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Faculté des Sciences Appliquées
1348 Louvain-la-Neuve, Belgium

Damien Douxchamps
Nara Institute of Science and Technology

Image Processing Laboratory
630-0192 Japan

Abstract—A new spectral model of the return signal from a
LIDAR Doppler wake vortex detector is proposed. It has been
experimentally discovered during ground-based and flight test
campaigns but suffered a lack of theoretical evidence. Using high
resolution fluid simulations of wake vortices, we highlight the
physical meaning of this model. Comparisons with the traditional
single Gaussian model show the superiority of this new approach
is consistent with previous experimental results.

I. INTRODUCTION

Wake vortices are large rolling air masses generated by
aircraft as a result of their lift. They present a significant
danger during the landing and take-off phases and limit the
throughput of airports[1]. They can be detected using an
infrared Doppler LIDAR, using suspended atmospheric dust
as tracers. Two main configurations are possible for detection:
in the transverse plane (perpendicular to the aircraft trajectory)
or axially (the LIDAR axis is parallel to the aircraft trajectory).
The first one is easier because the air motion is mainly
transverse in a vortex and thus the Doppler LIDAR sensor can
see large particle velocity differences [2] [3]; however it only
provides information about the vortex in a transverse plane
and not along its whole spatial extension. Axial detection is
more difficult because axial wind velocities are much lower,
however this approach is necessary to obtain a more complete
information on the vortex. Such a scanning configuration is
presented on Fig. 1. In fact, the axial wind velocities are very
low, so that the axial detection will be based more on turbu-
lence than on speed measurements. The return spectrum from
the Doppler LIDAR is analysed to obtain those information.
Traditionally this has been done by considering either first
and second order statistical moments of the spectrum of the
return signal [4][5], which is similar to the classic approach
of modelling the spectrum with a single Gaussian curve.
However, if such a model succeeds very well when considering
a turbulent atmosphere without vortex, Douxchamps [6] noted
that it quickly leads to an important residue (thus meaning
an imperfect fitting of the spectrum) when considering vortex
activity regions. This prompted the introduction of a bi-
Gaussian model. In this paper we will present wake vortex
simulations that confirm these experimental findings.

II. FLUID DYNAMICS SIMULATION

A. Simulation technique and flow description

The numerical simulation performed here aims to simulate
the passage of heavy aircraft in a turbulent atmosphere. This
computation was carried out in two steps. First, we computed
the evolution of a turbulent atmosphere down to a prescribed
level of dissipation: this sets the strength of the background
turbulence which is chosen here as medium. Then, we insert a
pair of Hallock-Burnham (low order algebraic) vortices to sim-
ulate the rolled up vortex system after passage of the aircraft.
The initial total circulation of each vortex, Γ0, is an image of
the intensity of the vortex. Γ0 can be estimated by equating
the lift and the weight of the aircraft: M g = ρ U b0 Γ0, where
M is the mass of the aircraft, U its velocity, ρ the air density,
and b0 the spacing between the wake vortex centroids (usually,
one can estimate b0 = π

4 b, b being the wingspan). The initial
descent velocity of the vortex wake, due to the mutual vortex-
induced velocities, is:

V0 =
Γ0

2πb0
. (1)

This velocity is also used to define a dimensionless time
t∗ = t V0

b0
.

The physical parameters of the simulated wake vortex flow
are given in the table I.

TABLE I
DIMENSIONAL PARAMETERS OF THE WAKE VORTEX FLOW AND OF THE

ATMOSPHERIC TURBULENCE.

Vortex circulation Γ0 400 m2/s
Vortex spacing b0 50 m

Dissipation level ε 10−4m2/s3

Periodicity length Lx, Ly , Lz 4 b0 (200 m)

The Navier-Stokes equations are here solved using a hyper-
viscosity subgrid scale model. This allows simulating fluid
flows at very high Reynolds number (essentially infinite). The
equations being solved are thus:

∂u
∂t

+
(
u · ∇

)
u = −∇P + (−1)p+1 νh∇2pu (2)



Fig. 1. Configuration of the virtual LIDAR scanning; the circles denote the location of the wake vortices.

together with the incompressibility constraint ∇ · u = 0
(P = p/ρ is the reduced pressure). In this study, we took
p = 8. The numerical solution of the incompressible Navier-
Stokes equations are computed using a standard Fourier-
Galerkin projection in all three Cartesian directions. This
implies that the boundary conditions must be periodic in the
three directions of space. The time integration of the equations
is carried out using a third order Runge-Kutta scheme. We use
a computational box of 2563 grid points, ensuring that the core
of the vortices are well captured. The size of the computational
box is chosen to minimize the periodicity effects.

B. Results of the wake vortex simulation

The value of the axial vorticity ωx displayed in Fig. 2 is
chosen to visualize the flow topology. One can see the vortex
tubes and the surrounding vorticity due to the background
turbulence and the turbulence generated by the vortex itself.

The axial velocity signature is of particular importance in
the framework of airborne LIDAR detection. In this case, the
lines of sight (LOS) of the LIDAR are oriented almost parallel
to the vortices axis. This implies that the velocity component
which has the most important contribution to the Doppler shift
is the ux component which is aligned with the wake vortices.
One can think that a vortical flow such as the one found in an
aircraft wake vortex system is purely tangential (the flow has
only uy and uz component) but, in our case, where turbulence
is present, an axial ux velocity component is present. One can
see on Fig. 3 that the values of this axial velocity component
(ux ≈ 1 m/s) are non-negligible compared to the maximal
tangential velocity (umax ≈ 12 m/s).

III. GEOMETRIC LIDAR SIMULATIONS

In order to assess the validity of the bi-Gaussian model, we
used the high-resolution fluid simulation (2563 LES) of a wake

Fig. 2. Visualization of the flow field using isosurfaces of vorticity norm at
time t∗ = 2.

vortex pair taken at various ages (Fig. 3), and we appended
on all sides the turbulence field without the vortices (Fig. 4).

An arbitrary position of the virtual LIDAR sensor was
chosen (as illustrated on Fig. 1), corresponding to the worse
in-flight scenario of on-board wake vortex detection: a purely
axial view of the vortices, where the tangential particles
velocities have minimum influence.

Lines of sight, originating from the virtual sensor and going
into the scanned volume were then considered, within a range
defined by θ ∈ [−6◦, 6◦] and φ ∈ [−1.5◦, 1.5◦], θ and φ
corresponding respectively to the horizontal (azimuth) and
vertical (elevation) deviation angles of the sensor’s scanner.



Fig. 3. Visualization of the axial velocity component ux at time t∗ = 2 for
the 2563 Large Eddy Simulation (LES). The thick line shows the theoretical
Rankine oval.

This setup considers the same scanning ranges as those used
during M-FLAME ground tests [4] and I-WAKE flight-tests
[6].

Assuming a virtual acquisition frequency of 500 MHz, we
collected the corresponding radial velocities along the LOS,
as an estimator of the Doppler shift (which is proportional to
the velocity of the particles) that would have been detected
by a real LIDAR sensor. However, no LIDAR nor optical
simulation has been performed here, since velocity data were
directly exploited. We were thus assuming an ideal radial
velocity sensor. The histogram of this velocity vector was
then computed from the individual velocity values along the
LOS. It would correspond to the discrete Fourier Transform
(DFT) of the temporal LIDAR return signal in the case of a
real LIDAR sensor. In order to gather a statistically significant
amount of data, we aggregated the LOS within a large region
(1.2◦ × 1.2◦).

IV. BI-GAUSSIAN MODEL

The traditional, single-Gaussian model is:

f1(x) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
(3)

where σ2 represents the variance and µ the mean value of
the Gaussian distribution.

More accurate results can be achieved if we consider that the
observed LIDAR return signal spectrum is the juxtaposition of
the spectrum generated by 1) a population of particles affected
by the general turbulent behavior of the atmosphere only and
2) a population of particles affected by the vortical activity.
We may consider that each of these populations has a distinct
Gaussian probability density function and their juxtaposition
could thus be modeled by the sum of two Gaussian distri-
butions (as suggested in [6]). The first one, associated to the
global turbulence, has the same mean and variance as those
found when fitting the general turbulence (outside any vortex)

with a single Gaussian model. The second one, associated to
the local vorticity, is much broader and thus of larger variance.

The high-resolution fluid simulation shows that, even when
considering an axial scanning of the vortex tubes, the velocity
dispersion of the particles is much larger inside the vortices
than in the general turbulence outside the vortices.

The double Gaussian model is then:

f2(x) = 1
σt

√
2π

exp
(
− (x−µt)

2

2σ2
t

)
+αv

1
σv

√
2π

exp
(
− (x−µv)2

2σ2
v

) (4)

where σ2
t represents the variance and µt the mean value of

the Gaussian distribution caused by the general turbulence, σ2
v

the variance, µv the mean and αv the relative contribution of
the second Gaussian distribution, caused by the vortex.

V. RESULTS

Simulations have been performed in an axial case, meaning
that the LOS are almost perfectly aligned with the center of
the vortex axes. Note that, even in this case, for geometrical
reasons, the LOS reaching the vortices will not be perfectly
aligned with each of the vortices’ axis. The effect of this non-
perfect alignement, however small, will be that some tangential
component of the particles velocities will be detected by the
Doppler LIDAR.

Results from the simulation were used to create a histogram
of wind speeds which was then fitted using a Levenberg-
Marquardt non-linear regression with a single and bi-Gaussian
model.

In order to illustrate the fundamental difference between
the histograms within and without the wake vortices, we will
consider two regions of interest: region 1, located outside any
vortex, and region 2, located inside the right vortex, both
located within the scanned volume (Fig. 4). The corresponding
histograms are plotted respectively on Fig. 5 and Fig. 6.

Region 1

Region 2

Fig. 4. Location of the two regions of interest within the scanned area. The
resolution shown is that of the LIDAR shot simulation: here 200× 50.

In the first case, outside the vortex (Fig. 5), the distribution
of particle velocity is expectedly Gaussian and consequently
can be fitted with good accuracy by a single Gaussian model.
Inside the vortex (Fig. 6), however, a single Gaussian fit de-
parts significantly from the observed distribution. The situation
would be even worse if the single Gaussian fit would only
rely on the upper part of the curve (e.g. to avoid biases due
to background noise level). Using the bi-Gaussian model on
the same distribution we can observe a much better fit of the
particle velocity distribution as observed in [6]. In fact, the
second (broadest) Gaussian distribution (“vortex contrib.” on
Fig. 6) directly characterizes the vorticity and leads to a much
more accurate detection of wake vortices.
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Fig. 5. Normalized distribution of the velocities within region 1 (outside any wake vortex, but still inside turbulence); parameters of the fitted Gaussian:
µ = −0.020 m · s−1; σ = 0.136 m · s−1.
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Fig. 6. Normalized distribution of the velocities within region 2 (inside the right vortex); parameters of single Gaussian fit: µ = −0.045 m · s−1; σ =
0.288 m · s−1; parameters of the double Gaussian fit: µt = −0.009 m · s−1; σt = 0.149 m · s−1; αv = 1.839; µv = −0.069 m · s−1; σv = 0.365 m · s−1.

VI. CONCLUSIONS

Our simulations showed that the histogram of particles
velocities within a wake vortex that is axially scanned by a
LIDAR can be accurately modeled by a bi-Gaussian distribu-
tion, when several neighbour LOS are aggregated. As a conse-
quence, the classical single Gaussian model is not optimal in
order to detect wake vortices in the axial or nearly axial cases.
The correlation between experimental measurements and our
simulations are good; this is a significant step towards an axial
wake vortex detection system and, ultimately, towards more
safety and capacity for airports.

ACKNOWLEDGMENTS

This work was supported by the Commission of the Euro-
pean Union (Fidelio project) and a grant from the DGTRE -
Région Wallonne (LASEF project).

REFERENCES

[1] J. N. Hallock, C. Tung, and S. Sampath, “Capacity and wake vortices,” in
Proc. Intl. Congress of Aerospace Sciences (ICAS’02), Toronto, Canada,
Sept. 2002.

[2] J. M. Vaughan, K. O. Steinvall, Christian Werner, and Pierre-Henri
Flamant, “Coherent laser radar in Europe,” Proc. IEEE, vol. 84, no.
2, pp. 205–226, Feb. 1996.

[3] B. Lamiscarre, B. Christophe, C. Fournet, J. Lemorton, L. Poutier, and
A. Oyzel, “Nouveaux capteurs pour l’amélioration de la sécurité et
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