
Asynchronous Integration of Real-Time Simulators

for HIL-based Validation of Smart Grids

Catalin Gavriluta, Georg Lauss,

Thomas I. Strasser
AIT Austrian Institute of Technology

Vienna, Austria

firstname.lastname@ait.ac.at

Juan Montoya, Ron Brandl

Fraunhofer Institute for Energy Economics

and Energy System Technology (IEE)

Kassel, Germany

firstname.lastname@iee.fraunhofer.de

Panos Kotsampopoulos

National Technical University

of Athens

Athens, Greece

kotsa@power.ece.ntua.gr

Abstract—As the landscape of devices that interact with the
electrical grid expands, also the complexity of the scenarios that
arise from these interactions increases. Validation methods and
tools are typically domain specific and are designed to approach
mainly component level testing. For this kind of applications,
software and hardware-in-the-loop based simulations as well as
lab experiments are all tools that allow testing with different
degrees of accuracy at various stages in the development life-
cycle. However, things are vastly different when analysing the
tools and the methodology available for performing system-
level validation. Until now there are no available well-defined
approaches for testing complex use cases involving components
from different domains. Smart grid applications would typically
include a relatively large number of physical devices, software
components, as well as communication technology, all working
hand in hand. This paper explores the possibilities that are
opened in terms of testing by the integration of a real-time
simulator into co-simulation environments. Three practical im-
plementations of such systems together with performance metrics
are discussed. Two control-related examples are selected in order
to show the capabilities of the proposed approach.

I. INTRODUCTION

Driven by the goals of efficiency, reliability, and renewa-

bility, the power system is transitioning towards a smart grid

[1], [2]. Distributed generation and energy storage, electric

vehicles, power electronics, smart meters, and Phasor Mea-

surement Units (PMU) are just some of the new game changers

in the field.

As the landscape of devices that interact with the electrical

grid expands, also the complexity of the scenarios that arise

from these interactions increases. Consequently, numerous

advanced control strategies have started to migrate from the

control theory to the smart grid literature. Numerous multi-

agent and consensus-based control strategies have been pro-

posed in the last few years, addressing various operational

challenges of future grids, see [3], [4]. Similarly, topics related

to distributed control and optimisation have also started to

become more popular in the electrical engineering literature,

see [5]–[7].

One aspect that all of these approaches have in common is

that they all involve a large numbers of distributed physical de-

vices controlled by various software components and advanced

algorithms, all linked together by communication technology.

With the current movement towards the decentralisation of

the energy supply and the advances from the domain of the

“Internet of Things” (IoT), it is expected that most smart grid

applications will fit this description. However, before any of

them has a chance of becoming a reality, proper tools and

methodologies need to be made available to the engineers in

order to extensively test and validate them, see [8].

The goal of this paper is to explore the possibilities that are

opened in terms of testing and validating advanced control

strategies and smart grid applications by the integration of a

real-time simulator into co-simulation environments.

The paper starts with Section II by briefly outlining existing

simulation-based approaches that allow the integration of real-

time simulators. Then, in Section III three practical imple-

mentations of such an integration are presented together with

performance results, followed by Section IV which showcases

two applications which were evaluated using the proposed

approaches. The first one tackles the validation of a distributed

optimal power flow algorithm in a dc microgrid, whereas the

second one deals with a coordinated optimal voltage control

strategy for low-voltage distribution feeders. Finally, Section V

concludes the paper.

II. SIMULATION-BASED VALIDATION METHODS

As outlined above there are no off-the-shelf tools available

for testing complex smart grid applications that involve com-

ponents from different domains. However, several approaches

can be found in the literature, spanning from lab experiments

in [3] to custom-built co-simulation platforms in [9].

While suitable for testing small-scale systems, laboratory

prototypes do not scale well with the size of the system.

Meanwhile, co-simulation platforms, when properly designed,

allow for a larger degree of flexibility and scalability. Such a

co-simulation framework is mosaik, see [10], a Python-based

open source software package. Mosaik allows the coupling

of existing simulators and models in order to tackle complex

smart-grid applications.

While the mosaik framework is mainly focused on coupling

of offline simulators, the approach proposed in [11], envisions

a Simulation Message Bus (SMB) for co-simulation and

rapid prototyping of networked systems. This approach would

enable the coupling of both offline software modules and real-

time digital simulators.

mailto:firstname.lastname@ait.ac.at
mailto:firstname.lastname@iee.fraunhofer.de
mailto:kotsa@power.ece.ntua.gr

∈

∈

Lablink

software

tS,RT1

The generic architecture of a SMB-based co-simulation is

shown in Fig. 1. The main component is the simulation data-

bus. Input and output interfaces wrap around the core and act

as a middle layer that allows data to be injected or extracted

from the message bus. Depending on the sample rate at which

data needs to be exchanged with the core, specifically designed

task processing units will be needed for the purpose of the

respective application. These task processing units represent

functional units implemented in software and are labelled

as INO1, INO2, INO3, . . . INON in Fig. 1. Their function is

Fig. 2 shows the conceptual structure of Lablink for real-

time and non real-time simulations. The left part shows N
offline simulation tasks with typical time step size ranges of

tS,Oi [100 ms; 2 s]. All tasks are connected to Lablink in

an independent and bidirectional way with respect to signal or

data exchange. The size range of the time step may heavily

vary based on the type of offline simulation, however, typical

values are proposed for simulations related to investigations

in the electrical domain.

to design custom software or hardware adaptations for each

application or simulator that participates in the co-simulation.
sample rates

tS,Oi > 1 s

sample rates

tS,LL > 1 ms

sample rates

tS,RTi < 1 ms

sample rates

tS,CIi < 10 µs

interface

board
 controller

(hardware)

tS,Oi - offline task time step size

tS,RTi - real-time system time step size

tS,CIi - controller interface time step size

Fig. 1. Simulation message bus architecture for co-simulation of real-time
and non real-time systems.

The SMB has been adopted in the development of sev-

eral co-simulation tools. A first realisation of the ideas in

[11] resulted into two different frameworks, i.e., the Lablink,

see [12], and the OpSim, see [13]. A comparable approach

is VILLAS, see [14], an open source co-simulation platform.

While Lablink and OpSim were initially started with the idea

of interfacing lab equipment with offline simulation tools,

VILLAS was designed to interface geographically distributed

research infrastructure and real-time simulators.

III. REAL-TIME SIMULATOR INTEGRATION

In the following, different approaches for the realisation

of the SMB concept are introduced and discussed. Also,

performance measures are presented.

A. Lablink Approach

Lablink is a software package which is based on SMB.

This kind of communication middleware allows quick and

easy coupling of software and hardware components in a lab

context. Mainly, Lablink enables different devices that are

typically found in an electrical energy laboratory (controllable

power sources, controllable loads, grid emulators, measure-

ment devices, etc.) to exchange data and control signals

between them, but also with software components such as grid

simulators, electric vehicle emulators, etc.

Fig. 2. Lablink structure for real-time and non real-time CHIL applications
with indicated sample rates [12].

Lablink is processing and exchanging incoming and outgo-

ing data—as highlighted in the SMB architecture shown in

Fig. 1—from offline simulation tasks and from the connected

Digital Real-Time Simulator (DRTS), respectively. Hereby,

minimum time step sizes of approximately tS,LL = 1 ms

are specified as operational sample rates for Lablink. The real-

time computing system has fixed time step sizes due to the

inherent constraint of real-time simulation [15], [16]. For

Controller Hardware-in-the-Loop (CHIL) applications, the

DRTS typically runs with a time step size in the range of

tS,RTi [100 ns; 1 ms]. Sample rates of less than 1 µs are

required for simulation tasks which aim to emulate Pulse

Width Modulation (PWM) signals for control application.

The real-time machine is linked to one or several interface

boards, as shown in the right part of Fig. 2. The interfacing

boards represent the functional unit between machine con-

troller implemented in hardware and the DRTS system. The

number of signals exchanged between the controller and the

DRTS may be high. At least, it is higher than the number of

signals exchanged between offline tasks and Lablink for typi-

cal CHIL applications related to converter control simulations.

The maximum specified time step sizes tS,CIi referring to the

controller interface are 10 µs. As it has been mentioned above,

small time step sizes in the nanosecond range are required

when the simulation of PWM signals is explicitly targeted as

a use case.

(offline and

real-time

simulation

interface)

task n
tS,0N

.

.

.

task 3

tS,03

task 2

tS,02

task 1

tS,01

input interface output interface

(middle layer) (middle layer)

data bus

(core)

.

.

.

IN0N

task n

tS,0N

OUTRTN

.

.

.

software

tS,RTN

IN03

task 3

tS,03

IN02

task 2

tS,02

OUTRT1

software

tS,RT1

IN01

task 1

tS,01

real-time

simulation

offline

simulation

real-time

simulation

offline

simulation

out

≈

in

out
i

B. MQTT-based Implementation

The first version of Lablink relies on the Message Queuing

Telemetry Transport (MQTT) protocol for the implementation

of the data-core. MQTT is a publish-subscribe messaging pro-

tocol that relies on a centralised message broker for handling

all the data flows.

In order to test the performance of this implementation in

terms of signal latency, the scenario described in Fig. 3 was

tested. The test consists of 20 offline tasks, that perform a

simple “echo” function. Each of these tasks were implemented

as standalone Python scripts, each running on a single board

computer, namely a Raspberry Pi (RPi). More specifically,

each task exposes two data signals (one input and one output)

via its Lablink Client (LC) and maintains an internal state

variable. Every 500 ms each task i increases the value of the

internal state variable by one and writes its value (let it be

labelled x) into the output service, while recording the time-

stamp T i of this event. Other LCs subscribed to this signal

will receive the newly output value via the MQTT Lablink

data-core. An emq broker running on a dedicated machine

connected in the same local area network as the 20 Raspberry

Pis was used as the back-end for the MQTT communication

needed by the Lablink data-core.

simulation model. However, for this simple benchmarking test

the real-time process contains only the UDP communication

components and it mirrors back the signals received every

10 ms. In this test OPAL’s LC exposes forty signals, i.e.,

twenty inputs and twenty outputs. The output of each “echo”

task is connected to a corresponding input of the OPAL client,

and vice-versa, in order to create communication loops via the

Lablink message bus. The total round trip time delay of these

communication loops is calculated, as shown in (1).

In this experiment 1000 signal samples are sent on each

communication loop for a total of 20000 samples. The results

are displayed in Fig. 4. Here one can see the distribution of the

RTT delay for all the messages sent over the Lablink message

bus. The minimum RTT delay is 14 ms while the maximum is

at 89 ms. Meanwhile, the average RTT delay is at 27.1 ms and

in 99% of the cases the delay is smaller than 44 ms. While

for compiling these data we used basic “echo” tasks, in a real

applications these tasks will be complex control algorithms

that need to interact with the physical system through sensors

and actuators. From this perspective, the presented results

imply that it will take on average 13.5 ms for a sensor present

in the physical system, e.g., voltage sensor, to send its data to

the external controller.

1

0.15 0.8

0.1

0.05

0
10 20

30 40

0.6

0.4

0.2

0
50 60

Round Trip Latency (ms)

Fig. 4. Round trip latency between the DRTS and the Lablink client.
Min: 14 ms. Avg: 27.1 ms. Max: 89 ms. @99%: 44 ms.

Fig. 3. MQTT-based realisation using SMB as basis.

Meanwhile, each task also monitors its input signals for

changes in values. Once the value x is detected, the time-

stamp T i of the event is recorded. The total Round Trip Time

(RTT) delay is calculated, as in (1).

C. OpSim Approach

OpSim is a test and simulation environment with applica-

tions ranging from developing prototype controllers to testing

operative control software in the smart grid domain. It enables

users to connect their software to simulated power systems,

or test it in conjunction with other software. The architecture

RTT i = T i − Tin (1)
is motivated by the concept in [11], as shown in Fig. 1 and

consists of:

As can be seen from Fig. 3, OPAL-RT, one of the commer-

cially available DRTS, sits on the other side of the Lablink

data-core. A custom LC interfaces the real-time process with

the core. The interface between these two processes is done

via asynchronous UDP communication. Normally, the real-

time process would contain a rather complex or detailed

• Message bus: Components exchange information via a

message bus, which forms the center of the OpSim plat-

form and runs as a server application. It uses JavaScript

Object Notation (JSON) for its framework and Advanced

Message Queuing Protocol (AMQP) with RabbitMQ as

message broker.

tS,O1

500 ms

echo 1

async

tS,O2

500 ms

echo 2

async

tS,O3

500 ms

async

echo 3

async

tS,RT

10 ms

tS,O20

500 ms

async

LC 20

OPAL-RT

echo 20

.

.

.

LC 3

LC RT

LC 2

software

LC 1

real-time

simulation

offline

simulation

M
Q

T
T

 b
as

ed

L
ab

li
n

k
 c

o
re

 a
n

d
 m

id
d

le
 l

ay
er

P
ro

b
a
b
il

it
y
 d

e
n
si

ty
 f

u
n

c
ti

o
n

C
u

m
u
la

ti
v
e
 d

e
n

si
ty

 f
u

n
c
ti

o
n

out

in

• Proxy/Client (P/C) architecture: Each component in Op-

Sim is situated behind a client and a proxy. The client, im-

plemented in Java, handles the connection, disconnection,

synchronisation and information filtering of a component.

The proxy is component-specific and “translates” the data

between the component and the message bus.

• Synchronisation: In [17] the two synchronisation schemes

of OpSim are explained. The “real-time” scheme provides

synchronisation to a “real” clock which is synchronised

with an atomic clock and this scheme is for interac-

tion with external hardware. The “sim-time” scheme

introduces a simulation time, which is the base for all

0.6

0.4

0.2

0
10 20 30

1

0.8

0.6

0.4

0.2

0
40 50 60

components. Further synchronisation is done via this sim-

ulated time, in a conservative manner. This “conservative

synchronisation” is described in as a way to preserve local

causality or to “wait until it is safe”.

In [18] the asynchronous integration of an OPAL-RT DRTS

to a geographically distributed controller through OpSim and

a delay assessment is discussed. OpSim is presented as a

black box with a defined functional behaviour, focusing in

time-related variables, allowing to analyse the delays between

OPAL-RT and OpSim. Although OpSim uses synchronisation

schemes for its message bus, the integration of a DRTS into the

co-simulation environment is made asynchronously, making

the setup asynchronous, as shown in Fig. 5.

Round Trip Latency (ms)

Fig. 6. Round trip latency between the real-time simulator and OpSim MB.
Min: 14.15 ms. Avg: 15.93 ms. Max: 113.64 ms. @99%: 33.06 ms.

flexible and easy to extend, it has the drawback of decreased

performance in terms of communication latency, as every

signal needs to pass through an intermediate entity, i.e., the

data-core.

A complementary solution to these approaches is to employ

a decentralised architecture, as shown in Fig. 7. Here, both the

offline tasks and the DRTS contain a data-client and server,

respectively. Clients can obtain required simulation signals by

querying the corresponding server. This creates a direct peer-

to-peer connection, thus avoiding an intermediate message bus.

async

Fig. 5. Integration of OPAL-RT and MATLAB script to OpSim with Java
Clients and Python Proxies.

The scenario described in Fig. 5 was used to test the

performance of this implementation in terms of signal latency.

The test consists of an “echo” function for a time variable—

local timestamp—being T1 as fast as possible and the OPAL-

RT subscribed to its own published signal. The timestamp

aims to measure the delays between the OPAL-RT machine

and OpSim. The time variable is generated in OPAL-RT and

stored as T i . To determine the round trip time, the OPAL-RT

machine compares each time receives a new value T i using

the equation 1. 6563 samples where analysed and the results

are displayed in Fig. 6. Here one can see the distribution of

the RTT delay for all the messages sent over OpSim. The

minimum RTT delay is 14.15 ms while the maximum is at

113.64 ms. Meanwhile, the average RTT delay is at 15.93 ms

and in 99% of the cases the delay is smaller than 33.06 ms.

D. Peer-to-Peer Approach

Both OPSim and Lablink present a centralised implemen-

tation of the SMB architecture. While this approach is very

Fig. 7. Peer-to-peer implementation using HTTP REST.

Several options exists for implementing such an approach.

Fig. 8 shows the results obtained by using one popular archi-

tecture used for addressing interoperability between internet

connected devices, namely Representational State Transfer

(REST) based on HTTP.

As can be seen from Fig. 8, the round trip signal latency

between the offline simulation and the DRTS has an average

of ≈6ms, significantly smaller than in the previous approaches

echo 1

T2

async

async

T1

Host PC

OPAL-RT

MATLAB Engine

API for Python

TCP P/C P/C

Proxy/Client offline

simulation

Peer to peer

HTTP REST

C 20

OPAL-RT

S 20
echo 20

.

.

.

C 3

C RT S 3
echo 3

S RT C 2

S 2
echo 2

software

C 1

S 1
echo 1

real-time

simulation

offline

simulation

real-time

simulation

echo

TCP

200µs

OPAL-RT

O
p

S
im

 M
S

B

O
p
S

im
 c

o
re

P
ro

b
ab

il
it

y
 d

en
si

ty
 f

u
n

ct
io

n

C
u

m
u
la

ti
v

e
d
en

si
ty

 f
u
n

ct
io

n

0.15 1

0.8

0.1

0.6

0.05

0
5

6 7 8

0.4

0.2

0
9 10

Fig. 9. Graph representation of the 27 terminals MTDC system study case.
Red nodes represent loads, while the green ones represent generators.

Round Trip Latency (ms)

Fig. 8. Round trip latency between the server of the DRTS and the clients

of offline tasks. Min: 5.4 ms. Avg: 6.48 ms. Max: 9.48 ms. @99%: 8.98 ms.

that relied on a centralised message bus. However, the im-

provement in the latency comes with the disadvantage of

a less flexible system that requires more configuration and

development, and thus is more error prone.

As both MQTT and HTTP are application layer protocols, in

all three implementations the RTT could probably be improved

by opting for a lower level protocol such as TCP or UDP for

the implementation of the simulation message bus.

IV. APPLICATION SHOWCASE

In the following, two applications that exemplify the type

of study cases that can be approached using the proposed

simulation framework, are discussed.

A. Distributed Optimal Power Flow Control of DC Grids

In the first application we use the the approach presented

in Section III-D for the validation of a distributed multi-agent

Optimal Power Flow (OPF) algorithm used as a secondary

control layer for dc networks. Fig. 9 shows the graph represen-

tation of the network under study. The green nodes correspond

to generators, meanwhile the red ones correspond to loads.

The operation of each node is controlled by an agent which

has complete access to local measurements and, moreover,

it is able to communicate with its neighbours. For the inter-

agent communication graph the same structure as the one of

the electrical network is considered, i.e., if two nodes are

electrically connected then the agents in charge are also able

to exchange information between them.

Unlike traditional power systems in which the secondary

control is centralised, in this case, the agent network forms a

distributed control layer. Moreover, it implements a distributed

optimization algorithm based on the Alternating Direction of

Multiplier Method (ADMM). The full details of the algorithm

and how it can be adapted to solve the dc OPF problem can

be found in [6].

In brief, ADMM involves an iterative process that requires

the agents to execute three distinct steps at every iteration: (i)

each agent optimises its local state, (ii) the results obtained in

the previous step are exchanged with the neighbours, and (iii)

each agent corrects its state based on the information received

from the neighbours.

Due to the number of iterations required for convergence,

ADMM is often labelled in the literature as a slow al-

gorithm. However, at the moment, optimisation routines in

power systems are performed completely offline, and even

basic secondary control actions involve time-frames in the

range of minutes. Taking this into consideration and given

the performance of modern communication protocols, it is

interesting to investigate the feasibility of ADMM in this

context. The proposed peer-to-peer message bus framework in

conjunction with a communication network emulator is used

in this example in order to obtain an idea of what time-frames

are to be expected from a distributed OPF approach based on

ADMM.

The hardware used for this scenario was OPAL-RT and

27 single board RPi computers, all connected to the same

dedicated local area network. From the software perspective

the local controller or agent in charge of each node was de-

ployed as a Python script to its corresponding RPi. The clients

and servers of each agent, as well as the client and server

of the OPAL-RT interface, were coupled together according

to the data exchange requirements of the use case, e.g., all

controllers need to be able to read data from the OPAL-RT,

controller 1 needs to exchange information with controllers 2

and 3, etc. The emulation of the communication infrastructure

was achieved by using the netem (network emulation) and tc

(traffic control) UNIX utilities at the level of each network

card connected to the system.

With this setup we were able to perform several experiments

using different parameters for the quality of service of the

communication. According to the performed experiments, if

the distributed control agents are connected over a dedicated

local area network, 300 ADMM iterations require 62 s to

converge. If 3G communication is used, the convergence time

increases to 305 s. Meanwhile, 4G communication yields a

convergence time of 167 s.

B. Coordinated Voltage Control

The integration of a DRTS into the OpSim co-simulation

was made in [18], to perform a geographically distributed

13

1 2 12 14 18

15

3 4 7 16 19

28

30 8 6 17 20

27 24 23

29 22

25 26 21 10 P
ro

b
a
b
il

it
y
 d

e
n
si

ty
 f

u
n

c
ti

o
n

C
u

m
u
la

ti
v
e
 d

e
n

si
ty

 f
u

n
c
ti

o
n

Kassel Athens

OPAL-RT Simulator

Asynchronous
TCP/IP

OR

RTS PC RTT

Interface

RTT

Proxy

Publishing Rate T1

RTT Proxy WebProxy

Publishing Rate T2

OPSIM Message Bus

 Type 1:

OPAL-R
OpSim -
Proxy Cl
Controlle

 Type 2:
OPAL-R
OpSim -
WebProxy
Internet -
Controller

Type 3:

OPAL-R
OpSim -
WebProx
Internet

Controlle

CVC PC

CHIL experiment between a Coordinated Voltage Control

(CVC) script in MATLAB, located in Athens, Greece, and a

low-voltage feeder model, based on the CIGRE low-voltage

benchmark model, implemented in an OPAL-RT OP5600

simulator located in Kassel, Germany, as shown in Fig. 10.

T -

ient -

r (locally)

T -

Client -

(locally)

T -

y Client -
-
r (remote)

Fig. 10. Test setup for geographically distributed co-simulation with OpSim

The CVC is responsible for monitoring and controlling the

state of the low-voltage feeder, by optimising the operation of

all voltage-regulating devices present in the network (OLTC,

BESS, PVs, etc.). The CVC algorithm’s main function is the

solution of an OPF problem. A detailed description of the

CVC algorithm can be found in [19].

Prior to execute the CHIL experiment, a delay assessment

between the CVC PC and OpSim was performed, the same

way as presented in Section III-C for Fig. 5. The results of

the assessment are presented with the 99th percentile for each

type described in the legend of Fig. 10, where the RTT for

Type 1 is less than 66.8 ms, for Type 2 less than 55.58 ms

and for Type 3 less than 128 ms. For the three types, the

proxy implemented in Python and the MATLAB Engine API

for Python adds to their measurements at least 190.1 ms of

delays. Also, the solution of the OPF is always changing, with

peaks up to 3 s.

For the co-simulation test case, the experiment was per-

formed multiple times, using different publish rates for the

OpSim MB, taking care of the latencies measured in the delay

assessment and defined boundaries. A publish rate of 5s was

selected for the CVC controller, while the OPAL-RT simulator

was tested with 5 different publish rates: 500 ms, 1 s, 2 s, 3 s,

and 4 s. As the deviations in the results among the different

publish rate experiments are small, so, for simplicity, only the

results of the 500ms publish rate experiment were presented

in [18].

A similar set-up was also realised locally without using any

Internet connection with the Lablink and comparable results

have been achieved.

V. CONCLUSIONS

Proper validation and testing methods for analysing smart

grid solutions and applications addressing the system-level are

necessary today. In this paper an asynchronous integration

approach and corresponding implementations have been in-

troduced and discussed.

As it can be seen from the above discussion, coupling a

DRTS with other software components introduces a signal

latency of at least a few ms depending on the used approach.

With some engineering effort, this latency might be further

reduced, for example, by using lower-level protocols or faster

networks for the communication. However, a considerable

improvement below the 1 ms threshold cannot be expected.

This will unavoidably limit the scope of application of such

a framework to scenarios with slower dynamics, or ones

that present a considerable time-scale separation between the

different components.

Nevertheless, while not suitable for fast transient analysis,

even with the performance of the implementations presented

in this paper, there are a vast range of smart grid applications

that can be emulated using such a framework. For example,

applications similar to the distributed OPF control, where com-

plexity arises from the interactions between a large number of

networked components.

The great advantage of the combined DRTS and SMB

approach is its flexibility and scalability. The possibility of

feeding real-time data to various emulators or domain-specific

tools, increases the number and type of scenarios that can

be approached with such a system. A good example is the

ERA-Net Smart Grids Plus LarGo! project that proposes to

investigate the problem of large scale software roll-out in

a future software-dominated electric grid. In the scenarios

proposed in the project, a large number of models and

components from different domains, such as building energy

management systems, smart secondary substations, electrical

distribution networks, communication networks equipped with

digital safety and security features, as well as software roll-out

platforms and strategies, all need to be orchestrated together.

In order to achieve this, LarGo! uses an approach similar to

the ones presented in this paper for the lab validation.

ACKNOWLEDGMENT

This work is supported by the European Community’s Hori-

zon 2020 Program (H2020/2014-2020) under project “ERI-

Grid” (Grant Agreement No. 654113). Further information is

available at the corresponding project website erigrid.eu.

REFERENCES

[1] H. Farhangi, “The path of the smart grid,” IEEE Power and Energy
Magazine, vol. 8, no. 1, pp. 18–28, Jan. 2010.

[2] X. Yu and Y. Xue, “Smart grids: A cyber–physical systems perspective,”
Proceedings of the IEEE, vol. 104, no. 5, pp. 1058–1070, May 2016.

[3] L. Meng, T. Dragicevic, J. Roldan-Perez et al., “Modeling and sensitivity
study of consensus algorithm-based distributed hierarchical control for
dc microgrids,” IEEE Transactions on Smart Grid, vol. 7, no. 3, pp.
1504–1515, May 2016.

[4] Q. Sun, R. Han, H. Zhang et al., “A multiagent-based consensus
algorithm for distributed coordinated control of distributed generators
in the energy internet,” IEEE Transactions on Smart Grid, vol. 6, no. 6,
pp. 3006–3019, Nov. 2015.

[5] F. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Plug-and-play control
and optimization in microgrids,” in 53rd IEEE Conference on Decision
and Control (CDC), Dec. 2014, pp. 211–216.

[6] C. Gavriluta, R. Caire, A. Gomez-Exposito, and N. Hadjsaid, “A
distributed approach for opf-based secondary control of mtdc systems,”
IEEE Trans. on Smart Grid, vol. 9, no. 4, pp. 2843–2851, Jul. 2018.

[7] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Dynamic Network Energy
Management via Proximal Message Passing,” Foundations and Trends
in Optimization, vol. 1, no. 2, pp. 70–122, 2014.

[8] T. Strasser, F. Pröstl Andren, G. Lauss et al., “Towards holistic power
distribution system validation and testing—an overview and discussion
of different possibilities,” e & i Elektrotechnik und Informationstechnik,
vol. 134, no. 1, pp. 71–77, Feb 2017.

[9] S. C. Müller, U. Hager, and C. Rehtanz, “A multiagent system for
adaptive power flow control in electrical transmission systems,” IEEE
Trans. on Ind. Informatics, vol. 10, no. 4, pp. 2290–2299, Nov. 2014.

[10] S. Schütte, S. Scherfke, and M. Troschel, “Mosaik: A framework for
modular simulation of active components in smart grids,” in 2011 IEEE
First International Workshop on Smart Grid Modeling and Simulation
(SGMS), Oct. 2011, pp. 55–60.

[11] M. Faschang et al., “Rapid control prototyping platform for networked
smart grid systems,” in IECON 2013 - 39th Annual Conference of the
IEEE Industrial Electronics Society, Nov. 2013, pp. 8172–8176.

[12] AIT, “AIT Lablink,” https://goo.gl/3m7KGJ, 2018, accessed: 2019-01-
10.

[13] FhG IEE, “Fraunhofer OpSim,” https://goo.gl/YkoBJT, 2018, accessed:
2019-01-10.

[14] S. Vogel, M. Mirz, L. Razik, and A. Monti, “An open solution for next-
generation real-time power system simulation,” in 2017 IEEE
Conference on Energy Internet and Energy System Integration (EI2),
Nov. 2017, pp. 1–6.

[15] E. De Jong, R. De Graff, P. Crolla, P. Vassen, A. Roscoe, F. Lefuss,
G. Lauss, P. Kotsampopoulos, and F. Gafaro, “European white book on
real-time power hardware in the loop testing,” DERlab Report R-005.0,
2012.

[16] M. O. Faruque, T. Strasser, G. Lauss, V. Jalili-Marandi et al., “Real-time
simulation technologies for power systems design, testing, and analysis,”
IEEE Power and Energy Technology Systems Journal, vol. 2, no. 2, pp.
63–73, 2015.

[17] M. Vogt, F. Marten, L. Löwer et al., “Evaluation of interactions between
multiple grid operators based on sparse grid knowledge in context
of a smart grid co-simulation environment,” in 2015 IEEE Eindhoven
PowerTech, Jun. 2015, pp. 1–6.

[18] J. Montoya et al., “Asynchronous integration of a real-time simulator to
a geographically distributed controller through a co-simulation environ-
ment,” in IECON 2018 - 44th Annual Conference of the IEEE Industrial
Electronics Society, Oct. 2018, pp. 4013–4018.

[19] M. Maniatopoulos, D. Lagos, P. Kotsampopoulos, and N. Hatziargyriou,
“Combined control and power hardware in-the-loop simulation for
testing smart grid control algorithms,” IET Generation, Transmission
Distribution, vol. 11, no. 12, pp. 3009–3018, 2017.

