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Abstract—As the landscape of devices that interact with the 
electrical grid expands, also the complexity of the scenarios that 
arise from these interactions increases. Validation methods and 
tools are typically domain specific and are designed to approach 
mainly component level testing. For this kind of applications, 
software and hardware-in-the-loop based simulations as well as 
lab experiments are all tools that allow testing with different 
degrees of accuracy at various stages in the development life- 
cycle. However, things are vastly different when analysing the 
tools and the methodology available for performing  system-  
level validation. Until now there are no available well-defined 
approaches for testing complex use cases involving components 
from different domains. Smart grid applications would typically 
include a relatively large number of physical devices, software 
components, as well as communication technology, all working 
hand in hand. This paper explores the possibilities that are 
opened in terms of testing by the integration of a real-time 
simulator into co-simulation environments. Three practical im- 
plementations of such systems together with performance metrics 
are discussed. Two control-related examples are selected in order 
to show the capabilities of the proposed approach. 

 

I. INTRODUCTION 

Driven by the goals of efficiency, reliability, and renewa- 

bility, the power system is transitioning towards a smart grid 

[1], [2]. Distributed generation and energy storage, electric 

vehicles, power electronics, smart meters, and Phasor Mea- 

surement Units (PMU) are just some of the new game changers 

in the field. 

As the landscape of devices that interact with the electrical 

grid expands, also the complexity of the scenarios that arise 

from these interactions increases. Consequently, numerous 

advanced control strategies have started to migrate from the 

control theory to the smart grid literature. Numerous multi-  

agent and consensus-based control strategies have been pro- 

posed in the last few years, addressing various operational 

challenges of future grids, see [3], [4]. Similarly, topics related 

to distributed control and optimisation have also started to 

become more popular in the electrical engineering literature, 

see [5]–[7]. 

One aspect that all of these approaches have in common is 

that they all involve a large numbers of distributed physical de- 

vices controlled by various software components and advanced 

algorithms, all linked together by communication technology. 

With the current movement towards the decentralisation of 

the energy supply and the advances from the domain of the 

“Internet of Things” (IoT), it is expected that most smart grid 

applications will fit this description. However, before any of 

them has a chance of becoming a reality, proper tools and 

methodologies need to be made available to the engineers in 

order to extensively test and validate them, see [8]. 

The goal of this paper is to explore the possibilities that are 

opened in terms of testing and validating advanced control 

strategies and smart grid applications by the integration of a 

real-time simulator into co-simulation environments. 

The paper starts with Section II by briefly outlining existing 

simulation-based approaches that allow the integration of real- 

time simulators. Then, in Section III three practical imple- 

mentations of such an integration are presented together with 

performance results, followed by Section IV which showcases 

two applications which were evaluated using the proposed 

approaches. The first one tackles the validation of a distributed 

optimal power flow algorithm in a dc microgrid, whereas the 

second one deals with a coordinated optimal voltage control 

strategy for low-voltage distribution feeders. Finally, Section V 

concludes the paper. 

II. SIMULATION-BASED VALIDATION METHODS 

As outlined above there are no off-the-shelf tools available 

for testing complex smart grid applications that involve com- 

ponents from different domains. However, several approaches 

can be found in the literature, spanning from lab experiments 

in [3] to custom-built co-simulation platforms in [9]. 

While suitable for testing small-scale systems, laboratory 

prototypes do not scale well with the size of the system. 

Meanwhile, co-simulation platforms, when properly designed, 

allow for a larger degree of flexibility and scalability. Such a 

co-simulation framework is mosaik, see [10], a Python-based 

open source software package. Mosaik allows the coupling    

of existing simulators and models in order to tackle complex 

smart-grid applications. 

While the mosaik framework is mainly focused on coupling 

of offline simulators, the approach proposed in [11], envisions 

a Simulation Message Bus (SMB) for co-simulation  and  

rapid prototyping of networked systems. This approach would 

enable the coupling of both offline software modules and real- 

time digital simulators. 

mailto:firstname.lastname@ait.ac.at
mailto:firstname.lastname@iee.fraunhofer.de
mailto:kotsa@power.ece.ntua.gr


∈ 

∈ 

Lablink 

software 

tS,RT1 

The generic architecture of a SMB-based co-simulation is 

shown in Fig. 1. The main component is the simulation data- 

bus. Input and output interfaces wrap around the core and act 

as a middle layer that allows data to be injected or extracted 

from the message bus. Depending on the sample rate at which 

data needs to be exchanged with the core, specifically designed 

task processing units will be needed for the purpose of the 

respective application. These task processing units represent 

functional units implemented in  software  and  are  labelled  

as INO1, INO2, INO3, . . . INON in Fig. 1. Their function is 

Fig. 2 shows the conceptual structure of Lablink for real- 

time and non real-time simulations. The left part shows N 
offline simulation tasks with typical time step size ranges of 

tS,Oi     [100 ms; 2 s]. All tasks are connected to Lablink in     

an independent and bidirectional way with respect to signal or 

data exchange. The size range of the time step may heavily  

vary based on the type of offline simulation, however, typical 

values are proposed for simulations related to investigations  

in the electrical domain. 

to design custom software or hardware adaptations for each 

application or simulator that participates in the co-simulation. 
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Fig. 1. Simulation message bus architecture for co-simulation of real-time  
and non real-time systems. 

 

The SMB has been adopted in the  development  of sev- 

eral co-simulation tools. A first realisation of the ideas in 

[11] resulted into two different frameworks, i.e., the Lablink, 

see [12], and the OpSim, see [13]. A comparable approach     

is VILLAS, see [14], an open source co-simulation platform. 

While Lablink and OpSim were initially started with the idea 

of interfacing lab equipment with offline simulation tools, 

VILLAS was designed to interface geographically distributed 

research infrastructure and real-time simulators. 

III. REAL-TIME SIMULATOR INTEGRATION 

In the following, different approaches for the realisation    

of the SMB concept are introduced and discussed. Also, 

performance measures are presented. 

A. Lablink Approach 

Lablink is a software package which is based  on  SMB. 

This kind of communication middleware allows quick and 

easy coupling of software and hardware components in a lab 

context. Mainly, Lablink enables different devices that are 

typically found in an electrical energy laboratory (controllable 

power sources, controllable loads, grid emulators, measure- 

ment devices, etc.) to exchange data and control signals 

between them, but also with software components such as grid 

simulators, electric vehicle emulators, etc. 

Fig. 2. Lablink structure for real-time and non real-time CHIL applications 
with indicated sample rates [12]. 

 
 

Lablink is processing and exchanging incoming and outgo- 

ing data—as highlighted in the SMB architecture shown in 

Fig. 1—from offline simulation tasks and from the connected 

Digital Real-Time Simulator (DRTS), respectively. Hereby, 

minimum time step  sizes  of  approximately  tS,LL  =  1  ms 

are specified as operational sample rates for Lablink. The real-

time computing system has  fixed  time  step  sizes  due  to the 

inherent constraint of real-time simulation [15], [16]. For 

Controller Hardware-in-the-Loop (CHIL) applications, the 

DRTS  typically runs with a time step size in the range of  

tS,RTi [100 ns; 1 ms]. Sample rates of less than 1 µs are 

required for simulation tasks which aim to emulate Pulse 

Width Modulation (PWM) signals for control application. 

The real-time machine is linked to one or several interface 

boards, as shown in the right part of Fig. 2. The interfacing  

boards represent the functional unit between machine con- 

troller implemented in hardware and the DRTS system. The 

number of signals exchanged between the controller and the 

DRTS may be high. At least, it is higher than the number of 

signals exchanged between offline tasks and Lablink for typi- 

cal CHIL applications related to converter control simulations. 

The maximum specified time step sizes tS,CIi referring to the 

controller interface are 10 µs. As it has been mentioned above, 

small time step sizes in the nanosecond range are required 

when the simulation of PWM signals is explicitly targeted as  

a use case. 
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B. MQTT-based Implementation 

The first version of Lablink relies on the Message Queuing 

Telemetry Transport (MQTT) protocol for the implementation 

of the data-core. MQTT is a publish-subscribe messaging pro- 

tocol that relies on a centralised message broker for handling 

all the data flows. 

In order to test the performance of this implementation in 

terms of signal latency, the scenario described in Fig. 3 was 

tested. The test consists of 20 offline tasks, that perform a 

simple “echo” function. Each of these tasks were implemented 

as standalone Python scripts, each running on a single board 

computer, namely a Raspberry Pi (RPi). More specifically, 

each task exposes two data signals (one input and one output) 

via its Lablink Client (LC) and maintains an internal state 

variable. Every 500 ms each task i increases the value of the 

internal state variable by one and writes its value (let it be 

labelled x) into the output service, while recording the time- 

stamp T i of this event. Other LCs subscribed to this signal 

will receive the newly output value via the MQTT Lablink 

data-core. An emq broker running on a dedicated machine 

connected in the same local area network as the 20 Raspberry 

Pis was used as the back-end for the MQTT communication 

needed by the Lablink data-core. 

simulation model. However, for this simple benchmarking test 

the real-time process contains only the UDP communication 

components and it mirrors back the signals received every 

10 ms. In this test OPAL’s LC exposes forty signals, i.e., 

twenty inputs and twenty outputs. The output of each “echo” 

task is connected to a corresponding input of the OPAL client, 

and vice-versa, in order to create communication loops via the 

Lablink message bus. The total round trip time delay of these 

communication loops is calculated, as shown in (1). 

In this experiment 1000 signal samples are sent on each 

communication loop for a total of 20000 samples. The results 

are displayed in Fig. 4. Here one can see the distribution of the 

RTT delay for all the messages sent over the Lablink message 

bus. The minimum RTT delay is 14 ms while the maximum is 

at 89 ms. Meanwhile, the average RTT delay is at 27.1 ms and 

in 99% of the cases the delay is smaller than 44 ms. While   

for compiling these data we used basic “echo” tasks, in a real 

applications these tasks will be complex control algorithms 

that need to interact with the physical system through sensors 

and actuators. From this perspective, the presented results 

imply that it will take on average 13.5 ms for a sensor present 

in the physical system, e.g., voltage sensor, to send its data to 

the external controller. 
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Fig. 4. Round trip  latency  between  the  DRTS  and  the  Lablink  client.  
Min: 14 ms. Avg: 27.1 ms. Max: 89 ms. @99%: 44 ms. 

 
 

Fig. 3. MQTT-based realisation using SMB as basis. 

 

Meanwhile, each task also monitors its input signals for 

changes in values. Once the value x is detected, the time- 

stamp T i of the event is recorded. The total Round Trip Time 

(RTT) delay is calculated, as in (1). 

 

C. OpSim Approach 

OpSim is a test and simulation environment with applica- 

tions ranging from developing prototype controllers to testing 

operative control software in the smart grid domain. It enables 

users to connect their software to simulated power systems,  

or test it in conjunction with other software. The architecture 

RTT i = T i − Tin (1) 
is motivated by the concept in [11], as shown in Fig. 1 and 

consists of: 

As can be seen from Fig. 3, OPAL-RT, one of the commer- 

cially available DRTS, sits on the other side of the Lablink  

data-core. A custom LC interfaces the real-time process with 

the core. The interface between these two processes is done 

via asynchronous UDP communication. Normally, the real- 

time process would contain a rather complex or detailed 

• Message bus: Components exchange information via a 

message bus, which forms the center of the OpSim plat- 

form and runs as a server application. It uses JavaScript 

Object Notation (JSON) for its framework and Advanced 

Message Queuing Protocol (AMQP) with RabbitMQ as 

message broker. 

tS,O1 

500 ms 

echo 1 

async 

tS,O2 

500 ms 

echo 2 

async 

tS,O3 

500 ms 

async 

echo 3 

async 

tS,RT 

10 ms 

tS,O20 

500 ms 

 
async 

LC 20 

 

 

OPAL-RT 

 
echo 20 

. 

. 

. 

LC 3 

LC RT 

LC 2 

software 

LC 1 

real-time 

simulation 

offline 

simulation 

M
Q

T
T

 b
as

ed
 

L
ab

li
n

k
 c

o
re

 a
n

d
 m

id
d

le
 l

ay
er

 

P
ro

b
a
b
il

it
y
 d

e
n
si

ty
 f

u
n

c
ti

o
n

 

C
u

m
u
la

ti
v
e
 d

e
n

si
ty

 f
u

n
c
ti

o
n

 



out 

in 

• Proxy/Client (P/C) architecture: Each component in Op- 

Sim is situated behind a client and a proxy. The client, im- 

plemented in Java, handles the connection, disconnection, 

synchronisation and information filtering of a component. 

The proxy is component-specific and “translates” the data 

between the component and the message bus. 

• Synchronisation: In [17] the two synchronisation schemes 

of OpSim are explained. The “real-time” scheme provides 

synchronisation to a “real” clock which is synchronised 

with an atomic clock and this scheme  is  for  interac- 

tion with external hardware. The “sim-time” scheme 

introduces a simulation time, which is the base for all 
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components. Further synchronisation is done via this sim- 

ulated time, in a conservative manner. This “conservative 

synchronisation” is described in as a way to preserve local 

causality or to “wait until it is safe”. 

In [18] the asynchronous integration of an OPAL-RT DRTS 

to a geographically distributed controller through OpSim and  

a delay assessment is discussed. OpSim is presented as  a  

black box with a defined functional behaviour, focusing in 

time-related variables, allowing to analyse the delays between 

OPAL-RT and OpSim. Although OpSim uses synchronisation 

schemes for its message bus, the integration of a DRTS into the 

co-simulation environment is made asynchronously, making 

the setup asynchronous, as shown in Fig. 5. 

Round Trip Latency (ms) 

 
Fig. 6. Round trip latency between the real-time simulator and OpSim MB. 
Min: 14.15 ms. Avg: 15.93 ms. Max: 113.64 ms. @99%: 33.06 ms. 

 

 

flexible and easy to extend, it has the drawback of decreased 

performance in terms of communication latency, as every 

signal needs to pass through an intermediate entity, i.e., the 

data-core. 

A complementary solution to these approaches is to employ 

a decentralised architecture, as shown in Fig. 7. Here, both the 

offline tasks and the DRTS contain a data-client and server, 

respectively. Clients can obtain required simulation signals by 

querying the corresponding server. This creates a direct peer- 

to-peer connection, thus avoiding an intermediate message bus. 

 
async 

   

 

 

 

 

Fig. 5. Integration of OPAL-RT and MATLAB script to OpSim with Java 
Clients and Python Proxies. 

 

The scenario described in Fig. 5 was used to test the 

performance of this implementation in terms of signal latency. 

The test consists of an “echo” function for a time variable— 

local timestamp—being T1  as fast as possible and the OPAL- 

RT subscribed to its own published signal. The timestamp 

aims to measure the delays between the OPAL-RT machine 

and OpSim. The time variable is generated in OPAL-RT and 

stored as T i  . To  determine the round trip time, the OPAL-RT 

machine compares each time receives a new value T i using 

the equation 1. 6563 samples where analysed and the results 

are displayed in Fig. 6. Here one can see the distribution of  

the RTT delay for all the messages sent over OpSim. The 

minimum RTT delay is 14.15 ms while the maximum is at 

113.64 ms. Meanwhile, the average RTT delay is at 15.93 ms 

and in 99% of the cases the delay is smaller than 33.06 ms. 

D. Peer-to-Peer Approach 

Both OPSim and Lablink present a centralised implemen- 

tation of the SMB architecture. While this approach is very 

Fig. 7. Peer-to-peer implementation using HTTP REST. 

 

Several options exists for implementing such an approach. 

Fig. 8 shows the results obtained by using one popular archi- 

tecture used for addressing interoperability between internet 

connected devices, namely Representational State Transfer 

(REST) based on HTTP. 

As can be seen from Fig. 8, the round trip signal latency 

between the offline simulation and the DRTS has an average 

of ≈6ms, significantly smaller than in the previous approaches 

echo 1 

T2 

async 

async 

T1 

 
Host PC 

OPAL-RT 

 
MATLAB Engine 

API for Python 

TCP P/C P/C 

Proxy/Client offline 

simulation 

Peer  to peer 

HTTP REST 

C 20 

 
 

OPAL-RT 

S 20  
echo 20 

. 

. 

. 

C 3 

C RT S 3  
echo 3 

S RT C 2 

S 2  
echo 2 

software 

C 1 

S 1  
echo 1 

real-time 

simulation 

offline 

simulation 

real-time 

simulation 

 
echo 

 
TCP 

200µs 
 

 
OPAL-RT 

O
p

S
im

 M
S

B
 

O
p
S

im
 c

o
re

 

P
ro

b
ab

il
it

y
 d

en
si

ty
 f

u
n

ct
io

n
 

C
u

m
u
la

ti
v

e 
d
en

si
ty

 f
u
n

ct
io

n
 



0.15 1 
 

0.8 

0.1 

0.6 

 
 

0.05 
 
 
 

0 
5 

 
 
 
 
 
 

 
6 7 8 

0.4 
 

0.2 
 
 

0 
9 10 

 
 
 
 

 
Fig. 9. Graph representation of the 27 terminals MTDC system study case. 
Red nodes represent loads, while the green ones represent generators. 
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Fig. 8.   Round trip latency between the server of the DRTS  and the clients   

of offline tasks. Min: 5.4 ms. Avg: 6.48 ms. Max: 9.48 ms. @99%: 8.98 ms. 

 

 

that relied on a centralised message bus. However, the im- 

provement in the  latency  comes  with  the  disadvantage  of  

a less flexible system that requires more configuration and 

development, and thus is more error prone. 

As both MQTT and HTTP are application layer protocols, in 

all three implementations the RTT could probably be improved 

by opting for a lower level protocol such as TCP or UDP for 

the implementation of the simulation message bus. 

IV. APPLICATION SHOWCASE 

In the following, two applications that exemplify the type  

of study cases that can be approached using the proposed 

simulation framework, are discussed. 

A. Distributed Optimal Power Flow Control of DC Grids 

In the first application we use the the approach presented   

in Section III-D for the validation of a distributed multi-agent 

Optimal Power Flow (OPF) algorithm used as a secondary 

control layer for dc networks. Fig. 9 shows the graph represen- 

tation of the network under study. The green nodes correspond 

to generators, meanwhile the red ones correspond to loads.  

The operation of each node is controlled by an agent which 

has complete access to  local  measurements  and,  moreover, 

it is able to communicate with its neighbours. For the inter- 

agent communication graph the same structure as the one of 

the electrical network is considered, i.e., if two nodes are 

electrically connected then the agents in charge are also able 

to exchange information between them. 

Unlike traditional power systems in which the secondary 

control is centralised, in this case, the agent network forms a 

distributed control layer. Moreover, it implements a distributed 

optimization algorithm based on the Alternating Direction of 

Multiplier Method (ADMM). The full details of the algorithm 

and how it can be adapted to solve the dc OPF problem can   

be found in [6]. 

In brief, ADMM involves an iterative process that requires 

the agents to execute three distinct steps at every iteration: (i) 

each agent optimises its local state, (ii) the results obtained in 

 
the previous step are exchanged with the neighbours, and (iii) 

each agent corrects its state based on the information received 

from the neighbours. 

Due to the number of iterations required for convergence, 

ADMM is often labelled in the literature as a slow al-  

gorithm. However, at the moment, optimisation routines in 

power systems are performed completely offline, and even 

basic secondary control actions involve time-frames in the 

range of minutes. Taking this into  consideration  and given 

the performance of modern communication protocols, it is 

interesting to investigate the feasibility of ADMM in this 

context. The proposed peer-to-peer message bus framework in 

conjunction with a communication network emulator is used 

in this example in order to obtain an idea of what time-frames 

are to be expected from a distributed OPF approach based on 

ADMM. 

The hardware used for this scenario was OPAL-RT and 

27 single board RPi computers, all connected to the same 

dedicated local area network. From the software perspective 

the local controller or agent in charge of each node was de- 

ployed as a Python script to its corresponding RPi. The clients 

and servers of each agent, as well as the client and server      

of the OPAL-RT interface, were coupled together according  

to the data exchange requirements of the use case, e.g., all 

controllers need to be able to read data from the OPAL-RT, 

controller 1 needs to exchange information with controllers 2 

and 3, etc. The emulation of the communication infrastructure 

was achieved by using the netem (network emulation) and tc 

(traffic control) UNIX utilities at the level of each network 

card connected to the system. 

With this setup we were able to perform several experiments 

using different parameters for the quality of service of the 

communication. According to the performed experiments, if 

the distributed control agents are connected over a dedicated 

local area network, 300 ADMM iterations require 62 s to 

converge. If 3G communication is used, the convergence time 

increases to 305 s. Meanwhile, 4G communication yields a 

convergence time of 167 s. 

B. Coordinated Voltage Control 

The integration of a DRTS into the OpSim co-simulation 

was made in [18], to perform a geographically distributed 
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CHIL experiment between a Coordinated Voltage Control 

(CVC) script in MATLAB, located in Athens, Greece, and a 

low-voltage feeder model, based on the CIGRE low-voltage 

benchmark model, implemented in an OPAL-RT OP5600 

simulator located in Kassel, Germany, as shown in Fig. 10. 
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Fig. 10. Test setup for geographically distributed co-simulation with OpSim 

 

The CVC is responsible for monitoring and controlling the 

state of the low-voltage feeder, by optimising the operation of 

all voltage-regulating devices present in the network (OLTC, 

BESS, PVs, etc.). The CVC algorithm’s main function is the 

solution of an OPF problem. A detailed description of the 

CVC algorithm can be found in [19]. 

Prior to execute the CHIL experiment, a delay assessment 

between the CVC PC and OpSim was performed, the same 

way as presented in Section III-C for Fig. 5. The results of  

the assessment are presented with the 99th percentile for each 

type described in the legend of Fig. 10, where the RTT for 

Type 1 is less than 66.8 ms, for Type  2 less than 55.58 ms  

and for Type  3 less than 128 ms. For the three types, the  

proxy implemented in Python and the MATLAB Engine API 

for Python adds to their measurements at least 190.1 ms of 

delays. Also, the solution of the OPF is always changing, with 

peaks up to 3 s. 

For the co-simulation test case, the experiment was per- 

formed multiple times, using different publish rates for the 

OpSim MB, taking care of the latencies measured in the delay 

assessment and defined boundaries. A publish rate of 5s was 

selected for the CVC controller, while the OPAL-RT simulator 

was tested with 5 different publish rates: 500 ms, 1 s, 2 s, 3 s, 

and 4 s. As the deviations in the results among the different 

publish rate experiments are small, so, for simplicity, only the 

results of the 500ms publish rate experiment were presented  

in [18]. 

A similar set-up was also realised locally without using any 

Internet connection with the Lablink and comparable results 

have been achieved. 

V. CONCLUSIONS 

Proper validation and testing methods for analysing smart 

grid solutions and applications addressing the system-level are 

necessary today. In this paper an asynchronous integration 

approach and corresponding implementations have been in- 

troduced and discussed. 

As it can be seen from the above discussion, coupling a 

DRTS with other software components introduces a signal 

latency of at least a few ms depending on the used approach. 

With some engineering effort, this latency might be further 

reduced, for example, by using lower-level protocols or faster 

networks for the communication. However, a considerable 

improvement below the 1 ms threshold cannot be expected. 

This will unavoidably limit the scope of application of such    

a framework to scenarios with slower  dynamics,  or  ones  

that present a considerable time-scale separation between the 

different components. 

Nevertheless, while not suitable for fast transient analysis, 

even with the performance of the implementations presented 

in this paper, there are a vast range of smart grid applications 

that can be emulated using such a framework. For example, 

applications similar to the distributed OPF control, where com- 

plexity arises from the interactions between a large number of 

networked components. 

The great advantage of the combined DRTS and SMB 

approach is its flexibility and scalability. The possibility of 

feeding real-time data to various emulators or domain-specific 

tools, increases the number and type of scenarios that can     

be approached with such a system. A good example is the 

ERA-Net Smart Grids Plus LarGo! project that proposes to 

investigate the  problem  of  large  scale  software  roll-out  in 

a future software-dominated electric grid. In the scenarios 

proposed in the project, a large number of models and 

components from different domains, such as building energy 

management systems, smart secondary substations, electrical 

distribution networks, communication networks equipped with 

digital safety and security features, as well as software roll-out 

platforms and strategies, all need to be orchestrated together. 

In order to achieve this, LarGo! uses an approach similar to 

the ones presented in this paper for the lab validation. 
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