
 1

Unobtrusiveness and Efficiency in Idle Cycle Stealing for PC Grids

Kyung Dong Ryu Jeffrey K. Hollingsworth
Department of Computer Science

& Engineering
Arizona State University

Tempe, AZ 85287

Department of Computer Science
University of Maryland

College Park, MD 20742

kdryu@asu.edu hollings@cs.umd.edu

Abstract

Studies have shown that for a significant fraction of
the time desktop PCs and workstations are under-
utilized. To exploit these idle resources, various Desk-
top/Workstation Grid systems have been developed. The
ultimate goal of such systems is to maximize efficiency of
resource usage while maintaining low obtrusiveness to
machine owners. To this end, we created a new fine-
grain cycle stealing approach and conducted a perform-
ance comparison study against the traditional coarse-
grain cycle stealing. We developed a prototype of fine-
grain cycle stealing, the Linger-Longer system, on a
Linux cluster. The experiments on a cluster of desktop
Linux PCs with benchmark applications show that, over-
all, fine-grain cycle stealing can improve efficiency of
idle cycle usage by increasing the guest job throughput
by 50% to 70%, while limiting obtrusiveness with no
more than 3% of host job slowdown.

Index Terms – Desktop grid, meta-computing, cluster
computing, process migration, networks of workstations,
idle cycle stealing.

1. Introduction

Today, collections of workstations and PC's connected
through high-speed networks are available in research
centers, universities and even many office environments.
Studies have shown that up to three-quarters of the time
workstations are idle [1]. Generally, most machines go
unused during the night, lunch time, and the entire day
during weekends and holidays.

Conventional cycle-stealing systems such as Condor
[2], LSF [3], NOW [4] and others [5-8] have been cre-
ated to use these available resources for running engi-
neering design applications, computer hardware and
software simulations, materials science simulations, op-
timization problems and computational biology pro-

grams. Such systems focus on coarse-grained idle peri-
ods (at the scale of minutes or hours) when users are
away from their workstations. To gain access to these
resources machine owners are offered a "social con-
tract" that guest jobs are allowed to run only on idle
machines. To enforce this contract, guest jobs are
stopped and migrated as soon as the owner resumes use
of their computer.

However, there are more available cycles that such
systems don’t harvest. This is due to the fact that even
when the user is actively working on their machine, the
resource usage is very low. This can be explained by
the fact that the main use of computers at work is edit-
ing documents, web surfing, and reading email. When
writing and editing a document, most time is spent
thinking and typing, and it does not require significant
computing resources.

The thesis of this paper is to achieve more efficient
use of computing resources and hence produce higher
system throughput while making such resource recy-
cling unobtrusive to machine owners. The traditional
approaches don't take advantage of extra free resources
because it would slow down host processes and there-
fore break the "contract" with machine owners. Unob-
trusive use of idle resources is essential to deploying
these kinds of systems because it is otherwise difficult
to convince users to participate in them.

The mechanism to harvest idle cycles from non-idle
machines should include a way to protect host proc-
esses' performance. To enforce this unobtrusiveness
while achieving better efficiency, we propose to run
guest jobs even on non-idle machines with very low
priority for CPU, memory, I/O and network bandwidth.
We call this approach fine-grain cycle stealing and
name our system Linger-Longer. This enables the sys-
tem to utilize most idle cycles while limiting the slow-
down of the owner's workload to an acceptable level.

 2

In [9], we demonstrated the potential of our Linger-
Longer approach via simulations. In [10], our resource
throttling mechanisms have been benchmarked. Finally,
in this paper, we bring all of the policies, algorithms and
mechanisms together and implement the Linger-Longer
system by extending Condor. Using this system prototype
and trace-based workload, this paper studies the perform-
ance of cycle stealing policies with respect to efficiency
and unobtrusiveness.

The remainder of this paper is organized as follows.
Section 2 defines idle cycles and investigates their avail-
ability. Section 3 summarizes resource policing mecha-
nisms to support fine-grain cycle stealing. Section 4 de-
scribes integration of all the mechanisms to construct the
prototype of the Linger-Longer system, and Section 5
presents a head-to-head performance comparison be-
tween our Linger-Longer system and Condor, a coarse-
grain cycle stealing system. Section 6 discusses related
work, and finally, Section 6 concludes with summary and
future work.

2. Idle cycle stealing policies

Traditional coarse-grain cycle harvesting systems
(e.g., Condor and NOW) determine machine states using
three factors: CPU usage, keyboard/mouse activities and
recruitment threshold. A recruitment threshold is the
fixed time to be waited to ensure that the machine will
not immediately return to the busy state. Thus, this inter-
val should be included in non-idle periods. Figure
1illustrates a typical pattern of idle and non-idle inter-
vals. Coarse-grain idle periods are the intervals (t0, t1)
and (t3, t4). The non-idle interval (t1, t2) is mostly caused
by keyboard/mouse activities whereas the second non-idle
interval (t4, ~) is due to high CPU usage. The empty
spaces in the CPU usage bar are fine-grain idle cycles.

To estimate availability of idle resources, we analyzed
resource usage traces of non-dedicated machines. They
are comprised of two trace sets: the UC Berkeley trace

collected from 132 machines for NOW project [11] and
the Wisconsin trace collected by Acharya, et al [12, 13]
from a Condor pool having 310 machines at the Uni-
versity of Wisconsin.

First, we investigated the traces as to how much of
the non-idle state of the machines were contributed
respectively by three different factors: high CPU load
(CPU busy), keyboard and mouse activities (keyboard
busy) and the recruitment threshold (recruit busy). The
results are summarized in Figure 2. The machine state
of the UC Berkeley trace were determined by the idle-
ness definition of the NOW system. For the Wisconsin
trace, the default Condor threshold values were used:
15 minutes for recruitment threshold and 1 minute
average CPU load 0.3. As shown in Figure 2, 21.3% of
the time the machines were keyboard busy in the UC
Berkeley trace. The Condor trace showed similar re-
sults: 24.8% of the time the workstations were key-
board-busy. However, because the default Condor re-
cruitment threshold of 15 minutes is much longer than
that of the NOW system (1 minute), about 14% more
busy time was introduced. This busy time is a good
source for our fine-grain cycle stealing since its re-
source availability is the same as idle machines.

 For memory availability, the result of the UC
Berkeley trace is backed up by a study by Acharya, et al
[13]. With the traces from various institutions they
showed that most of the time, more than a half of main
memory is unused and a larger portion of memory is
available on the machines with larger main memory.

In our previous work [9], we introduced a new tech-
nique to harvest fine grain idle cycles. We term run-
ning guest jobs, while the user processes are active,
lingering. Since the owner has priority over guest jobs
using their personal machine, use of these idle inter-
vals should not affect the performance of the owner’s
jobs (host jobs). In other words, we need mechanisms
to enforce this unobtrusiveness policy.

Figure 1: Idle cycles on a non-dedicated machine

Coarse-grain and fine-grain idle cycles. Idleness is deter-
mined by CPU usage, keyboard/mouse activities and recruit-
ment threshold. A large amount of fine-grain idle cycles
(empty spaces in CPU usage bar) still exist in non-idle states.

UC Berkeley Trace

Idle

59.8%

Key

Busy

21.3%

CPU

Busy

15.5%

Recruit

Busy

3.4%

Wisconsin Trace

CPU
Busy

12.1%

Idle
45.3%

Recruit
Busy

17.6%

Key
busy

24.8%

Figure 2: Non-idle time and its causes

Non-idle (busy) time percentages for different causes: CPU
load (CPU Busy), keyboard/mouse activities (Key Busy) and
recruitment threshold (Recruit Busy).

Non-idle Idle Idle Non-idle

Recruit
Threshold

Keyboard/Mouse

CPU Usage

t1 t2 t3 t4 t0

 3

3. Resource policing

The efficiency of resource usage can be maximized if
systems implement fine-grained cycle stealing by leaving
guest jobs on machine even when resource-intensive host
jobs start up. However, the host job will be adversely af-
fected unless the guest job’s resource use is strictly lim-
ited. In this section, we summarize our earlier work [10,
14] on resource policing mechanisms for CPU, memory,
I/O and Network bandwidth.

3.1 CPU and memory regulation

We developed the mechanisms that can allocate only
unused CPU time and memory to guest jobs. First, a new
guest priority prevents guest processes from running
when runnable host processes are present. The change
essentially establishes guest processes as a different class,
such that guest processes are not chosen if any runnable
host processes exist. This is true even if the host proc-
esses have lower runtime priorities than the guest proc-
ess. Note that running with “nice –19” is not sufficient,
as the nice’d process can still consume between 8%,
15%, and 40% of the CPU for Linux (2.0.32), Solaris
(SunOS 5.5), and AIX (4.2), respectively [14].

Our second mechanism limited guest consumption of
memory resources. The cost of reclaiming page frames
from a running process is negligible for clean pages, but
quite large for modified pages because they need to be
flushed to disk before being reclaimed. Our approach
does not impose any hard restrictions on the number of
physical pages that can be used by a guest process. In-
stead, we implemented a policy that establishes low and
high thresholds for the number of physical pages used by
guest processes. We extended the Linux kernel to support
this prioritized page replacement. Two new global kernel
variables were added for the memory thresholds, and are
configurable at run-time via system calls.

The kernel keeps track of resident memory size for
guest processes and host processes. Periodically, the vir-
tual memory system triggers the page-out mechanism.
When it scans in-memory pages for replacement, it
checks the resident memory size of guest processes
against the memory thresholds. If they are below the
lower thresholds, the host processes’ pages are scanned
first for page-out. Resident sizes of guest processes larger
than the upper threshold cause the guest processes’ pages
to be scanned first. Between the two thresholds, older
pages are paged out first no matter what processes own
them. These thresholds are usually set very low (5-10%
of the total memory) so as not to affect memory intensive
host jobs.

Similar mechanisms can be applied to most UNIX
systems including Solaris which uses unified paging
system for virtual memory and file buffer cache. A
modest modification, which simply tags file cache
pages to indicate whether they have been accessed by
guest processes or host processes, can suffice.

Both CPU and memory regulation mechanisms re-
quire simple modifications of OS kernel. In general, it
is harder to gain acceptance for software that requires
kernel modifications. However, we feel that modest
kernel modifications are a reasonable solution for two
reasons. First, we are using the Linux operating system
as an initial implementation platform, and many soft-
ware packages for Linux already require kernel patches
to work. Second, the relatively modest kernel changes
required could be implemented on stock kernels using
the KernInst technology [15, 16], which allows fairly
complex customizations of a UNIX kernel at runtime
via dynamic patch.

3.2 I/O and network throttling

To enforce limits on I/O and network bandwidth,
rate windows were proposed as a simple, portable, and
effective strategy, analogously to the limits on CPU
and memory usage. Here, we summarize our rate-
window policies, and the mechanisms that are needed
to support I/O throttling.

We identify the presence of host I/O-bound jobs by
monitoring I/O bandwidth, moving the system into the
throttled state when host bandwidth exceeds threshhigh,
and into the unthrottled state when host bandwidth
drops below threshlow. Note that threshlow is lower than
threshhigh, providing hysteresis to the system to prevent
oscillations between throttled and un-throttled mode
when the I/O rate is near the threshold. The state of the
system is reflected in the global variable throttled. Note
that the current host bandwidth is not an instantaneous
measure; it is measured over the life of the rate win-
dow, defined below.

Rate windows were implemented using two kernel
window structures, one for file I/O and one for network
I/O. Each window structure contains a circular queue.
The window structure describes the last I/O operations
performed by jobs in the class (host or guest), plus a
few other scalar variables.

We implemented rate windows mechanism via a
loadable kernel module that intercepts each of the ker-
nel calls for I/O and network communication: read(),
write(), send(), recv(). Whenever such system functions
are triggered, we first call rate_check() with the proc-
ess ID, I/O length, and I/O type and then call the
original system call. The process ID is used to map to

 4

an I/O class, and the I/O type is used to distinguish be-
tween file and network I/O. The rate_check() routine
maintains a sliding window of operations performed for
each class of service and for the overall system.

At the time that a guest process attempts to perform
I/O, we define the window bandwidth, Bw, as the total
amount of I/O in the window’s operations, including the
new operation. We define Tw, the window time, as the
interval from the beginning of the oldest operation in the
window until the expected completion of the new opera-
tion, assuming it starts immediately. Let Rt be the thresh-
old bandwidth per second for this class. We then allow
the new operation to proceed immediately if the class is
currently throttled and:

 w
t

w

B
R

T
≤

Otherwise, we calculate the sleep() delay as follows:

 delay w
w

t

B
T

R
= −

The kernel then suspends the process for delay time
units before calling the original I/O system call.

With several micro benchmarks, we demonstrated that
I/O and network bandwidth usage of guest jobs could be
limited effectively to within a few percent of target us-
ages [10].

Since this rate windows mechanism is implemented as
a runtime loadable kernel module, it can be dynamically
loaded to the regular kernel and enabled without a kernel
rebuild or reboot. In addition, this system-call intercept
based mechanism is lightweight and highly portable to
any POSIX-compliant UNIX system.

4. System prototype

We developed a prototype of the proposed Linger-
Longer system. Rather than implementing everything
from scratch, we leveraged an existing system, Condor
(version 6.2.0). Whereas Condor’s cycle stealing policy is
different from ours, it provides general mechanisms for
guest job scheduling, checkpointing and migration. As a
result, we could easily integrate our Linger-Longer poli-
cies and supporting modules into Condor.

The overall prototype of the Linger-Longer system is
depicted in Figure 3. The leveraged Condor modules are
as follows1.

Guest Job Scheduler: this module queues the submit-
ted guest jobs and allocates idle machines to execute
them. It negotiates with local guest job starters to launch

1 In the Condor system, the modules are named condor_schedd, con-
dor_collector and condor_startd, respectively.

a guest job on the machine satisfying the resource re-
quirements (OS, CPU speed, memory size and etc.).

Machine State Monitor: this module periodically
gathers resource usage (CPU load, available memory
and keyboard/mouse activity) from each machine and
determines which machines are idle.

Guest Job Starter: this module locally handles exe-
cution of guest jobs. It creates processes for guest jobs,
starts the execution and checkpoints the current state.
This module has been customized to run a guest job
with the Linger priority.

Our prototype also leveraged the Condor job migra-
tion mechanism which is based on checkpointing. In
Condor, a job starts migration by dumping the current
process image to the checkpoint server. Then, the im-
age is transferred to the destination machine and the
execution is resumed where it checkpointed at the
source machine.

Two new modules were added to enable Linger-
Longer (shown in gray boxes in Figure 3). The first
module contains the operating system extensions for
the Linger priority. In the previous section, we already
described the policies and their implementation
mechanisms. To summarize, we implemented a starva-
tion-level priority for CPU, prioritized page replace-
ment for memory and Rate windows for efficient I/O
and network throttling.

The second module is the Adaptive Migration Man-
ager. This module replaces the existing migration poli-
cies of Condor with our cost/benefit based migration
scheme. As described in [11], a guest job can linger
even when the machine where the job is running be-
comes non-idle and migrate to another machine only
when the benefit outweighs the migration cost. To
measure the required parameters for Linger-Longer
migration, another resource state monitor has been

Figure 3: Linger-Longer system prototype

Workstation/PC

Condor
Guest Job Scheduler

Condor
Machine State Monitor

Condor
Guest Job Starter

Prioritized

CPU
Scheduling

Prioritized

Page
Replacement

Rate Windows

Disk I/O
Throttling

Network
Throttling

Extended Linux Kernel

Linger-Longer
Adaptive Migration Mgr.

Guest Job

 5

integrated in this module. The resource monitor can
measure current CPU and physical memory usage for
local jobs and guest jobs.

To enable the Linger-Longer policy, we first config-
ured the local guest job starter to execute guest jobs at the
Linger priority. All the resource requests by guest jobs
will be handled by our operating system extensions to
protect the performance of local host processes. In addi-
tion, existing migration (or preemption) was disabled.
Rather, the Adaptive Migration Manager directly forces
Condor to migrate a guest job by invoking the con-
dor_vacate command.

The Linger-Longer system also can emulate coarse-
grain cycle stealing policies such as Immediate-Eviction
and Pause-and-Migrate as well as run new fine-grain
cycle stealing policies such as Linger-Longer and Linger-
Forever.

5. Performance evaluation

Now, using the Linger-Longer prototype that inte-
grates our proposed policies and mechanisms, we com-
pare overall performance between the fine-grain cycle
stealing policies and the coarse-grain cycle stealing poli-
cies.

5.1 Workload

This section first describes the configuration of a net-
worked machines, host job workload and guest job sets
used in the experiment.

The Linger-Longer system was run in an eight ma-
chine Linux cluster. Each machine in the cluster has a
233 MHz Pentium II processor, 192 MB of memory and
a 6 GB IDE hard disk. All the machines are connected by
two networks, a 100 Mbps switched Ethernet and a 1
Gbps Myrinet switch. The machines are running the
Linux 2.2.5 kernel with our Linger priority kernel exten-

sions. Each guest limit parameter was set to approxi-
mately 10% of the total resource: 20 Mbytes for high
memory limit, 10 Mbytes for low memory limit, 500
Kbytes/sec for both disk I/O and network bandwidth.

Modeling an interactive user workload on a per-
sonal machine is very difficult if not impossible. Also,
having real computer users use the test machines is not
feasible since the workload cannot be accurately repro-
duced to allow comparisons of different policies.
Therefore, we generated the local workload based on
the trace data which was used for the simulations (UC
Berkeley trace). However, in this experiment, a re-
source usage from the trace invokes a corresponding
task script. We used two scripts to simulate interactive
users and to consume memory resources. First, Musbus
scripts were used to emulate an computer programmer.
This script is a sequence of subtasks such as editing
(ed), compiling (make and gcc), copying (cp) and file
listing (ls). The mapping between resource usage and
script-based interactive tasks are shown in Figure 4.
Every minute, a new local task is generated. For CPU
usage and keyboard activity, a corresponding Musbus
based script is selected and executed. The number of
files to be compiled is adjusted to generate 1 minute of
CPU usage. An editing subtask is invoked for the given
keyboard activity duration. Second, to emulate local
memory usage, a simple memory loader program
(Memload) runs separately from the Musbus task. It
allocates the corresponding size of memory, and loads
and stores to the various memory locations.

As guest jobs, we use a set of scientific applications
from the NAS NPB benchmark [17]. A serial version
of the benchmark was selected since, in this experi-
ment, we focus on sequential guest jobs. We chose
three applications with three different data sizes:
mg.W, sp.A and lu.B, which require 8, 65 and 165 MB
memory respectively (A job name was denoted as ap-
plicaton_name.data_size). We also varied job duration
by changing the number of iterations. Various combi-
nations of job size and duration are shown in Table 1.

Among 9 combinations, we selected 5 representative
types of guest jobs. Also, we group a number of identi-
cal jobs into a job set. The job set size was set such that

Application.data_size
(memory size)

mg.W
(8MB)

sp.A
(65MB)

lu.B
(165M)

1 min
(1.5 min) 1 (4)

10 min 3

30 min 2 5

Table 1: Guest job sets with various job size and
duration

Figure 4: Interactive local workload (host jobs)
generation

Musbus task
script

Memory loader

Local interactive
workload

Allocate pages
(malloc/mlock)

CPU usage

compile
cp, ls
edit

keyboard
event

memory usage

UCB trace
(1 min unit)

 6

all guest job sets could finish in a similar time although
individual jobs require different CPU time. This was in-
tended to minimize the performance changes due to
changes in local resource usage over time. We chose 1
cluster hour for the job set duration. Hence, the job set
size is 480 for 1 minute jobs, 320 for 1.5 minute jobs, 48
for 10 minute jobs and 16 for 30 minute jobs.

The selected five guest job sets are (a job set name is
denoted in the form of applica-
tion.data_type.duration.set_size):

Guest job set 1 (small, short): mg.W.1m.480
Guest job set 2 (small, long): mg.W.30m.16
Guest job set 3 (medium, medium): sp.A.10m.48
Guest job set 4 (large, short): lu.B.1.5m.320
Guest job set 5 (large, long): lu.B.30m.16

With these five guest job sets, we compare the cluster
performance between the fine-grain cycle stealing pol-
cies: Linger-Longer(LL) and Linger-Forever(LF)2 , and
the traditional coarse-grain cycle stealing policies:
Immediate Eviction(IE) 3 and Pause-and-Migrate(PM).
For IE and PM, the default thresholds of the Condor sys-
tem were used to define idle machines; 1 minute average
CPU load is below 0.3 and no keyboard/mouse activity
has been detected for the past 15 minutes. This large re-
cruit time is typically required for coarse-grain cycle
stealing since its obtrusive migrations should be
2 Linger-Forever is the same as Linger-Longer with no migrations.
3 Immediate Eviction sets the pause time to zero.

since its obtrusive migrations should be minimized. In
contrast, for Linger-Longer and Linger-Forever, we
lower the keyboard idle time to 1 minute because job
migration is unobtrusive thanks to our resource regula-
tion mechanisms. For Pause-and-Migrate, a guest job
is suspended for 10 minutes before migration.

5.2 Experiment results

Finally, we present a head-to-head performance
comparison between our fine-grain cycle stealing and
traditional coarse-grain cycle stealing. The experi-
ments ran 5 different guest job sets with 4 different
policies (LL, LF, IE and PM) in an eight machine
Linux cluster.

We first analyze the cluster performance for the
guest job sets using five metrics. Average completion
time is the average time to completion of a guest job.
This includes waiting time before initially being exe-
cuted, paused time, and migration time. Variation is
the standard deviation of job execution time (time from
first starting execution to completion). Family Time is
the completion time of the last job in the family of
processes submitted as a group 4 . Throughput is the
average amount of processor time used by guest jobs

4 This metric is intended to capture response time of a parameter-sweep
style parallel application as its results can be used only after all its paral-
lel tasks finish.

 Idle LL LF PM IE
Avg Job Time 2148 3804 3732 6694 6377

Variation 2.3% 1.1% 2.2% 52.9% 4.6%
Family Time 4206 7528 7376 13315 12370
Throughput 8.0 4.5 4.6 2.5 2.7

mg.W.1m.480

Migration 0 0 0 7 13
Avg Job Time 2873 4398 4083 6789 6124

Variation 3.8% 4.2% 8.0% 65.8% 1.9%
Family Time 3887 6870 6230 11674 10340
Throughput 8.0 4.5 5.0 2.7 3.0

mg.W.30m.16

Migration 0 9 0 10 16
Avg Job Time 2145 3239 3232 5070 4995

Variation 1.6% 2.8% 15.1% 7.8% 7.8%
Family Time 3646 5842 5828 9496 9374
Throughput 8.0 5.0 5.0 3.1 3.1

sp.A.10m.48

Migration 0 4 0 7 14
Avg Job Time 1986 3468 3478 6287 5919

Variation 0.0% 0.0% 0.7% 3.0% 1.5%
Family Time 3861 6814 6836 12469 11728
Throughput 8.0 4.5 4.5 2.5 2.6

lu.B.1.5m.320

Migration 0 2 0 7 14
Avg Job Time 2622 4223 3899 5950 5446

Variation 0.3% 23.6% 47.5% 61.0% 36.6%
Family Time 3501 6733 6080 10190 9160
Throughput 8.0 4.2 4.6 2.7 3.1

lu.B.30m.16

Migration 0 9 0 8 10

Table 2: Guest performance for different job sets

 7

per second when the number of jobs in the system was
held constant. Migration is the total number of process
migrations observed. The results are summarized in
Table 2. Notice that the column with the policy Idle is
used as the base case where guest jobs were run on a fully
idle 8 machine cluster.

For the average job time, LF is 60% to 70% better
than IE for most guest job sets. However, in the case of
lu.B.1.5m.320, the gain decreases to around

50%. This is due to the fact that large size guest jobs
occasionally struggled to get enough memory on some
non-idle machines (recall that lu.B requires 165 MB of
memory where the total memory of each machine is 192
MB). LF performs slightly better than LL since it can
consume almost all the available cycles from both idle
and non-idle machines and hence reduce the waiting
time in queue.

For the family time and the throughput, the perform-
ance gain of LL and LF is similar to that for the average
job time, a 60% to 70% gain for LF and 50% to 70% for
LL for most cases. Again, the improvement is smaller for
lu.B.30m.16, only 50% for LF and 36% for LL. However,
this difference is not surprising since, for large-memory
guest jobs, fine-grain cycle stealing will be limited by the
available memory. The smaller variation of LL demon-
strates that guest jobs were serviced more fairly than LF.

The number of migrations is also measured for the
different policies and guest job sets. For the short dura-
tion guest jobs (mg.W.1m and lu.B.1.5m), LL reduces
migrations significantly since guest jobs linger on non-
idle nodes and complete before getting to the break-even
point between cost and benefit. For the large duration
jobs (mg.W.30m and lu.B.30m), LL migrates almost the
same number of guest jobs as PM. PM migrates fewer
guest jobs than IE since PM avoids unnecessary migra-
tions when a non-idle period of a machine is shorter than
a pause time.

We now turn our attention to host job delay. Through-
out this paper, we have strived to limit host job delay

caused by guest jobs. So, every 1 minute, we measured
the delay of two host tasks, Musbus and Memload,
which have been described early in this chapter. For
Musbus, we computed delay by subtracting the base
Musbus time from the measured time. The base time
for all possible configurations (CPU usage for every
10% between 0 to 100%, both with and without edit
script) was measured by running Musbus on a fully idle
node.

The average delay for each guest job set is shown in
Table 3. Musbus without guest jobs produced some
delay (0.68%) as shown in the first column of the table.
It means that the 0.68% delay is beyond the measure-
ment precision. Interestingly, for small and medium
size guest jobs, LL and LF exhibits less delay than PM
and IE.

A histogram of Musbus delay with mg.W.30m.16 is
shown in Figure 5. For PM and IE, there exist more
delays, between 6% - 12%, than for LL and LF. These
delays were caused by job migration in PM and IE due
to lack of resource prioritizing mechanisms. In LL and
LF, migration itself uses only idle resources at the Lin-
ger priority.

 Delay (%) LL LF PM IE
No Guest musbus 0.68 0.68 0.68 0.68

 memload 0.20 0.20 0.20 0.20

mg.W.1m.480 musbus 0.82 0.88 1.44 2.05

 memload 0.25 0.24 0.32 0.42
mg.W.30.16 musbus 1.03 1.10 1.85 1.85

 memload 0.24 0.24 0.41 0.43
sp.A.10m.48 musbus 1.16 1.11 2.20 2.34

 memload 0.26 0.25 0.46 0.45
lu.B.1.5m.320 musbus 2.19 1.91 1.77 1.92

 memload 0.14 0.27 0.20 0.10
lu.B.30m.16 musbus 2.81 2.98 2.66 2.20

 memload 0.24 0.44 0.22 0.17

Table 3: Host job slowdown for different guest job sets

0%

10%

20%

30%

40%

50%

60%

70%

0 2 4 6 8 10 12 14 16 18 20
Delay (%)

(a) LL

0%

10%

20%

30%

40%

50%

60%

70%

0 2 4 6 8 10 12 14 16 18 2
Delay (%)

(b) LF

0%

10%

20%

30%

40%

50%

60%

70%

0 2 4 6 8 10 12 14 16 18 2
Delay (%)

(c) IE

0%

10%

20%

30%

40%

50%

60%

70%

0 2 4 6 8 10 12 14 16 18 20
Delay (%)

(d) PM

Figure 5: Musbus delay for mg.W.30m.16

 8

For large size guest jobs (lu.B), LL and LF shows
more Musbus delay than PM and IE. The delay histo-
gram for the guest job set lu.B.30m.16 is shown in Figure
6. In the histograms for LL and LF, there are some in-
stants whose delay exceeded 20%. These occasional de-
lays were caused since Musbus and the large memory
guest jobs were running at the same time. However, no
such noticeable delays were detected for Memload as
shown in Figure 7. This demonstrates that our current
prioritized memory replacement effectively protected the
memory pages of Memload. In contrast, Musbus was
occasionally delayed since our memory replacement
mechanism could not prevent a large memory guest job
from sweeping the file buffer cache (recall that Musbus
contains a compile workload). However, despite the fact
that lu.B was very aggressive in using memory, these
noticeable delays occurred less than 5% of the time.

Although most of the metrics for this experiment
match the estimated performance gain in the simulation
study in [18], the throughput (the equivalent number of
idle machines) does not. In the prototype experiment, the
equivalent idle machines are 4 to 5 on an 8 machine clus-
ter (50% to 62%) whereas they were 52 to 55 on the 64
machine cluster simulations (80% to 85%). This is due to
the fact that the mean CPU utilization in the traces used
had a higher load than the traces used in the simulation
study. We believe that increasing the number of test ma-

chines by using more trace data will produce results
closer to the simulations.

6. Related work

Previous work on exploiting available idle time on
workstation clusters used a conservative model that
would only run processes when the local user was away
from their workstation, and no local processes were
runnable. Condor [2], LSF [3], and NOW [11] use
variations on a “social contract” to strictly limit inter-
ference with local users. However, even with these
policies, there is some disruption of the local user when
they return since the guest process must be evicted and
the local state restored. The Linger-Longer approach
permits slightly more disruption of the user, but tries to
limit the delay to an acceptable level.

A system that used non-idle workstations was the
Stealth distributed scheduler [19]. It implemented a
priority-based approach to running guest processes.
However none of the tradeoffs in how long to run guest
processes, or the potential of running parallel programs
were investigated. Commercial software from Entropia
[20] also supports fine-grain cycle stealing on desktop
PCs running MS Windows. However, it is not clear
how unobtrusiveness is provided.

In the area of operating system support for provid-
ing resource management, research and commercial
operating systems have provided similar functionality.
In IRIX [21], the Miser feature provides deterministic
scheduling of batch jobs. Miser manages a set of re-
sources, including logical CPUs and physical memory,
that Miser batch jobs can reserve and use in preference
to interactive jobs. This strategy is the opposite of our
approach, which promotes interactive jobs.

Verghese et al [22] proposed a way to isolate the
performance of applications running on an SMP sys-
tem. While their approach requires changes to similar
parts of the operating system, their primary goal was to
increase fairness to all applications, while our goal is

0%

10%

20%

30%

40%

50%

60%

70%

0 2 4 6 8 10 12 14 16 18 2

Delay (%)

(a) LL

0%

10%

20%

30%

40%

50%

60%

70%

0 2 4 6 8 10 12 14 16 18 20

Delay (%)

(b) LF

0%

10%

20%

30%

40%

50%

60%

70%

0 2 4 6 8 10 12 14 16 18 20

Delay (%)

(c) IE

0%

10%

20%

30%

40%

50%

60%

70%

0 2 4 6 8 10 12 14 16 18 20

Delay (%)

(d) PM

Figure 6: Musbus delay for lu.B.30m.16

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16 18 2

Delay (%)

(a) LL

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16 18 20

Delay (%)

(b) LF

Figure 7: Memload delay for lu.B.30m.16

 9

to create an inherently unfair priority level for guest
processes.

Aron and Druschel’s soft timers [23] provide a way to
implement rate-based clocking of network protocols.
Although their motivation, avoiding the penalty of TCP
slow-start for small file transfers over high delay-
bandwidth networks, is different than ours, limiting the
fraction of the server’s network bandwidth that a single
http client or virtual host server gets, both techniques can
be used to achieve similar ends.

Also, many have studied general quality of service
(QoS) support for server applications. The reservation
domains of Eclipse [24] and Resource Containers [25]
can group a set of processes or threads as a unit for re-
source scheduling. This is similar to our job classes. The
Nemesis kernel [26] also provides QoS with rate-based
real-time scheduling for I/O as well as CPU. However,
those systems are integrated deep into the kernel, while
our mechanism resides between the kernel and the user-
level I/O library and can be loaded and unloaded at run-
time. Our mechanism is lightweight since we do not add
any extra queues for resource scheduling. Our mecha-
nism just intercepts resource requests, keeps track of the
rate, and puts them into sleep for an appropriate time if
the requests seem to exceed the limit. However, our rate
windows mechanisms can be used as a lightweight and
portable scheduling mechanism to support those con-
cepts.

The idea of regulating network traffic rates has been
extensively studied. Congestion avoidance schemes such
as leaky bucket [27] and its variants [28, 29] use averages
over various time intervals to determine which traffic is
within its negotiated bandwidth. However, since these
approaches are designed for policing traffic at routers,
they must drop non-conforming traffic. Contrarily, since
our approach is at the source, we can delay traffic to en-
force bandwidth limits.

The idea of resource partitioning using virtual ma-
chines has been popular both in the 1970s [30] as well as
in recent projects such as Disco [31]. The key difference
is that while virtual machines provide hard isolation of
resources between VMs at considerable runtime over-
head, our approach is a simple extension to an existing
operating system or runtime library.

7. Conclusions and future work

In this paper, we presented the design, implementa-
tion, and performance of fine-grain cycle stealing along
with a suite of resource policing mechanisms that provide
the vital safety net for unobtrusiveness.

We implemented a prototype fine-grain cycle stealing
system, Linger-Longer. The operating system extension
for starvation-level CPU priority, prioritized memory

replacement and Rate windows for I/O and network
throttling have been integrated to the prototype. Also, a
new adaptation migration module was added. For the
guest job scheduling, migration and checkpointing
mechanisms, we leveraged the Condor system.

Using the prototype, we conducted the experiments
on a desktop Linux cluster. We ran a group of guest job
sets from NPB benchmark, with various sizes and du-
rations. The local workload was generated using Mus-
bus benchmark, a script based interactive workload.
The configuration of each instance of Musbus was
driven by the resource usages of the UC Berkeley trace.

The results demonstrated that fine-grain cycle steal-
ing can significantly increase efficiency in using idle
cycles while limiting obtrusiveness to machine owners.
Fine-grain cycle stealing policies, LL and LF, im-
proved the cluster throughput by 50% to 70% for most
cases. However, this gain can be reduced to 50% if we
run guest jobs that require more than 50% of total
memory of the machine. For all the cases, acceptable
unobtrusiveness was achieved; on the average, the host
job slowdown was limited within 3%.

To measure the benefits of Linger-Longer in a more
prevalent PC Grid environment, we are currently con-
ducting experiments using Window-based interactive
workload that includes web browsers and GUI-based
text editors.

References

1. Mutka, M.W. and M. Livny, The available capacity of a
privately owned workstation environment. Performance
Evaluation, 1991. 12: p. 269-284.
2. Litzkow, M., M. Livny, and M. Mutka. Condor - A Hunter
of Idle Workstations. in International Conference on Dis-
tributed Computing Systems. 1988.
3. Zhou, S., et al., Utopia: a Load Sharing Facility for
Large, Heterogeneous Distributed Computer Systems. SPE,
1993. 23(12): p. 1305-1336.
4. Anderson, T.E., D.E. Culler, and D.A. Patterson, A case
for NOW (Networks of Workstations). IEEE Micro, 1995.
15(1): p. 54-64.
5. IBM, IBM LoadLeveler: General Information. 1993,
Kingston, NY.
6. Green, T. and J. Snyder, DQS, A Distributed Queueing
System. 1993, Florida State University.
7. Dannenberg, R.B. and P.G. Hibbard, A Butler Process for
Resource Sharing on Spice Machines. ACM Transactions on
Office Information Systems, 1985. 3(3): p. 234-52.
8. Sullivan, W.T., et al. A new major SETI project based on
Project Serendip data and 100,000 personal comuputers. in
Intl. Conf. on Bioastronomy. 1997: Edutruce Compositori.
9. Ryu, K.D. and J.K. Hollingsworth, Exploiting Fine
Grained Idle Periods in Networks of Workstations. IEEE
Transactions on Parallel and Distributed Computing, 2000.
11(7).

 10

10. Ryu, K.D., J. Hollingsworth, and P. Keleher. Efficient Net-
work and I/O Throttling for Fine-Grain Cycle Stealing. in
SC'2001. 2001. Denver, CO.
11. Arpaci, R.H., et al. The Interaction of Parallel and Sequen-
tial Workloads on a Network of Workstations. in SIGMET-
RICS. 1995. Ottawa.
12. Acharya, A., G. Edjlali, and J. Saltz. The Utility of Exploit-
ing Idle Workstations for Parallel Computation. in SIGMET-
RICS'97. 1997. Seattle, WA.
13. Acharya, A. and S. Setia. Availability and Utility of Idle
Memory in Workstation Clusters. in ACM SIGMETRICS. 1999.
Atlanta, GA.
14. Ryu, K.D., J.K. Hollingsworth, and P.J. Keleher. Mecha-
nisms and Policies for Supporting Fine-Grained Cycle Steal-
ing. in ICS. 1999. Rhodes, Greece.
15. Tamches, A. and B.P. Miller. Fine-Grained Dynamic In-
strumentation of Commodity Operating System Kernels. in
Third Symposium on Operating Systems Design and Implemen-
tation (OSDI). 1999. New Orleans.
16. Pearce, D., et al. GILK: A Dynamic Instrumentation Tool
for the Linux Kernel. in International Conference on Computer
Performance Evaluation (TOOL). 2002. London England.
17. Bailey, D.H., et al., The NAS Parallel Benchmarks. Interna-
tional Journal of Supercomputer Applications, 1991. 5(3): p.
63-73.
18. Ryu, K.D. and J.K. Hollingsworth. Linger Longer: Fine-
Grain Cycle Stealing for Networks of Workstations. in SC'98.
1998. Orlando, FL.
19. Krueger, P. and R. Chawla. The Stealth Distributed Sched-
uler. in International Conference on Distributed Computing
Systems (ICDCS). 1991. Arlington, TX.
20. Entropia, http://www.entropica.com.
21. SiliconGraphics, IRIX 6.4 Technical Brief. 1998.
22. Verghese, B., A. Gupta, and M. Rosenblum. Performance
Isolation: Sharing and Isolation in Shared-Memory Multiproc-
essors. in ASPLOS. 1998. San Jose, CA.
23. Aron, M. and P. Durschel. Soft Timers: efficient microsec-
ond software timer support for network processing. in SOSP.
1999. Kiawah Island, SC: ACM.
24. Bruno, J., et al. The Eclipse operating system: Providing
Quality of Service via Reservation Domains. in USENIX 1998
Annual Technical Conference. 1998. New Orleans, Louisiana.
25. Banga, G., P. Druschel, and J. Mogul. Resource containers:
A new facility for resource management in server systems. in
USENIX 3rd Symposium on Operating System Design and Im-
plementation. 1999. New Orleans, LA.
26. Reed, D. and R. Fairbairns, The Nemesis Kernel. 1997,
United Feature Syndicate, Inc.
27. Turner, J.S., New Directions in Communications (or Which
Way to the Information Age?). IEEE Communications Maga-
zine, 1986. 24(10): p. 8-15.
28. Zhang, L. Virtual Clock: A New Traffic Control Algorithm
for Packet Switching Networks. in SIGCOMM. 1990.
29. Faber, T., L.H. Landweber, and A. Mukherjee. Dynamic
Time Windows: packet admission control with feedback. in
SIGCOMM. 1992.
30. Goldberg, R.P., Survey of Virtual Machine Research. IEEE
Computer Magazine, 1974. 7(6): p. 34-45.
31. Bugnion, E., S. Devine, and M. Rosenblum. Disco: Run-
ning Commodity Operating Systems on Scalabe Multiproces-
sors. in SOSP. 1997.

