
averaged success rates of state-of-the-art meta-RL algorithms
in Table II, which includes MAML [26], RL2 [27], PEARL
[28], and our method MILLION. Detailed performance for
each task in ML10 is visualized in Figure 5 and 6. It can
be observed that, in both versions of Meta-World, MILLION
achieves success rates of almost 100% on the training tasks,
which significantly outperforms state-of-the-art methods. It

TABLE II
AVERAGE SUCCESS RATES OVER ALL TASKS FOR ML10 AND ML45.

Methods ML10 ML45
Training Testing Training Testing

MAML 25% 36% 21% 24%
RL2 50% 10% 43% 20%
PEARL 43% 0% 11% 30%
MILLION 99% 50% 95% 48%

TABLE III
COMPARISON AMONG MILLION VARIANTS IN ML10 V1.

Variants Meta-training Meta-test
MILLION 0.99 0.50
without Pop-Art 0.41 0.30
without instructions 0.71 0.29
with Full Time Obs 0.83 0.40

demonstrates the advantage of providing the agent with the
task instructions instead of only rewards. For meta-testing,
MILLION has a success rate of around 50%, which also
performs better than other methods (See Figure 7.).
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Fig. 8. We take the reaching task as one example to show that MILLION
can be successfully used in the real world. The task are specified by the
language instruction through the microphone. More demonstrations can be
found on the project webpage1.

To emphasize the importance of the proposed concepts, we
provide ablation studies on the ML10 benchmark, shown in
Table III. First, we demonstrate the importance of the Pop-Art
reward normalization. This normalizes the rewards for every
task individually. The results demonstrate that Pop-Art is
very important for our algorithm. Without this, the agent only
learns to solve less than half of the training tasks. Second, we
also examine the performance of a variant that only observes
rewards without instructions, which means an episode consists
only of three trials and no instruction phase. The rewards are
simply concatenated to the observations to serve as a potential
information source of the task. This is similar to many other
recent context-based meta-RL algorithms [27], [29]. This
variant can learn 70% of the training tasks but adapts to the
testing tasks poorly. Another ablation is to use a different time
observation. Our algorithm observes the remaining time in the
current trial. Here we evaluate our algorithm when it observes
the remaining time in the full episode. This was originally
proposed by [25]. The results show that this variant learns the
training tasks slightly worse than MILLION. Our hypothesis

1https://tumi6robot.wixsite.com/million
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is that the discount factor causes the value function during
a trial to be relatively independent of the next trial rewards.
This means that the remaining time is more important for the
value function than the remaining time in the episode.

We also successfully transfer the learned policy from
simulation to the real world. Due to the page limit, we only
show the snapshot of MILLION solving the reach-v1 task
in the real world (See Figure 8). More demonstrations of
manipulation tasks from ML10 can be found on the webpage1.

C. ML45 Benchmark

To test ML 45, we use the same hyperparameters and the
same number of trials as for the ML10 benchmark. However,
we train the agent for over 1 billion time steps instead of just
400 million because the benchmark contains more diverse
tasks. The results (see Figure 9) show that MILLION is able to
learn almost all training tasks and about 48% of the test tasks,
which indicates that our method has a stable performance on
complex manipulation tasks scenarios. A detailed comparison
between MILLION and state-of-the-art algorithms on ML45
is also listed in Table II. It demonstrates that our algorithm
MILLION greatly outperforms other baselines in terms of
success rate in both training and testing stages.

IV. CONCLUSION

In this paper, we showed that meta-reinforcement learning
can be greatly improved by providing the agent with additional
task information, such as language instructions, which are
often much easier to provide than dense rewards. By encoding
the language instructions into the observations, we designed a
very simple and general algorithm. This eases the application
of RL algorithms to be used for real-world robotic tasks.
Furthermore, we demonstrated that our algorithm is able to
solve a set of very diverse robotic manipulation tasks. In
future, we plan to incorporate the language information as a
feedback signal to further calibrate the behavior of the meta-
RL agent, which can potentially advance our understanding
on interactive intelligent robots in the future.
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