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An Initialization Scheme for Supervized K-means

Vincent Lemaire, Oumaima Alaoui Ismaili, Antoine Cornuéjols

Abstract—Over the last years, researchers have focused
their attention on a new approach, supervised clustering, that
combines the main characteristics of both traditional clustering
and supervised classification tasks. Motivated by the importance
of the initialization in the traditional clustering context, this
paper explores to what extent supervised initialization step
could help traditional clustering to obtain better performances
on supervised clustering tasks. This paper reports experiments
which show that the simple proposed approach yields a good
solution together with significant reduction of the computational
cost.

I. INTRODUCTION

To discover the internal structure of huge collections of
data, clustering algorithms are quite useful. These algorithms
aim to identify groups (or clusters) in a manner that instances
inside each one share the same characteristics (see Figure 1.
a). This clustering problem has motivated a huge body of
work and has resulted in a large number of algorithms (see
e.g. [1, 2]).

However, when an additional information (target class)
is given, the classification algorithms are the most used
(see Figure 1. b); Their principal objective is to learn the
link between a set of input features and the output feature
(target class) in the goal to predict class membership for new
instances.

Recently, researchers have focused their attention on the
combination of characteristics of both clustering and classifi-
cation tasks. The goal behind this combination is to find the
internal structure of the target classes. This research has given
birth to a new approach called Supervised clustering (e.g. see
[3, 4]). It aims to elaborate or modify clustering algorithms
to find clusters where instances inside each cluster share the
same characteristics and they are likely to have the same
class label. The generated clusters are then labeled with the
majority class of their instances (see Figure 1. c).

Among clustering methods (see e.g [1, 2]), many partition-
ing approaches such as K-means [5], K-medians [6], etc
require an initialization step. The choice of an appropriate
method of initialization is therefore important. Indeed, such
step could have an impact on the quality of the obtained
solution (intra-similarity) and on the computational efficiency
[7]. In addition to this, by using a good method of centers
initialization, clustering algorithms need a lower number of
iterations to yield an optimal result (partition having a lowest
intra-inertia value). It is thus natural to ask: Could supervised
initialization method help traditional clustering algorithms to
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Fig. 1: Classification processes

reach a good predictive performance in a supervised cluster-
ing context? In other words, does introducing the information
given by the target class in a centers initialization step
produce a good supervised clustering, meaning exhibiting
high value of the Adjusted Rand Index (ARI)1 [8] while at
the same time uncovering interesting clusters in the data set.

To be able to answer the question above, we present firstly
a supervised initialization method for the traditional K-means
algorithm. This method uses the additional information given
by the target class to get an appropriate initial vector of
centers. Secondly, we compare this method with other un-
supervised initialization methods from the literature using
both supervised and unsupervised criteria such as the ARI
and the Mean Squared error (MSE) (see Section V).

The remainder of this paper is organized as follows.
Section 2 presents the main idea of the K-means clustering
algorithm. Section 3 describes briefly related works about
supervised K-means algorithm. Section 4 presents the pro-
posed method of initialization for the traditional K-means
algorithm and an illustration using a toy problem. Section 5
compares the performance of the generated partitions using
supervised and unsupervised initialization steps with ARI,
Accuracy (ACC) and MSE on a quite variety of datasets.
Finally, a conclusion with future works is presented.

1 The ARI criterion is a member of the family of the external criteria
which estimate the quality in reference to an additional variable, here the
target variable. It is computed by comparing the partition of the target class
labels with the partition of the K-means algorithm.



II. K-MEANS-ALGORITHMS

The purpose of the partitioning algorithms is to construct
a partition of N objects into a set of K clusters. These
algorithms require an initialization step where seeds are
chosen. The most common algorithms of this category of
clustering are: K-means [5], K-medians [6], K-modes [9]
and K-medoids [10]. Each of these algorithms depends on
the number of clusters K (a priori set), the input features, the
initial vector of centers (k1, . . . , kK), the similarity measure
and the criterion used to evaluate the quality of the partition.

The choice of one of these algorithms depends on: (i) the
nature of the datasets, (ii) the desired result (mean, medoid
...), and (iii) the complexity of the algorithm. In this paper,
we are focused on one of the most widely used algorithm:
The K-means method.

A. K-means algorithm

The K-means algorithm (KM) improves the quality of the
partition:

K-means (K, input features, number of replicates2R)

for 1 to R (Replicates) do
Initialize K cluster centroids (see Section II-B).
while The centroid vectors change do

• Associate each data instance to the closest centroid
using the Euclidean distance (L2 norm)
• Update each centroid vector by computing the
average of its associated instances

end
end
Output: Return the best solution among the R results in the
sense of the Mean Squared Error (MSE).

Algorithm 1: K-means algorithm.

B. Unsupervised initialization

The initialization of the cluster centers has an impact
on the quality of the generated partition and also on the
computational efficiency [7]. In addition to this, the choice of
an inappropriate initialization method could generate adverse
effects such as: (i) empty clusters, (ii) slower convergence,
and (iii) a higher chance of getting stuck in a bad local min-
imum and thus, the need to restart the algorithm. For all of
these reasons, the choice of an initialization method has been
well studied in the literature (e.g. for K-medians in [11], for
K-medoids in [12] and for K-means in [13, 14, 15]).

In this section, we present a brief overview of the most
common initialization methods for the K-means algorithm,
with an emphasis on their computational efficiency (these
methods are described in [13], [14] or [15]).
• Random [16] (RAND): The cluster centers are chosen

randomly from the data set; The complexity of this
scheme is O(K).

2 In this study, one replicate refers to the generated partition just after
the convergence of the algorithm.

• Splitting [17] (SPLIT): The first center k1 is chosen
as the centroid of the data set. At iteration i(i ∈
1, 2, ..., log2K), each of the existing 2i−1 centers is
split into two new centers by subtracting and adding
a fixed perturbation vector ε, i.e. kj − ε and kj + ε,
(j ∈ {1, 2, ..., 2i−1}). These 2i new centers are then
refined using the KM algorithm. The complexity of this
scheme is O(NK).

• Minmax [18] (MINMAX): The first center k1 is cho-
sen randomly and the i-th (i ∈ {2, 3, ...,K}) cen-
ter ki is chosen to be the point that has the largest
minimum distance to the previously selected centers,
i.e. k1, k2, ..., ki−1. The complexity of this scheme is
O(NK).

• Density-based [19] (DENS): The data space is parti-
tioned uniformly into M cells. From each of these cells,
a number (that is proportional to the number of points in
this cell) of centers is chosen randomly until K centers
are obtained. The complexity of this scheme is O(N).

• Sample (SAMPLE): This method consists in taking a
sample, N

′
, of the data set (often 10%) and in applying

the K-means algorithm to this sample. Then to take the
centers found as initial centers. The complexity of this
scheme is O(N ′

kq), where q is the number of iteration.
• Kmeans++ [20] (K++): This approach is based on four

steps: (1) The first center k1 is chosen randomly from
instances, (2) For each data point x, compute Q(x),
the nearest prototype that has already been chosen,
(3) Choose a new center from data points using the
probability Q(x)2∑n

i=1 Q(xi)2
and (4) Repeat steps 2 and 3

until K prototypes have been chosen. The complexity
of this scheme is O(NK).

III. RELATED WORKS : SUPERVISED K-MEANS

Several algorithms have been developed to achieve the
objective of supervised clustering (e.g. [21, 22, 23, 24, 25,
26, 27]).

In this section, we present two of the most cited meth-
ods for supervised K-means algorithms. These algorithms
incorporate the additional information given by the target
class within the algorithm (i.e. in the “while loop” of the
Algorithm 1). However, to our knowledge, there are no
methods which uses a supervised initialization step to choose
the initial seeds.

Al-Harbi et al. [3] developed a K-means algorithm in such
a way as to use it as a classifier algorithm. First of all,
they replaced the Euclidean metric used in a standard K-
means by a weighted Euclidean metric. The vector of weights
is chosen in such a way as to maximize the confidence
of the partitions generated by the k-means algorithm. This
confidence is determined by calculating the percentage of
correctly classified objects with respect to the total number
of objects in the data set. In this algorithm, the number of
clusters is an input.

Eick et al. [4] introduced four representative-based al-
gorithms for supervised clustering: SRIDHCR, SPAM, TDS



and SCEC. In their experimentation, they used the first
one (i.e SRIDHCR)). The greedy algorithm SRIDHCR (or
Single Representative Insertion/Deletion Steepest Decent Hill
Climbing with Randomized Start) is mainly based on three
phases. The first one is the initialization of a set of represen-
tatives that is randomly selected from the dataset. The second
is the primary cluster creation phase, where instances are as-
signed to the cluster of their closest representative. The third
one is the iteration phase where the algorithm is run r times:
In each time ’r’, the algorithm tries to improve the quality
of clustering, for instance, by adding a non-representative
instance or by deleting a representative instance. To measure
this quality, the authors use a supervised criterion. It takes
into account two points: (i) The impurity of the clustering
which is defined as a percentage of misclassified observations
in the different clusters and (ii) a penalty condition which is
used in order to keep the lowest number of clusters. In this
greedy algorithm, the number of clusters is an output.

IV. PROPOSED METHOD : SUPERVISED INITIALIZATION

In this paper, we suggest that one way to help the
traditional K-means in a supervised context is to integrate
the target class information into the initialization process.
That is, we believe that an efficient supervised initialization
approach allows one to obtain a good performance in terms
of (i) computational efficiency, and (ii) prediction quality. In
addition to this, with such a supervised method, (i) the chance
of falling in a bad local minima “in the sense of supervised
clustering” is lower and (ii) the number of replicates is
minimized (i.e. R in Algorithm 1). Therefore, we can obtain
a good solution with only a small number of replicates. To
test the validity of all these points, we propose a simple
supervised initialization method.

The proposed method called K++R follows an ”exploit
and explore” mechanism: the information given by the class
label is firstly exploited and then the density of the data
distribution is explored. The main idea of this method is to
dedicate one center per class (as a ”Rochio” [28] solution).
Each center is defined as the average vector of instances
which have the same class label. If the predefined number
of clusters (K) exceeds the number of classes (C), the
initialization continues using the K-means++ [20] algorithm
for the K − C remaining centers in such a way to add
diversity. This initialization method could be performed just
in the case3 K ≥ C since it takes into account the cardinality
of data classes (C). The complexity of this scheme is
O((N + (K − C)N) < O(NK).

Clearly, this initialization approach is not suitable for a
traditional clustering: it would deteriorate the quality of the
generated partitions in terms of reconstruction error (the
Mean Squared Error (MSE)). But, let us recall that the
objective of a supervised clustering is to realize a trade-off
between similarity and prediction. At this stage:

3 In the context of supervised clustering there is no sense to cluster
instances in K clusters where K < C

• the intra similarity “quality” is guaranteed by the stan-
dard K-means algorithm and measured by the MSE
criterion.

• the supervised “quality” is guaranteed by the supervised
initialization step (our suggestion) and measured by a
suitable supervised criterion (to be defined below).

To be consistent with the definition of a supervised clus-
tering, we select a criterion that allows one to choose the
closest partition to the one given by the target class. For
this, we use the Adjusted Rand Index (ARI) [8] to measure
the quality of the obtained partition [29]. It measures the
agreement between the generated partition for the K-means
and the partition given by the target class.

We illustrate the standard K-means using both our pro-
posed approach and the usual unsupervised initialization ap-
proaches on a toy dataset (see Figure 2). This dataset contains
510 instances, distributed among five classes (C = 5) : ’ear
left’ (blue), ’ear right’ (green), ’head’ (red), ’shoulder’ (cyan)
and ’noise’ (purple); Each class contains respectively 290,
100, 100, 10 and 10 instances. Here, the standard K-means
is applied in the following conditions: L2 as a norm, mean
as a centroid, Mean Squared Error (MSE) as a criterion to
select the best replicates and statistical normalization (SN)4

as a preprocessing step.

Fig. 2: Mouse dataset.

MSE criterion : Using the standard K-means, the em-
placement of the initial center has often an impact on the
quality of the generated partition.

Our supervised initialization approach requires at least an
initial center per class (K ≥ C). However, for this dataset,
the initialization of a center in the minority class (i.e. ’cyan’
class) could deteriorate the quality of the final solution in
terms of MSE (the initial center couldn’t move outside the
cyan points).

Figure 3 illustrates this point: the generated partitions
using the usual initialization approaches (Rand, Sample and
K++) have a better performance in terms of MSE than the
K++R approach where K = C. Note that, the difference
between the MSE of K++ and K++R is only 8.9% (0.326
against 0.355) when the number of replicates is equal to 1000

4 This approach transforms data derived from any normal distribution
into a standard normal distribution N(0, 1). The formula that allows the
transformation of feature Xu is: X′u = Xu−µ

σ
where µ is the mean of the

feature u, σ is its standard deviation.



and 1 respectively. This shows that the K++R is a faster
algorithm than the others.

Fig. 3: Mouse dataset: Reconstruction Error versus Number
of replicates (K=5). The points represent the mean result ob-
tained over 10 tries and the error bars the standard deviation
(ν ± σ).

ARI criterion: For this example, when the number of
clusters is equal to the cardinality of the target class, using
an unsupervised initialization approach, the chance to select
more than one seed in the same class is high (especially in
the majority class). Likewise, the chance to select one center
in the minority class is lower. Consequently, the predictive
performance of the generated partition could be deteriorated
(e.g lower value of ARI).

Fig. 4: Mouse dataset: ARI versus Number of replicates
(K=5). The points represent the mean result obtained over
10 tries and the error bars the standard deviation (ν ± σ).

Figure 4 describes the evolution of the ARI versus the
number of replicates (in the case where K = C) using both
K++R and the usual initialization approaches. In this case,
our approach is deterministic (i.e. it gives one unique value
of ARI whatever the number of replicates). This result shows
that, using the ARI criterion, the K++R approach is better
than the other unsupervised approaches.

In the case where K ≥ C, Figure 5 presents the evolution
of the ARI versus the number clusters. This result shows that,
using the proposed approach, the optimal generated partition
in terms of ARI is reached where K = C. Likewise, when
K > C, the K++R has the same predictive performance
’quality’ as the unsupervised approaches.

The preliminary experiment conducted on this dataset has
shown the following result: (1) the predictive performance

Fig. 5: Mouse dataset: ARI versus Number of clusters (K).
The points represent the mean result obtained over 10 tries.
The small error bars corresponding to the standard deviation
(ν ± σ) is not visible.

of the generated partition using the proposed initialization
method is better than the performance using the usual initial-
ization approaches (when K = C = 5), (2) K++R is faster
than the others approaches (reach a good performance with a
few number of replicates), and (3) unsupervised initialization
approaches are better than K++R in terms of MSE.

To further evaluate the efficiency of our proposed approach
in a supervised context, we propose an extensive comparison
with the usual initialization approaches for several bench-
mark datasets.

V. EXPERIMENTS

In this section, we present and compare the average
performance of the traditional K-means algorithm using both
supervised and unsupervised initialization approaches.

A. Protocol

1) Initialization method: To test the validity of our pro-
posal, we compare our supervised initialization approach
(K++R) to the three most popular unsupervised approaches
(see Section II-B) such as Rand (as a baseline), Sample
(which exhibits interesting performance as described in [14])
and K++ (which has theoretical foundations and a good
performance while keeping a reasonable complexity).

2) Datasets: To evaluate and compare the behavior of
different initialization approaches in terms of their capacity
to help the traditional clustering in a supervised context,
we have performed tests on different datasets of the UCI
repository [30], chosen for their diversity in terms of number
of clusters, number of features (categorical and continuous)
and number of instances (see Table I).

3) Number of clusters: In this paper5, we deal the case
where K is an input (as in [3]): In this study, K is equal
to the cardinality of the target class (C).

4) Preprocessing: In a previous paper [31], we showed
that one way to help the standard K-means algorithm to reach
a good predictive performance is to incorporate the additional
information given by the target class in a pre-processing step.

5 For space place consideration, the case where K is an output (as in
[4]) will be presented in a future publication



TABLE I: The used datasets from UCI: Mn: Number of
numerical variables; Mc: Number of categorical variables;
N : Number of instances; C: number of Classes; Maj. acc:
Baseline performance indication using a classifier based only
on the majority class.

Id Name Mn Mc N C Maj. acc.
1 Iris 4 0 150 3 33.33
2 Hepatitis 6 13 155 2 79.35
3 Glass 10 0 214 6 35.51
4 Heart 10 3 270 2 55.56
5 Horsecolic 7 20 368 2 63.04
6 Soybean 0 35 376 19 13.83
7 Pima 8 0 768 2 65.10
8 Vehicle 18 0 846 4 25.77
9 Tictactoe 0 9 958 2 65.34
10 LED 7 0 1000 10 11.40
11 Phoneme 256 0 2254 5 25.95
12 Segmentation 19 0 2310 7 14.29
13 Abalone 7 1 4177 28 16.50
14 Waveform 21 0 5000 3 33.92
15 PenDigits 16 0 10992 10 10.41

In this study, we used one of these supervised preprocessing
approaches, called ”Conditional Info6”.

The following notation is used below: Let D =
{(Xi, Yi)}N1 denote a training dataset of size N , where Xi =
{X1

i , ..., X
d
i } is a vector of d features and Yi∈{1,...,N} ∈

{Class1, ..., ClassC} is the target class of size C. Let K
denote the number of clusters set by the user.

This preprocessing method is based on two steps: (1)
supervised representation and (2) recoding. The first one aims
at giving information about features distribution condition-
ally to a target class. To achieve this objective, the MODL
(a bayes optimal pre-processing method for continuous and
categorical features) approach is used. It seeks to estimate the
univariate conditional density (i.e. P (Xm

i |Classj), where
m ∈ {1, ..., d} and j ∈ {1, ..., C}). To obtain this estimation
a supervised discretization method is used for continuous
features [32] and a supervised grouping method is used for
categorical ones [33]. To exploit the information given by
the first step, a recoding phase is then required.

Each feature from the instance Xi is recoded in a quali-
tative attribute containing IC recoding values. As a result,
the initial vector (Xi) containing d features (continuous
and categorical) becomes a new vector (XRi) containing
d×C real components: log(P (Xm

i |Classj)), j ∈ {1,...,C},
m ∈ {1,...,d}.

To give an idea of the good impact of this preprocessing
step, using the previous dataset (Figure 2), the obtained
performance ’quality’ (using ARI criterion) is equal to 0.792
compared to 0.514 (using SN preprocessing step.)

5) Cross validation: In order to compare the obtained
results, a ′10 × 5′ fold cross validation has been performed
on all datasets. Thus, the results are presented as an average
of 50 tests (e.g. see table III).

6 In this study, the Conditional Info is applied to all of datasets described
in Table I.

B. Results

1) Evolution of the error reconstruction: The generated
partition contains K centers (k1,...,kK). Each center is a
vector of Z features, where Z is the number of features after
the supervised preprocessing process. So, for a given dataset,
the value of Z is then equal to d × C = (Mn +Mc) × C
(see Table I).

To evaluate the quality of the generated partition in terms
of instances similarity in each cluster, the Mean Squared
Error is used (see equation 1).

MSE =
1

N

1

Z

1

K

N∑
i=1

Z∑
z=1

K∑
t=1

∑
i∈kt

(XRz
i − kzt )

2 (1)

where XRi is the new vector of the i-th instance after
the preprocessing step (using Conditional Info); It contains
Z = d× C components.

To our knowledge, the K++ method is quite used to
initialize seeds for the K-means algorithm. For this reason,
we compare it to our proposed method and other unsuper-
vised methods using the MSE criterion. Table II presents the
comparison results (in percentage) between the MSE of K++
and the other initialization approaches (i.e. Rand, Sample and
K++R) when R = 1 (see Algorithm 1). A positive percentage
from this table means that the performance (in terms of
MSE) of the generated partition using ’K++’ method is better
than the performance using its corresponding initialization
method. This results show that, for only one relicate, K++ is
better than the two other unsupervised initialization methods
and it is competitive to K++R.

TABLE II: Comparaison in percentage between the MSE of
K++ and the other methods when using a single replicate(R)

Database K++/Rand K++/Sample K++/K++R
Iris 56% 44% 0%
Hepatitis 0% 0% 0%
Glass 4% 2% 2%
Heart 4% 4% 0%
Horsecolic 0% 0% -3%
Soybean 27% 27% -12%
Pima -2% -2% 0%
Vehicle 8% 7% 2%
Tictactoe 0% 0% -14%
LED 14% 11% -17%
Phoneme 0% 0% -1%
Segmentation 4% 4% -3%
Abalone 19% 18% 30%
Waveform 0% 0% 0%
PenDigits 1% 1% -2%

When the number of replicates increase (i.e. R ∈
{1, 10, 100, 1000}), the average value of MSE for the three
unsupervised initialization methods decreases; especially for
Random and Samples methods (see Table III). This improve-
ment is important when going from one to 10 replicates, less
important from 10 to 100 replicates and it remains nearly
unchanged when going from 100 to 1000 for all datasets
except for Soybean, LED and Abalone datasets.

Among the three unsupervised initialization method, K++
is the best one. However, it is recommended to use it with a



TABLE III: MSE versus the number of replicates (R)

Dataset Rand Sample K++ K++R
R=1

Iris 4.74±3.62 4.37±3.61 3.03±1.59 3.04±1.43
Hepatitis 0.22±0.08 0.22±0.08 0.22±0.08 0.22±0.08
Glass 13.37±2.40 13.10±2.31 12.80±2.52 13.03±2.45
Heart 0.26±0.05 0.26±0.05 0.25±0.04 0.25±0.04
Horsecolic 0.30±0.05 0.30±0.05 0.30±0.05 0.29±0.05
Soybean 35.23±4.50 35.16±4.68 27.71±3.40 24.27±2.16
Pima 0.42±0.11 0.42±0.11 0.43±0.12 0.43±0.11
Vehicle 7.79±1.32 7.78±1.31 7.23±1.35 7.35±1.24
Tictactoe 0.07±0.02 0.07±0.02 0.07±0.02 0.06±0.02
LED 4.41±0.54 4.29±0.52 3.86±0.43 3.21±0.35
Phoneme 22.98±0.73 22.97±0.72 22.97±0.68 22.85±0.69
Segmentation 36.82±4.15 36.79±4.16 35.40±3.17 34.19±1.32
Abalone 33.95±3.65 33.67±3.64 28.59±2.51 37.08±4.03
Waveform 2.11±0.51 2.11±0.51 2.12±0.54 2.13±0.46
PenDigits 58.44±2.27 58.33±2.30 57.94±1.94 56.66±1.59

R=10
Iris 2.81±1.43 2.81±1.43 2.80±1.43 3.04±1.43
Hepatitis 0.21±0.08 0.21±0.08 0.21±0.08 0.22±0.08
Glass 12.22±2.39 12.25±2.41 12.15±2.37 13.03±2.45
Heart 0.25±0.04 0.25±0.04 0.25±0.04 0.25±0.04
Horsecolic 0.29±0.05 0.29±0.05 0.29±0.05 0.29±0.05
Soybean 29.43±2.32 29.16±2.27 25.06±1.95 24.27±2.16
Pima 0.40±0.10 0.40±0.10 0.39±0.07 0.43±0.11
Vehicle 6.46±0.83 6.48±0.82 6.41±0.83 7.35±1.24
Tictactoe 0.06±0.02 0.06±0.02 0.06±0.02 0.06±0.02
LED 3.68±0.42 3.64±0.39 3.50±0.34 3.21±0.35
Phoneme 22.85±0.69 22.85±0.69 22.85±0.69 22.85±0.69
Segmentation 33.95±1.33 33.93±1.33 33.71±1.26 34.19±1.32
Abalone 30.75±2.58 30.41±2.55 26.72±1.82 35.42±4.07
Waveform 2.06±0.45 2.06±0.45 2.06±0.45 2.13±0.46
PenDigits 56.41±1.62 56.43±1.63 56.39±1.61 56.66±1.59

R=100
Iris 2.80±1.43 2.80±1.43 2.80±1.43 3.04±1.43
Hepatitis 0.21±0.08 0.21±0.08 0.21±0.08 0.22±0.08
Glass 12.05±2.28 12.02±2.31 12.09±2.26 13.03±2.45
Heart 0.25±0.04 0.25±0.04 0.25±0.04 0.25±0.04
Horsecolic 0.29±0.05 0.29±0.05 0.29±0.05 0.29±0.05
Soybean 27.12±2.45 27.02±2.37 23.88±2.21 24.27±2.16
Pima 0.39±0.07 0.39±0.07 0.39±0.07 0.43±0.11
Vehicle 6.41±0.83 6.41±0.83 6.41±0.83 7.35±1.24
Tictactoe 0.06±0.02 0.06±0.02 0.06±0.02 0.06±0.02
LED 3.48±0.35 3.45±0.34 3.35±0.34 3.21±0.35
Phoneme 22.85±0.69 22.85±0.69 22.85±0.69 22.85±0.69
Segmentation 33.60±1.25 33.60±1.25 33.61±1.25 34.19±1.32
Abalone 28.92±2.32 28.65±2.27 25.76±1.78 34.94±4.27
Waveform 2.06±0.45 2.06±0.45 2.06±0.45 2.13±0.46
PenDigits 56.23±1.55 56.23±1.55 56.23±1.55 56.66±1.59

R=1000
Iris 2.80±1.43 2.80±1.43 2.80±1.43 3.04±1.43
Hepatitis 0.21±0.08 0.21±0.08 0.21±0.08 0.22±0.08
Glass 12.06±2.27 12.05±2.26 12.05±2.26 13.03±2.45
Heart 0.25±0.04 0.25±0.04 0.25±0.04 0.25±0.04
Horsecolic 0.29±0.05 0.29±0.05 0.29±0.05 0.29±0.05
Soybean 25.56±2.18 25.30±2.22 23.21±2.38 24.27±2.16
Pima 0.39±0.07 0.39±0.07 0.39±0.07 0.43±0.11
Vehicle 6.41±0.83 6.41±0.83 6.41±0.83 7.35±1.24
Tictactoe 0.06±0.02 0.06±0.02 0.06±0.02 0.06±0.02
LED 3.37±0.34 3.37±0.34 3.25±0.34 3.21±0.35
Phoneme 22.85±0.69 22.85±0.69 22.85±0.69 22.85±0.69
Segmentation 33.61±1.25 33.61±1.25 33.61±1.25 34.19±1.32
Abalone 28.07±1.80 27.72±1.87 25.32±1.90 34.79±4.40
Waveform 2.06±0.45 2.06±0.45 2.06±0.45 2.13±0.46
PenDigits 56.23±1.55 56.23±1.55 56.23±1.55 56.66±1.59

number of replicates at least equal to 10 or greater for certain
datasets.

For the K++R method, its average value of MSE remains
unchanged for all datasets whatever the number of replicates
(see Table III). Indeed, when the number of clusters is
equal to the number of classes, the proposed method is a
determinist approach (i.e. it follows the Rochio solution (see

Section IV)).

TABLE IV: Comparaison in percentage between the MSE of
K++ and K++R for R=1, 10, 100, 1000.

Database R=1 R=10 R=100 R=1000
Iris 0% 9% 9% 9%
Hepatitis 0% 5% 5% 5%
Glass 2% 7% 8% 8%
Heart 0% 0% 0% 0%
Horsecolic -3% 0% 0% 0%
Soybean -12% -3% 2% 5%
Pima 0% 10% 10% 10%
Vehicle 2% 15% 15% 15%
Tictactoe -14% 0% 0% 0%
LED -17% -8% -4% -1%
Phoneme -1% 0% 0% 0%
Segmentation -3% 1% 2% 2%
Abalone 30% 33% 36% 38%
Waveform 0% 3% 3% 3%
PenDigits -2% 0% 1% 1%

We compare now the quality of the generated partition in
terms of MSE, using in each time K++ and K++R. Table
IV presents the comparison results (in percentage) for the
MSE of K++R and K++R, for R ∈ {1, 10, 100, 1000}. This
table shows that when we combine the proposed initialization
method with the supervised preprocessing approach (see
Section V-A), K++R is competitive to K++ method in terms
of MSE when R=1 (i.e. it exhibits better or similar MSE than
K++). When R increases, the K++R approach exhibits MSE
not exceeding 5% for 10 datasets.

2) Evolution of the ARI: The above experiments show
that the proposed method can reach a good performance in
terms of MSE compared to the other popular unsupervised
initialization methods. Now, to achieve the goal of the
supervised clustering, we have to prove that the traditional
K-means with the proposed method could also reach a good
predictive performance (using a supervised criterion).

Table V presents the average predictive performance (us-
ing ARI criterion) of the partition of the traditional K-means
using supervised and unsupervised initialization method.
From this results, we can see that, whatever the number of
replicates (R), the proposed method remains the best one
for 9 datasets out of 15 and similar to the others but with
one replicate (i.e the traditional K-means with the proposed
method is 10 times (or more) faster than using K++).

Now, if we choose another supervised criterion to mea-
sure the quality of the generated partitions, the obtained
conclusion remains the same. Figures 6 and 7 present re-
spectively, for all used datasets, the quality of the generated
partitions using Accuracy7 (ACC) and Balanced Accuracy8

(BACC)criterion, in the case R=1000 for ’Rand’, ’Sample’
and ’K++’ and where R=1 for ’K++R’.

7 the accuracy criterion is computed by comparing the true class and the
predicted class which is the majority class of the examples belonging to a
cluster

8 This criterion avoids inflated performance estimates on imbalanced
datasets.



TABLE V: ARI versus the number of replicates (R)

Dataset Rand Sample K++ K++R
R=1

Iris 0.59±0.17 0.61±0.20 0.65±0.16 0.78±0.12
Hepatitis 0.15±0.16 0.15±0.16 0.17±0.18 0.21±0.15
Glass 0.47±0.15 0.48±0.14 0.48±0.15 0.78±0.10
Heart 0.32±0.18 0.32±0.18 0.29±0.18 0.36±0.15
Horsecolic 0.33±0.17 0.33±0.17 0.37±0.12 0.39±0.10
Soybean 0.45±0.08 0.44±0.07 0.50±0.07 0.63±0.07
Pima 0.04±0.08 0.04±0.08 0.05±0.08 0.10±0.12
Vehicle 0.16±0.04 0.16±0.04 0.16±0.03 0.20±0.09
Tictactoe 0.09±0.07 0.09±0.07 0.08±0.06 0.14±0.05
LED 0.37±0.06 0.37±0.06 0.40±0.05 0.52±0.05
Phoneme 0.71±0.04 0.71±0.04 0.71±0.04 0.72±0.02
Segmentation 0.59±0.08 0.59±0.08 0.60±0.07 0.70±0.04
Abalone 0.05±0.01 0.05±0.01 0.05±0.01 0.06±0.00
Waveform 0.20±0.06 0.20±0.06 0.20±0.06 0.22±0.08
PenDigits 0.53±0.05 0.53±0.05 0.53±0.04 0.62±0.02

R=10
Iris 0.68±0.15 0.68±0.15 0.67±0.15 0.78±0.12
Hepatitis 0.10±0.12 0.10±0.12 0.10±0.12 0.21±0.15
Glass 0.47±0.15 0.47±0.15 0.47±0.14 0.78±0.10
Heart 0.29±0.18 0.29±0.18 0.29±0.18 0.36±0.15
Horsecolic 0.39±0.10 0.39±0.10 0.39±0.10 0.39±0.10
Soybean 0.49±0.07 0.48±0.07 0.51±0.08 0.63±0.07
Pima 0.01±0.02 0.01±0.02 0.00±0.01 0.10±0.12
Vehicle 0.17±0.03 0.17±0.03 0.17±0.03 0.20±0.09
Tictactoe 0.13±0.06 0.13±0.06 0.13±0.06 0.14±0.05
LED 0.44±0.05 0.43±0.05 0.45±0.04 0.52±0.05
Phoneme 0.72±0.02 0.72±0.02 0.72±0.02 0.73±0.02
Segmentation 0.66±0.06 0.66±0.07 0.69±0.06 0.70±0.04
Abalone 0.05±0.01 0.05±0.01 0.05±0.01 0.06±0.01
Waveform 0.21±0.04 0.21±0.04 0.21±0.04 0.22±0.08
PenDigits 0.56±0.03 0.56±0.03 0.56±0.02 0.62±0.02

R=100
Iris 0.67±0.15 0.67±0.15 0.67±0.15 0.78±0.12
Hepatitis 0.10±0.13 0.10±0.13 0.10±0.13 0.21±0.15
Glass 0.48±0.14 0.49±0.13 0.47±0.14 0.78±0.10
Heart 0.29±0.18 0.29±0.18 0.29±0.18 0.36±0.15
Horsecolic 0.39±0.10 0.39±0.10 0.39±0.10 0.39±0.10
Soybean 0.52±0.09 0.51±0.08 0.55±0.07 0.63±0.07
Pima 0.00±0.01 0.00±0.01 0.00±0.01 0.10±0.12
Vehicle 0.17±0.03 0.17±0.03 0.17±0.03 0.20±0.09
Tictactoe 0.13±0.06 0.13±0.06 0.13±0.06 0.14±0.05
LED 0.46±0.04 0.46±0.04 0.48±0.04 0.52±0.05
Phoneme 0.72±0.02 0.72±0.02 0.72±0.02 0.73±0.02
Segmentation 0.70±0.05 0.70±0.05 0.70±0.05 0.70±0.04
Abalone 0.05±0.01 0.05±0.01 0.05±0.00 0.06±0.00
Waveform 0.21±0.04 0.21±0.04 0.21±0.04 0.22±0.08
PenDigits 0.55±0.01 0.55±0.01 0.55±0.01 0.62±0.02

R=1000
Iris 0.67±0.15 0.67±0.15 0.67±0.15 0.78±0.12
Hepatitis 0.10±0.13 0.10±0.13 0.10±0.13 0.21±0.15
Glass 0.48±0.14 0.48±0.14 0.48±0.14 0.78±0.10
Heart 0.29±0.18 0.29±0.18 0.29±0.18 0.36±0.15
Horsecolic 0.39±0.10 0.39±0.10 0.39±0.10 0.39±0.10
Soybean 0.53±0.08 0.53±0.08 0.55±0.08 0.63±0.07
Pima 0.00±0.01 0.00±0.01 0.00±0.01 0.10±0.12
Vehicle 0.17±0.03 0.17±0.03 0.17±0.03 0.20±0.09
Tictactoe 0.13±0.06 0.13±0.06 0.13±0.06 0.14±0.05
LED 0.48±0.04 0.48±0.04 0.50±0.05 0.52±0.05
Phoneme 0.72±0.02 0.72±0.02 0.72±0.02 0.72±0.02
Segmentation 0.70±0.05 0.70±0.05 0.70±0.05 0.70±0.04
Abalone 0.05±0.01 0.05±0.01 0.05±0.00 0.06±0.00
Waveform 0.21±0.04 0.21±0.04 0.21±0.04 0.22±0.08
PenDigits 0.55±0.01 0.55±0.01 0.55±0.01 0.62±0.02

VI. CONCLUSION

This paper has presented the influence of the supervised
initialization step on the performance of the traditional K-
means algorithm in terms of predictions (using ARI and ACC
criteria). The experimental results show that the proposed
method of initialization (K++R) with a supervised prepro-

Fig. 6: ACC on the different databases (R=1000 for ’Rand’,
’Sample’ and ’K++’, R=1 for K++R).

Fig. 7: BACC on the different databases (R=1000 for ’Rand’,
’Sample’ and ’K++’, R=1 for K++R).

cessing step allow the standard K-means algorithm to reach
a trade-off between similarity (using MSE criterion) and
prediction (that is the objective of the supervised clustering).
Future works will be done: (i) to improve the method in the
case where the number of cluster exceeds to the number of
classes and therefore the case where K is an output, (ii) to
compare K++R to others unsupervised initialization methods,
and (iii) to combine the K++R method with a supervised K-
means algorithm.
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