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Abstract—The development of breakthrough technologies helps
the deployment of robotic systems in the industry. The im-
plementation and integration of such technologies will improve
productivity, flexibility and competitiveness, in diverse industrial
settings specially for small and medium enterprises. In this paper
we present a framework that integrates three novel technologies,
namely safe robot arms with multi-modal and auto-calibrated
sensing skin, a robot control framework to generate dynamic
behaviors fusing multiple sensor signals, and an intuitive and fast
teaching by demonstration method that segments and recognizes
the robot activities on-line based on re-usable semantic descrip-
tions. In order to validate our framework, these technologies are
integrated in a industrial setting to sort and pack fruits. We
demonstrate that our presented framework enables a standard
industrial robotic system to be flexible, modular and adaptable
to different production requirements.

I. INTRODUCTION

The demand for an increasingly high productivity level
in industrial scenarios requires both shorter task execution
times and faster/easy robotic systems programming methods.
Automation and robotics are expected to deliver the required
reduction on production costs and increase in productivity. For
this purpose, an automated process using robots needs to be
programmed fast and to perform as efficient as a human worker
in various domains, for example packing and quality checking
of products, polishing of steel molds or filling of a spray-
painting machine. However, the setting up of a robotic system
takes, in general, at least 3 months [1], which implies the
need of robot expert programmers and higher costs. This is
more prominent for Small and Medium Enterprises (SMEs),
since they usually only have small production batches due to
seasonal on-off production.

An interesting method to extend the flexibility and capa-
bilities of a robot is to integrate it in close interaction with
human co-workers. The fusion of the high adaptability of
the human and the accuracy of a robot system can facilitate
the automation of industrial processes. In this case, safety
in physical human-robot interaction [2] is a fundamental
aspect on developing robot technologies. Especially for the
new way of teaching robots sequences using programming by
demonstration methods which requires physical interactions
with the robot. This method allows the operator to teach the
robot tasks in an easy and natural way, hence an expert robot
programmer is not required, see Fig. 1. Therefore, the develop-
ment and integration of technologies such as fast configurable
artificial skin, control schemes and robust teaching methods
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Fig. 1. Demonstration scenario: the user can intuitively teach a complete
process to an industrial robot, in this case, sorting oranges. The setup is
composed of an enhanced perception system (fusing artificial skin and vision),
multi-modal control behaviors, and robust reasoning methods.

are needed to simplify the robot programming, to improve
the safe physical interaction with robots, and to decrease the
deployment time of robotic systems in the shop floors. These
fast deployment technologies are needed to advance the current
robot systems and it is the main focus of this paper which is
being developed as part of the project Factory-in-a-Day'.

A crucial step to properly integrate the above mentioned
technologies, in a coherent framework, is the correct fusion of
multiple sensors. One significant advantage of using multi-
modal sensor fusion is to provide enhanced and comple-
mentary information during the parallel processing of data
[3]. However, many issues arise during this fusion. This
includes the adequate management, sensor synchronization
and the necessity of different levels of abstraction to cope with
signal uncertainty. Multi-modal sensor fusion requires inter-
disciplinary knowledge in control theory, signal processing,
artificial intelligence, probability theory and statistics. This
important aspect is also addressed in this paper.

In this work, we employ a multi-modal artificial robot
skin technology [4], which is fused with a vision system to
extend the robot perception and interaction capabilities. In
addition, we introduce a multi-modal control approach to en-
able different dynamic behaviors for standard industrial robots.
The integration of these components is done with our novel
semantic reasoning framework [5] to teach kinesthetically new
activities to robots, see Fig. 1. All the previously mentioned

Uhttp://www.factory-in-a-day.eu/
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Fig. 2. Framework which integrates three main technologies for fast robot
deployment: multi-modal skin, control behaviors and a reasoning engine. This
framework allows an intuitive robot teaching and can re-use the acquired
knowledge to different domains.

technologies will facilitate a faster installation of a robot
system in industrial settings.

A. Main contributions

The key components and contributions of our framework
are: a) The fusion of fast self-organizing and self-calibrating
artificial skin information with visual system to enhance the
robot perception, interaction and safety. b) The development
of multi-modal control behaviors to allow safe physical human
robot interaction beyond the standard capabilities of industrial
robots. ¢) A multilevel approach that is capable to automati-
cally segment and recognize robot behaviors from kinesthetic
demonstrations. This approach boosts the learning phase since
the demonstrated nominal trajectories are automatically seg-
mented and recognized, therefore no off-line annotation is
needed, which is typically the case in most Programming
by Demonstration (PbD) methods. These three components
are integrated in a framework, see Fig. 2, that allows the
generation of new robot behaviors for standard industrial
robots?.

B. Related Work

One of the main problems of deploying robots in industrial
processes is commonly related to the lack of knowledge
in robot programming by the operator. Therefore, an expert
engineer is required to manually program tasks to the robot,
which is usually done using robot-specific teach-pendants [6].
This teaching task involves defining trajectories which are a
set of points the robot must follow. This teaching process
is time-consuming an a highly demanding task. However, in
the context of industrial scenarios, programming robots in an
easy and intuitive manner is an important requirement [6].
To fulfill this requirement, a new promising way for robot
programming seems to be the Programming by Demonstration
(PbD) [7], [8], which allows the operator to teach tasks to the
robot in an easy and natural way, thus requiring no experience

2The only requirement is that the robot provides an external control
interface, e.g. position, velocity or torque control.

in robot programming. PbD methods can enable fast and
flexible modifications on robot behaviors to perform a wide
variety of tasks [9]. For example, [10] proposed a three-stage
PbD method based on Dynamic Motion Primitives (DMPs)
to Kinesthetically teach industrial robots, this method learned
low-level profiles such as force and pose trajectories. Recently,
[11] presented an approach to learn the task of grating vegeta-
bles based on task-space constraints (e.g. force and position of
the end-effector), which are defined by a significant variance
of the observed variables across demonstrations.

Furthermore, cognitive cyber-physical systems are used in
order to develop novel robotic technologies to cope with
larger variability on processes. For example, [12] presented
a cognitive system applied to a concrete and well-known
use case from the automotive industry, which is part of a
research project called STAMINA. For fast deployment of
robotic technologies the work of [13] proposes a “knowl-
edge integration framework” which generates a generalized
platform independent description of a manufacturing process.
The manufacturing process is modeled by abstract tasks which
contain skills. The general description is robot independent
such that tasks at the higher execution levels can always be
executed in the same way. The work of [14] focuses on the
simplification of programming industrial robots by combining
on-line and off-line programming to a more intuitive and
efficient assisted on-line programming technique. Instead of
teach pendants or joysticks the authors propose an intuitive
input device which bases on optically tracking a special
marker tool. Moving the marker tool reflects movements of
the end effector. The framework uses a modular approach in
which algorithms (e.g. collision avoidance) and end-effector
restrictions simplify the programming process. In a different
form, robot programming using augmented reality (RPAR) has
been proposed by [15] where the robot programming is more
intuitive and thus more flexible for SMEs.

The need of flexible and easily reconfigurable robots is
discussed in [16] which addresses challenges in manufac-
turing process generated by the change of mindset; from
mass production to mass customization. This work proposes a
generic set of skills which can be combined to more complex
robot tasks. This implies that the teaching process should be
transformed into a high-level abstraction in order to allow
generalization [17]. Furthermore, when developing new robot
teaching systems for industrial applications, it is needed to
fulfill the safety requirements specified by the International
Organization for Standardization (ISO). The principal stan-
dards for guaranteeing safe operations of industrial robots
are defined by ISO 10218-1/2 [18], [19]. In addition, since
PbD methods imply physical interaction with robots, this
sort of interaction is becoming a highly relevant topic inside
the robotics community. Therefore, a new ISO 15066 [20]
which covers safety for collaborative industrial robots has been
recently published. These new standards pave the way to new
robot technologies to tackle the problems in the factories of
the future. In this work we proposed a new framework based
on three robotic technologies to allow the fast deployment
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Fig. 3. Artificial skin cells and its interface to the PC. Each skin cell
has 4 different modalities: a)Proximity, b)Normal Force, c)Acceleration and
d)Temperature.

of industrial robot systems. Our framework takes in consid-
eration, intuitive robot programming adaptable to variations
on the process, knowledge-based components to enhance the
robot teaching process and extended perception components to
improve safety during physical robot interactions with human
co-workers.

The following sections are devoted to describe the main
technologies used in this work as well as experimental vali-
dation of the proposed framework.

II. ROBOT MULTI-MODAL SKIN

One of the keystone components of our framework is the
fast configurable multi-modal artificial skin. This technology
can transform a standard industrial robot into an intelligent
system. It allows to easily build reactive behaviors directly in
the low-level control of the robot arm to increase its safety for
human robot collaboration. It also provides an extended HMI
for the user, since the interface is the complete arm when the
robot is covered by the artificial skin. The multi-modal sensory
information generated by the artificial skin can improve the
perception capabilities of a system, specially to produce local
complementary information.

Our artificial skin [4] is a modularized, multi-modal robotic
skin which consists of hexagonally shaped skin cells (see Fig.
3). Each skin cell has the same set of sensors which transduce
tactile information of different modalities, such as vibrations
(acceleration sensor), pressure (capacitive force sensors), pre-
touch (proximity sensor) and temperature (temperature sen-
sor). Micro-controllers located on the back of each skin sample
and filter the sensor data and pack the acquired information
into skin cell data packets which are then forwarded to a PC
(see Fig. 3). Neighboring skin cells are connected to each other
and exchange information with their neighbors. All connected
skin cells realize a meshed and highly redundant skin cell
network. This skin cell network is managed by the micro-
controllers of the skin cells in a distributed and self-organized
way. Skin cells which are directly connected to each other
shape an entity called Skin patch. Skin Patches are connected
to interface boxes (see Fig. 3) which ease the communication
between skin cell network and a PC. The interface boxes allow
to communicate with large skin patches via standard Gigabit
Ethernet without the need for special hardware or drivers on
the PC. We have developed a simple ROS driver node to
integrate robotic skin within the ROS environment.

Local transformations, between skin cells and robot body
parts, are required to map tactile information into meaningful
control information, see Section III. However, to calibrate
the pose of hundreds of skin cells is not a trivial task. To
tackle this challenge, the artificial skin provides a 3D surface
reconstruction algorithm for skin patches [21]. This algorithm
automatically deduces the poses of every skin cell of a patch
with respect to a root cell such that the skin cells exactly match
the surface they cover. Then, the calibration task is reduced to
only find the transformation of one root cell to a robot link.
This can be done manually or using an external sensor [22].

A. Event-based signaling

Partially covering a robot arm, such as the UR-5 robot on
our development platform, results in approximately 300 skin
cells. Sending tactile data with a constant sampling rate of 250
Hz?® induces a huge processing load on the PC, even when the
skin is idle and no tactile interaction occurs. With 300 skin
cells this processing load impacts the performance of real time
control and this is more evident when the number of skin cells
increases. In order to cope with this problem we use event-
based signaling [23]. We take advantage of the distributed
micro-controllers of the skin cells and generate events on site.
In this manner, skin cells only forward tactile information
whenever the local change of a sensor value exceeds a given
threshold. This principle reduces the data load significantly to
20 % of the original data load and induces less computational
costs which also improves the performance of the real time
control.

The main goal of the artificial skin in our framework is
to utilize the skin signals to teach robots in a natural way by
interacting directly with the robot surface and without the need
of specialized interfaces, e.g. teaching pendants, joysticks or
visual markers. A virtual shield for real collision avoidance
(not just collision detection) protects the robot such that the
teacher must not additionally keep the robot safety in mind and
can focus only on the teaching process. This will be achieved
by enforcing dynamical virtual behaviors on the robot, where
enforcing compliance in non-compliant robots is of particular
importance. This will be explained in the following section.

III. ROBOT CONTROL BEHAVIORS

The goal of this component is two folded: a) to transform the
multi-modal signals obtained from the Robot Skin component
into meaningful information for the low-level control; b) to
generate a robot behavior library using a composition of
different low-level controls, e.g. Kinesthetic Joint, Reach Joint
Compliant, see Table 1. This library is the interface between
the Semantic Reasoning Learner component, see Sec. IV, and
the low-level control of the robot.

A. Transforming Multi-modal Tactile Signals into Joint

Torques

In order to fuse the information from the artificial skin
sensors with the different controllers available in the Robot

3250 Hz is the maximum sample rate of our artificial skin.



Behavior Library (see Fig. 6), we need to transform the sensors
signals (e.g. pre-touch and pressure) to generalized force
commands. In this work we use force vectors to transform
tactile signals into joint torque signals. This is achieved in the
following two steps.

1) Multi-modal Tactile Signals to Force Vector: Each Cell;
produces a set of three pressure signals f; € R,m =1,2,3
and a single proximity signal p; € R, see Fig. 4. The first
step is to transform these signals into force vectors. By design
both the pressure-signals and the proximity signal are normal
to the sensor Cell;, defined by its z — axis. Therefore the
Cell; force vectors can be constructed as follows:

E = [07 Oa wppl'}T (1)
3
Fi: [0,0,Wf Z fim]T7 (2)
m=1

where w,,wy € R are weighting gains for the proximity and
pressure signals, respectively. The above equations represent
the force vectors of each signal with respect to the Cell; frame,
see Fig. 4. The force vector with respect to the robot base
(Linkg) is obtained as:

U Feinke =" Riink, (Fi + ) 3)

where i Fr ;.. € R? represents the total force vector pro-
duced by the tactile signals of the C'ell;. The rotation matrix
clli Rrinks € SO(3) is extracted from the homogeneous

transformation “*'Tr;,.1.., which is obtained as:
1 __ Link; o1l
T kg =" Trinky (“““TLink,) ; “4)
where the set of local transformations Ce”’iTLinkj of each

Cell; with respect to its link reference frame Link; has been
obtained using the fast self-calibration feature of our artificial
skin [21], [22]. In this case, ¢ = 1,2, ..., s denotes the cell id
with s as the total number of cells, and 7 = 1,2, .., n represent
the joint id, with n as the robot’s DOF.

Notice that Links TLink, 1s defined by the robot kinematic
model, which can also be generated using the inertial sensors
from the artificial skin [24].

2) Force Vector to Joint Torques: In the second step, the
torque 7; € R™ produced by the tactile signals of each Cell;
is calculated as:

Cell, J Link (CelliWLink:O) (5)

where “Ui Wi, = [“HFL 0,073 is the wrench of
Cell;*. Ce”'iJLka € RO*™ represents the Jacobian of the
Cell; with respect to Linkg, which can be directly computed
using the local and global calibration of the Cell;. Finally, the
total joint torque Tk, € R™ generated by all the skin cells
on the robot arm is computed as:

TCell;

s
Tskin = Z TCell; (6)
=1

#We set the moment on Cell; = 0 € R3*! since it is physically impossible
to apply pure moment to an individual C'ell; with respect to its own reference
frame, or even measure it with the sensor.

B. Robot Control Behaviors

The mapping from tactile signals into joint torques (eq.
(5)-(6)) allows the fusion of multiple controls that use the
same generalized force representation, e.g. Joint Control [25],
Cartesian Control [26] or Visual Servoing [27]. Thus, a simple
normalized weighted-sum approach to add the contribution of
each individual controller to a total joint torque output 75, can
be used:

p
TS = WsTskin + E oy WTES (7)

where w,, w, € R are weighting values and 7, is the control
output of a controller defined by the user. We selected this
fusion method to guarantee a deterministic behavior, even
when local minima is present. Nevertheless, a more sophis-
ticated approach can be used in order to select an optimal
combination of controls, e.g. [28]. The weight selection for
the controllers depends on the specific robot behavior that
we need to generate. Some examples of the different robot
behaviors are depicted on Table I. These robot behaviors are
triggered by the Skill Library, see Sec. IV.

TABLE I
ROBOT BEHAVIORS AND ITS RELATION WITH THE CONTROLLERS.
Skill Name Joint| Spline Spline Skin | Skin | G
Ctrl | Joint | Cart | Joint | Cart | Ctlr
Ctrl Ctrl Ctrl Ctrl
Reach Joint X X X
Reach Joint X X X
Goal
Reach Cart X X X
Goal
Kinesthetic X X
Joint
Kinesthetic X X
Cart

1) Robot Control Framework: The Robot Control Frame-
work, depicted in Fig. 4, is designed to provide two low-level
control interfaces, either Position/Velocity interface, available
in most of the modern industrial robots, or Torque interface.
In the case of Torque interface, we command directly 7
to the control unit of the robot. On the other hand, for the
Position/Velocity interface, we need to use a Torque-to-Position
Resolver.

F.P

Skin Joint| Cskin
Control
F;
L|nkg Llnk % Tactilg
= Interaction
s Cell,
Arm
Control
'ﬂ_lnkj+1

T5=W,Tojin* ZWiTi

Ty T

Torque to Position
Resolver

(e.g. g
- Cartesian, =
/.7 Joint,etc.)
gﬁ‘j 1 i Arm Low
% Level Interface
w o
e ¢ qdlqd

UR Control Unit
Robot Standard Control Interface

Fig. 4. Transforming skin signals into control signals.



2) Torque to Position Resolver: In order to control robots
with Position/Velocity interface, we need to transform the
total commanded joint control 7 into desired joint posi-
tions/velocities. To this aim, we have implemented a torque
resolver which uses the dynamic state of a nonlinear observer
to generate the desired joint commands. We obtain the full
dynamic model to design the observer using the kinematic
models of the robot in combination with the Euler-Lagrange
formulation, as explained in [29]. This observer allows to
specify user-defined dynamic behaviors, e.g. it can increase
the viscous friction, thus generating a slower step response to
an external input (e.g. tactile interaction). The desired joint
positions/velocities (qq,Gq) generated by the torque resolver
are sent to the robot using its standard control interface, see
Fig. 4.

IV. SEMANTIC REASONING LEARNER

The need for an intuitive learning component is evident
especially when a physical interaction with a robot is expected.
An ideal solution would be a scenario where the movements
from the operator are tracked, segmented and recognized by
robots while kinesthetically demonstrating a new process. This
is a challenging topic of research of recent years; in addition,
from an industrial point of view, these methods are still not
robust enough [6].

In this section, we present a novel learning by demonstration
method to teach robots new processes in an on-/ine manner.
This method generates compact semantic representations for
automatically infer the kinesthetic demonstrations on robots.
These models are robust and invariant to different demon-
stration styles of the same activity. Additionally, the obtained
semantic representations are able to re-use the acquired knowl-
edge to infer different types of activities. We propose a system
that extracts the meaning of the demonstrated activities by
means of semantic representations.

A. Workflow hierarchical structure

In this work we use the following vocabulary to recognize
the robot demonstrations at different levels of abstraction.
The highest level is the Process, which is defined as the
combination of sequential Tasks. Tasks are the combination
of ordered Activities. Activities are semantic descriptions of
Skills, and finally Skills (lowest level) represent the primitives
that robots need to execute, see Fig. 5.

Highest

Processes level

Tasks |
Activities [ Idle

Pick an orange | [Place orange in box |
| [Reach | [ Take || Put |[Release]

| Reach ’ Rele_a“se II_OW(_,__st
skill ski level

Fig. 5. Hierarchical structure to define the workflow of our system. The
Problem Space (marked as the blue-box) provides semantic descriptions which
represents robot-agnostic knowledge, therefore it can be transfered to different
domains. The Execution Space (red-box) is the specific information and
routines that depends on the current robot, then only this information needs
to be changed when using a different robot.
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For example, the Process “Pack good oranges into boxes”
is composed of two Tasks “Pick an orange” and “Place orange
in box”. The first task contains three activities namely “Idle”,
“Reach” and “Take”, while the second task is defined by
the activities “Put” and “Release”. Each of these Activities
is connected to a Skill. For example, “Reach” is linked to the
“Reach Skill” primitive.

Process, Tasks and Activities are described in the Problem
Space, and they are considered robot agnostic descriptions.
They represent what the robot should perform, and not how it
should be done. On the other hand, the Skills are defined in
the Execution Space, and they explicitly define how the robot
should execute an Activity. They represent specific routines or
robot programs to execute a given Activity.

The main advantage of this hierarchical architecture is the
re-usability and generalization of the acquired knowledge.
Thus allowing the transference of knowledge generated in the
Problem Space to different domains, see Fig. 5.

B. Activity inference from robot demonstrations

In order to infer the demonstrated activities, we present a
two-step semantic-based approach. First, we extract the low-
level features from the perceived environment (e.g. signals
from the sensors), and as a second phase we automatically
generate compact semantic rules to deterministically infer the
robot activities from the demonstrations.

The low-level features are considered as the atomic repre-
sentations from demonstrations, in this case the robot’s End-
Effector (EF) motions are segmented into one of the following
categories, similar to our previous work [30]. Move: the EF
is moving, i.e. & > €. Not move: the EF stops its motion, i.e.
& — 0, where x is the EF velocity.

Furthermore, we also need to detect the following prop-
erties of the objects from the vision, skin, and robot sen-
sors. ObjectActedOn® (o,): the EF is moving towards an
object, i.e. getting closer to the object, d(zcf,z,,) =
VYo (Tef — 20,)2 — 0. ObjectInHand (op,): the object is
in the EF, i.e. o, is currently manipulated, i.e. d(zs, o;) =~ 0.
GripperState (gs): the gripper is open or closed, where d(, )
is the distance between the EF position (x;) and the posi-
tion of the detected object (x,,) from a common coordinate
frame. The output of this module determines the current
state of the system (ss), which is defined as the quadruplet
ss = {m, 04, 0p, gs}. Then, we used the perceived state of the
system (s;) to obtain the semantic rules. For this, we use a
similar pipeline as the one presented in [31], where the C4.5
algorithm is employed to compute a decision tree (7°) which
contains the semantic descriptions of the robot demonstrated
activities. The obtained tree can be observed in Fig. 8.

The advantage of this abstract representation is that it allows
to obtain more generic models from demonstrations, even
when the information is obtained from different scenarios as
well as several sources of input data. Another important aspect

5The information from the object can be obtained either from the vision
system or the proximity sensor of the skin. The same is valid for the property
of ObjectInHand.
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of our system is its scalability and adaptability toward different
domains as presented in [5], [32]. It is important to highlight
that the semantic rules are obtained off-line and can be re-used
directly in multiple domains as an on-line component.

C. Task and process learner

Following the hierarchy described in subsection IV-A, after
segmenting and inferring the robot activities, we can learn new
tasks. In order to do this, we require the input from the user
via GUI to name the learned task and to select the activities
that conform this task from a list of automatically inferred
activities. When the task is saved, the learned information is
stored in the knowledge-base. Furthermore, per each activity
a new skill is generated and stored in the knowledge-based
which also contains context parameters necessary to execute
that activity (see Fig. 6 (a)). For example, for the activity “Put-
SomethingSomewhere”, the parameters generated for the skill
are something and somewhere, where something is instantiated
when a new object is detected (e.g. orange) and somewhere
identifies the final position of the activity (e.g. box, trash, or
squeezable area).

In order to learn a new Processes we also need the input
from the user via GUI, which during running time connects
to the knowledge-based and retrieves the previously learned
tasks and skills. Then, the available tasks are displayed and the
user selects the tasks that define the new process, along with
the stop criteria®. When the generated Process is executed,
the system obtains the name of the object from the vision
system on-line and this instantiates the context parameters
needed to execute the inferred tasks. At this point, the system
infers which tasks can be executed given the perceived data.
For example, when the perceived object is an orange the
“Squeeze” activity can be executed since oranges have the
property of squeezable, however if the detected object is an
apple this activity can not be executed due to that apples are

The stop criteria indicates when a process should stop, e.g. duration, limit
weight of objects, or maximum number of objects.

not squeezable. Therefore, our system is able to adapt to these
differences on the object properties without human interven-
tion, which makes our system more general and flexible when
changing objects in the production lines on SMEs without the
need to re-program the robot.

V. DEMONSTRATION SCENARIO — PACKING FRUITS

Our system integrates two different phases in a single
framework, these phases are Teaching phase and Execution
phase, see Fig. 6. Both phases are defined by three main
components a) Sensor Fusion module, b) Learning/Application
module, and ¢) Robot Behavior module. In the Teaching phase,
see Fig. 6 (a), a knowledge-based is generated and populated
on-demand according to the inputs obtained from the demon-
stration. Afterwards this knowledge-based will be used during
the Execution phase to retrieve the learned information and
execute the proper robot behaviors, see Fig. 6 (b).

As a demonstration scenario, we consider the task of sorting
fruits. With this scenario, we can exploit the benefits of using
the tactile and proximity sensors of the artificial skin to sense
the quality of the products, in this case oranges. In this
demonstration scenario the human is teaching the robot the
intermediate activities required to sort and pack oranges into
boxes when the oranges are good (they show a rigid texture),
or the oranges will be thrown to the trash container when
the oranges are bad (soft texture), see Fig. 8. It is possible
to observe that this complex task implies the integration of
different sensors and a proper mapping method to infer the
taught activities. This scenario was inspired by the standard
process of orange sorting where the humans use their tactile
sensation to discriminate the good oranges from the bad
oranges.

Our proposed demonstration has been successfully im-
plemented in our robotic platform Tactile Omni-directional
Mobile Manipulator (TOMM), see Fig. 1. TOMM is composed
of two industrial robot arms (UR-5) [33] covered with artificial
skin, two Lacquey grippers also covered with our artificial
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skin and 2 cameras on its fixed head used to obtain the 3D
position of the target objects. The artificial skin interface,
control schemes and inference system are implemented in
two workstations running on Ubuntu 14.04 Linux/OS. The
specifications of the PCs are as follow: Intel Core 17-4702MQ
CPU @ 2.20GHz. The complete system has been integrated
using ROS Indigo middle-ware [34].

A. Experiment 1: Teaching Packing Oranges

In this part of the experiment, the user is guiding the robot
by enabling the Kinesthetic_Cart robot behavior, see Table
I, as well as controlling the robot gripper state (open/close).
Then, the Semantic Reasoning component will automatically
segment and infer the demonstrated activities. It automatically
generates semantic descriptions of the tasks in each step,
and stores the relevant information in the knowledge-based
(e.g. skill parameters), see Fig. 8. Later, the inferred activities
can be retrieved in sequential order and the user can easily
create new tasks. It is important to highlight that the user will
demonstrate only once the activities involved in the desired
process, in this case, sorting oranges. This teaching process
can be observed in the following video’

B. Experiment 2: Executing Packing Oranges

The tasks generated by the user are also stored in the
knowledge-based and a new process can be generated.
This process is generated with un-bounded variables,
which will be instantiated during running time, taking in
consideration the information obtained from the multi-
modal perception system (tactile skin, vision, robot state,
etc.). In this case, the user creates the process of sorting
oranges which consists on the following sequential tasks:
Ty{Pick_Fruit} = [1) Reach(object), 2) Take(object)],
To{Identify_Good_Fruit}=[3) Put(object, place), 4)

Release(object), 5) Squeeze(object),...,6) Take(object)],
where object = orange and place = squezable_area.
If the stiffness of the orange is high, then it is

considered as “good-orange” and the following task is
executed: T3{Place_Fruit_Box}=[al) Put(object, place), a2)

7https://youtu.be/jdLpY UG3Td0O

PutSmtSmw

Fig. 8. Learning by demonstration the activities involved on the packing
oranges scenario. The figure depicts the demonstration of “PutSomething-
Somewhere” activity.

Release(object)], where object = orange and place = box.
On the other hand, if the orange is soft, then it is
considered as a “bad orange”, then the following task
is executed: Ty{Place_Fruit_Trash}=[bl) Put(object, place),
b2) Release(object)] in this case object = orange and
place = trash, see Fig. 7.

C. Experiment 2: Executing Packing Apples

In order to demonstrate the adaptability and flexibility of
our framework, we place an apple (instead of an orange) in
the robot work-space and execute exactly the same learned
process of sorting oranges. Then, our framework automatically
bounds the new perceived object (apple) and its properties to
the process variable object. When running the process, the list
of tasks is verified and only those tasks whose requirements
are fulfilled will be executed. For example, the task 75 requires
that object has the property squeezable, therefore this task can
not be executed. This is automatically inferred by the Semantic
Reasoning component and the next task will be evaluated and
if it satisfied then it is executed. In this case only 7% and T3



will be executed, see Fig. 7 i) and ii). Notice that for these
tasks the variables are object = apple and place = boz.

VI. CONCLUSION

This work introduced three main robotic technologies to
enable fast deployment of industrial robot systems. These
technologies are integrated in a flexible framework which
exploits: a) a fast self-configurable artificial skin, b) a multi-
modal control framework to extend the dynamic behaviors of
standard robots and c) a robust and intuitive PbD method
based on semantic reasoning. The presented framework is
robust, adaptable, flexible and intuitive to new situations due
to the re-usability of learned rules. Our framework provides an
intuitive robot teaching method since it allows a non-robotic-
expert user to physically interact with the robot arm, where
the acquired knowledge is defined as higher-level human-
readable descriptions. Furthermore, the extended perception
capabilities offered by the fusion of artificial skin and vision
systems, together with multi-modal control behaviors and
reasoning, creates an enhanced safety system for physical
human robot interaction. This framework can be implemented
in any standard industrial robot as long as it provides an
external control interface, either Position, Velocity or Torque
commands.
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