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Abstract 

Studies have shown that for a significant fraction of 
the time desktop PCs and workstations are under-
utilized. To exploit these idle resources, various Desk-
top/Workstation Grid systems have been developed. The 
ultimate goal of such systems is to maximize efficiency of 
resource usage while maintaining low obtrusiveness to 
machine owners. To this end, we created a new fine-
grain cycle stealing approach and conducted a perform-
ance comparison study against the traditional coarse-
grain cycle stealing.  We developed a prototype of fine-
grain cycle stealing, the Linger-Longer system, on a 
Linux cluster. The experiments on a cluster of desktop 
Linux PCs with benchmark applications show that, over-
all, fine-grain cycle stealing can improve efficiency of 
idle cycle usage by increasing the guest job throughput 
by 50% to 70%, while limiting obtrusiveness with no 
more than 3% of  host job slowdown. 

Index Terms – Desktop grid, meta-computing, cluster 
computing, process migration, networks of workstations, 
idle cycle stealing. 

1. Introduction 

Today, collections of workstations and PC's connected 
through high-speed networks are available in research 
centers, universities and even many office environments. 
Studies have shown that up to three-quarters of the time 
workstations are idle [1]. Generally, most machines go 
unused during the night, lunch time, and the entire day 
during weekends and holidays. 

Conventional cycle-stealing systems such as Condor 
[2], LSF [3], NOW [4] and others [5-8] have been cre-
ated to use these available resources for running engi-
neering design applications, computer hardware and 
software simulations, materials science simulations, op-
timization problems and computational biology pro-

grams. Such systems focus on coarse-grained idle peri-
ods (at the scale of minutes or hours) when users are 
away from their workstations. To gain access to these 
resources machine owners are offered a "social con-
tract" that guest jobs are allowed to run only on idle 
machines. To enforce this contract, guest jobs are 
stopped and migrated as soon as the owner resumes use 
of their computer.  

However, there are more available cycles that such 
systems don’t harvest. This is due to the fact that even 
when the user is actively working on their machine, the 
resource usage is very low.  This can be explained by 
the fact that the main use of computers at work is edit-
ing documents, web surfing, and reading email. When 
writing and editing a document, most time is spent 
thinking and typing, and it does not require significant 
computing resources.  

The thesis of this paper is to achieve more efficient 
use of computing resources and hence produce higher 
system throughput while making such resource recy-
cling unobtrusive to machine owners. The traditional 
approaches don't take advantage of extra free resources 
because it would slow down host processes and there-
fore break the "contract" with machine owners. Unob-
trusive use of idle resources is essential to deploying 
these kinds of systems because it is otherwise difficult 
to convince users to participate in them. 

The mechanism to harvest idle cycles from non-idle 
machines should include a way to protect host proc-
esses' performance. To enforce this unobtrusiveness 
while achieving better efficiency, we propose to run 
guest jobs even on non-idle machines with very low 
priority for CPU, memory, I/O and network bandwidth. 
We call this approach fine-grain cycle stealing and 
name our system Linger-Longer. This enables the sys-
tem to utilize most idle cycles while limiting the slow-
down of the owner's workload to an acceptable level. 
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In [9], we demonstrated the potential of our Linger-
Longer approach via simulations. In [10], our resource 
throttling mechanisms have been benchmarked. Finally, 
in this paper, we bring all of the policies, algorithms and 
mechanisms together and implement the Linger-Longer 
system by extending Condor. Using this system prototype 
and trace-based workload, this paper studies the perform-
ance of cycle stealing policies with respect to efficiency 
and unobtrusiveness. 

The remainder of this paper is organized as follows. 
Section 2 defines idle cycles and investigates their avail-
ability. Section 3 summarizes resource policing mecha-
nisms to support fine-grain cycle stealing. Section 4 de-
scribes integration of all the mechanisms to construct the 
prototype of the Linger-Longer system, and Section 5 
presents a head-to-head performance comparison be-
tween our Linger-Longer system and Condor, a coarse-
grain cycle stealing system. Section 6 discusses related 
work, and finally, Section 6 concludes with summary and 
future work. 

2. Idle cycle stealing policies 

Traditional coarse-grain cycle harvesting systems 
(e.g., Condor and NOW) determine machine states using 
three factors: CPU usage, keyboard/mouse activities and 
recruitment threshold. A recruitment threshold is the 
fixed time to be waited to ensure that the machine will 
not immediately return to the busy state. Thus, this inter-
val should be included in non-idle periods. Figure 
1illustrates a typical pattern of idle and non-idle inter-
vals. Coarse-grain idle periods are the intervals (t0, t1) 
and (t3, t4).  The non-idle interval (t1, t2) is mostly caused 
by keyboard/mouse activities whereas the second non-idle 
interval (t4, ~) is due to high CPU usage. The empty 
spaces in the CPU usage bar are fine-grain idle cycles.  

To estimate availability of idle resources, we analyzed 
resource usage traces of non-dedicated machines. They 
are comprised of two trace sets: the UC Berkeley trace 

collected from 132 machines for NOW project [11] and 
the Wisconsin trace collected by Acharya, et al [12, 13] 
from a Condor pool having 310 machines at the Uni-
versity of Wisconsin.  

First, we investigated the traces as to how much of 
the non-idle state of the machines were contributed 
respectively by three different factors: high CPU load 
(CPU busy), keyboard and mouse activities (keyboard 
busy) and the recruitment threshold (recruit busy). The 
results are summarized in Figure 2. The machine state 
of the UC Berkeley trace were determined by the idle-
ness definition of the NOW system. For the Wisconsin 
trace, the default Condor threshold values were used: 
15 minutes for recruitment threshold and 1 minute 
average CPU load 0.3. As shown in Figure 2, 21.3% of 
the time the machines were keyboard busy in the UC 
Berkeley trace. The Condor trace showed similar re-
sults: 24.8% of the time the workstations were key-
board-busy. However, because the default Condor re-
cruitment threshold of 15 minutes is much longer than 
that of the NOW system (1 minute), about 14% more 
busy time was introduced. This busy time is a good 
source for our fine-grain cycle stealing since its re-
source availability is the same as idle machines. 

 For memory availability, the result of the UC 
Berkeley trace is backed up by a study by Acharya, et al 
[13]. With the traces from various institutions they 
showed that most of the time, more than a half of main 
memory is unused and a larger portion of memory is 
available on the machines with larger main memory. 

In our previous work [9], we introduced a new tech-
nique to harvest fine grain idle cycles. We term run-
ning guest jobs, while the user processes are active, 
lingering. Since the owner has priority over guest jobs 
using their personal machine, use of these idle inter-
vals should not affect the performance of the owner’s 
jobs (host jobs).  In other words, we need mechanisms 
to enforce this unobtrusiveness policy. 

 
 
 
 
 
 
 
 

Figure 1: Idle cycles on a non-dedicated machine 

Coarse-grain and fine-grain idle cycles. Idleness is deter-
mined by CPU usage, keyboard/mouse activities and recruit-
ment threshold. A large amount of fine-grain idle cycles 
(empty spaces in CPU usage bar) still exist in non-idle states. 
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Figure 2: Non-idle time and its causes 

Non-idle (busy) time percentages for different causes: CPU 
load (CPU Busy), keyboard/mouse activities (Key Busy) and 
recruitment threshold (Recruit Busy).  
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3. Resource policing 

The efficiency of resource usage can be maximized if 
systems implement fine-grained cycle stealing by leaving 
guest jobs on machine even when resource-intensive host 
jobs start up. However, the host job will be adversely af-
fected unless the guest job’s resource use is strictly lim-
ited. In this section, we summarize our earlier work [10, 
14] on resource policing mechanisms for CPU, memory, 
I/O and Network bandwidth.  

3.1 CPU and memory regulation 

We developed the mechanisms that can allocate only 
unused CPU time and memory to guest jobs. First, a new 
guest priority prevents guest processes from running 
when runnable host processes are present. The change 
essentially establishes guest processes as a different class, 
such that guest processes are not chosen if any runnable 
host processes exist. This is true even if the host proc-
esses have lower runtime priorities than the guest proc-
ess. Note that running with “nice –19” is not sufficient, 
as the nice’d process can still consume between 8%, 
15%, and 40% of the CPU for Linux (2.0.32), Solaris 
(SunOS 5.5), and AIX (4.2), respectively [14].  

Our second mechanism limited guest consumption of 
memory resources. The cost of reclaiming page frames 
from a running process is negligible for clean pages, but 
quite large for modified pages because they need to be 
flushed to disk before being reclaimed. Our approach 
does not impose any hard restrictions on the number of 
physical pages that can be used by a guest process. In-
stead, we implemented a policy that establishes low and 
high thresholds for the number of physical pages used by 
guest processes. We extended the Linux kernel to support 
this prioritized page replacement. Two new global kernel 
variables were added for the memory thresholds, and are 
configurable at run-time via system calls.  

The kernel keeps track of resident memory size for 
guest processes and host processes. Periodically, the vir-
tual memory system triggers the page-out mechanism. 
When it scans in-memory pages for replacement, it 
checks the resident memory size of guest processes 
against the memory thresholds. If they are below the 
lower thresholds, the host processes’ pages are scanned 
first for page-out. Resident sizes of guest processes larger 
than the upper threshold cause the guest processes’ pages 
to be scanned first. Between the two thresholds, older 
pages are paged out first no matter what processes own 
them. These thresholds are usually set very low (5-10% 
of the total memory) so as not to affect memory intensive 
host jobs.  

Similar mechanisms can be applied to most UNIX 
systems including Solaris which uses unified paging 
system for virtual memory and file buffer cache. A 
modest modification, which simply tags file cache 
pages to indicate whether they have been accessed by 
guest processes or host processes, can suffice. 

Both CPU and memory regulation mechanisms re-
quire simple modifications of OS kernel. In general, it 
is harder to gain acceptance for software that requires 
kernel modifications. However, we feel that modest 
kernel modifications are a reasonable solution for two 
reasons. First, we are using the Linux operating system 
as an initial implementation platform, and many soft-
ware packages for Linux already require kernel patches 
to work. Second, the relatively modest kernel changes 
required could be implemented on stock kernels using 
the KernInst technology [15, 16], which allows fairly 
complex customizations of a UNIX kernel at runtime 
via dynamic patch. 

3.2 I/O and network throttling 

To enforce limits on I/O and network bandwidth, 
rate windows were proposed as a simple, portable, and 
effective strategy, analogously to the limits on CPU 
and memory usage. Here, we summarize our rate-
window policies, and the mechanisms that are needed 
to support I/O throttling.  

We identify the presence of host I/O-bound jobs by 
monitoring I/O bandwidth, moving the system into the 
throttled state when host bandwidth exceeds threshhigh, 
and into the unthrottled state when host bandwidth 
drops below threshlow. Note that threshlow is lower than 
threshhigh, providing hysteresis to the system to prevent 
oscillations between throttled and un-throttled mode 
when the I/O rate is near the threshold. The state of the 
system is reflected in the global variable throttled. Note 
that the current host bandwidth is not an instantaneous 
measure; it is measured over the life of the rate win-
dow, defined below.  

Rate windows were implemented using two kernel 
window structures, one for file I/O and one for network 
I/O. Each window structure contains a circular queue. 
The window structure describes the last I/O operations 
performed by jobs in the class (host or guest), plus a 
few other scalar variables.  

We implemented rate windows mechanism via a 
loadable kernel module that intercepts each of the ker-
nel calls for I/O and network communication: read(), 
write(), send(), recv(). Whenever such system functions 
are triggered, we first call rate_check() with the proc-
ess ID, I/O length, and I/O type and then call the 
original system call. The process ID is used to map to 
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an I/O class, and the I/O type is used to distinguish be-
tween file and network I/O. The rate_check() routine 
maintains a sliding window of operations performed for 
each class of service and for the overall system.  

At the time that a guest process attempts to perform 
I/O, we define the window bandwidth, Bw, as the total 
amount of I/O in the window’s operations, including the 
new operation. We define Tw, the window time, as the 
interval from the beginning of the oldest operation in the 
window until the expected completion of the new opera-
tion, assuming it starts immediately. Let Rt be the thresh-
old bandwidth per second for this class. We then allow 
the new operation to proceed immediately if the class is 
currently throttled and: 

  w
t

w

B
R

T
≤  

Otherwise, we calculate the sleep() delay as follows: 

  delay w
w

t

B
T

R
= −  

The kernel then suspends the process for delay time 
units before calling the original I/O system call. 

With several micro benchmarks, we demonstrated that 
I/O and network bandwidth usage of guest jobs could be 
limited effectively to within a few percent of target us-
ages [10]. 

Since this rate windows mechanism is implemented as 
a runtime loadable kernel module, it can be dynamically 
loaded to the regular kernel and enabled without a kernel 
rebuild or reboot. In addition, this system-call intercept 
based mechanism is lightweight and highly portable to 
any POSIX-compliant UNIX system. 

4. System prototype 

We developed a prototype of the proposed Linger-
Longer system. Rather than implementing everything 
from scratch, we leveraged an existing system, Condor 
(version 6.2.0). Whereas Condor’s cycle stealing policy is 
different from ours, it provides general mechanisms for 
guest job scheduling, checkpointing and migration. As a 
result, we could easily integrate our Linger-Longer poli-
cies and supporting modules into Condor.  

The overall prototype of the Linger-Longer system is 
depicted in Figure 3. The leveraged Condor modules are 
as follows1. 

Guest Job Scheduler: this module queues the submit-
ted guest jobs and allocates idle machines to execute 
them. It negotiates with local guest job starters to launch 

                                                        
1  In the Condor system, the modules are named condor_schedd, con-
dor_collector and condor_startd, respectively. 

a guest job on the machine satisfying the resource re-
quirements (OS, CPU speed, memory size and etc.). 

Machine State Monitor: this module periodically 
gathers resource usage (CPU load, available memory 
and keyboard/mouse activity) from each machine and 
determines which machines are idle. 

Guest Job Starter: this module locally handles exe-
cution of guest jobs. It creates processes for guest jobs, 
starts the execution and checkpoints the current state. 
This module has been customized to run a guest job 
with the Linger priority. 

Our prototype also leveraged the Condor job migra-
tion mechanism which is based on checkpointing. In 
Condor, a job starts migration by dumping the current 
process image to the checkpoint server. Then, the im-
age is transferred to the destination machine and the 
execution is resumed where it checkpointed at the 
source machine.  

Two new modules were added to enable Linger-
Longer (shown in gray boxes in Figure 3). The first 
module contains the operating system extensions for 
the Linger priority. In the previous section, we already 
described the policies and their implementation 
mechanisms. To summarize, we implemented a starva-
tion-level priority for CPU, prioritized page replace-
ment for memory and Rate windows for efficient I/O 
and network throttling.  

The second module is the Adaptive Migration Man-
ager. This module replaces the existing migration poli-
cies of Condor with our cost/benefit based migration 
scheme. As described in [11], a guest job can linger 
even when the machine where the job is running be-
comes non-idle and migrate to another machine only 
when the benefit outweighs the migration cost. To 
measure the required parameters for Linger-Longer 
migration, another resource state monitor has been 

 

Figure 3: Linger-Longer system prototype 
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integrated in this module. The resource monitor can 
measure current CPU and physical memory usage for 
local jobs and guest jobs.  

To enable the Linger-Longer policy, we first config-
ured the local guest job starter to execute guest jobs at the 
Linger priority. All the resource requests by guest jobs 
will be handled by our operating system extensions to 
protect the performance of local host processes. In addi-
tion, existing migration (or preemption) was disabled. 
Rather, the Adaptive Migration Manager directly forces 
Condor to migrate a guest job by invoking the con-
dor_vacate command. 

The Linger-Longer system also can emulate coarse-
grain cycle stealing policies such as Immediate-Eviction 
and Pause-and-Migrate as well as run new fine-grain 
cycle stealing policies such as Linger-Longer and Linger-
Forever. 

5. Performance evaluation 

Now, using the Linger-Longer prototype that inte-
grates our proposed policies and mechanisms, we com-
pare overall performance between the fine-grain cycle 
stealing policies and the coarse-grain cycle stealing poli-
cies. 

5.1 Workload 

This section first describes the configuration of a net-
worked machines, host job workload and guest job sets 
used in the experiment.  

The Linger-Longer system was run in an eight ma-
chine Linux cluster. Each machine in the cluster has a 
233 MHz Pentium II processor, 192 MB of memory and 
a 6 GB IDE hard disk. All the machines are connected by  
two networks, a 100 Mbps switched Ethernet and a 1 
Gbps Myrinet switch. The machines are running the 
Linux 2.2.5 kernel with our Linger priority kernel exten-

sions. Each guest limit parameter was set to approxi-
mately 10% of the total resource: 20 Mbytes for high 
memory limit, 10 Mbytes for low memory limit, 500 
Kbytes/sec for both disk I/O and network bandwidth. 

Modeling an interactive user workload on a per-
sonal machine is very difficult if not impossible. Also, 
having real computer users use the test machines is not 
feasible since the workload cannot be accurately repro-
duced to allow comparisons of different policies. 
Therefore, we generated the local workload based on 
the trace data which was used for the simulations (UC 
Berkeley trace). However, in this experiment, a re-
source usage from the trace invokes a corresponding 
task script. We used two scripts to simulate interactive 
users and to consume memory resources. First, Musbus 
scripts were used to emulate an computer programmer. 
This script is a sequence of subtasks such as editing 
(ed), compiling (make and gcc), copying (cp) and file 
listing (ls). The mapping between resource usage and 
script-based interactive tasks are shown in Figure 4. 
Every minute, a new local task is generated. For CPU 
usage and keyboard activity, a corresponding Musbus 
based script is selected and executed. The number of 
files to be compiled is adjusted to generate 1 minute of 
CPU usage. An editing subtask is invoked for the given 
keyboard activity duration. Second, to emulate local 
memory usage, a simple memory loader program 
(Memload) runs separately from the Musbus task. It 
allocates the corresponding size of memory, and loads 
and stores to the various memory locations. 

As guest jobs, we use a set of scientific applications 
from the NAS NPB benchmark [17]. A serial version 
of the benchmark was selected since, in this experi-
ment, we focus on sequential guest jobs. We chose 
three applications with three different data sizes: 
mg.W, sp.A and lu.B, which require 8, 65 and 165 MB 
memory respectively (A job name was denoted as ap-
plicaton_name.data_size). We also varied job duration 
by changing the number of iterations. Various combi-
nations of job size and duration are shown in Table 1.  

Among 9 combinations, we selected 5 representative 
types of guest jobs. Also, we group a number of identi-
cal jobs into a job set. The job set size was set such that 

 

Application.data_size  
(memory size)  

mg.W 
(8MB) 

sp.A 
(65MB) 

lu.B 
(165M) 

1 min  
(1.5 min) 1  (4) 

10 min  3  

30 min 2  5 

Table 1: Guest job sets with various job size and 
duration 

 

Figure 4: Interactive local workload (host jobs) 
generation 
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all guest job sets could finish in a similar time although 
individual jobs require different CPU time. This was in-
tended to minimize the performance changes due to 
changes in local resource usage over time.  We chose 1 
cluster hour for the job set duration. Hence, the job set 
size is 480 for 1 minute jobs, 320 for 1.5 minute jobs, 48 
for 10 minute jobs and 16 for 30 minute jobs. 

The selected five guest job sets are (a job set name is 
denoted in the form of applica-
tion.data_type.duration.set_size): 

Guest job set 1 (small, short): mg.W.1m.480 
Guest job set 2 (small, long): mg.W.30m.16 
Guest job set 3 (medium, medium): sp.A.10m.48 
Guest job set 4 (large, short): lu.B.1.5m.320 
Guest job set 5 (large, long): lu.B.30m.16 

With these five guest job sets, we compare the cluster 
performance between the fine-grain cycle stealing pol-
cies: Linger-Longer(LL) and Linger-Forever(LF)2 , and 
the traditional coarse-grain cycle stealing policies: 
Immediate Eviction(IE) 3  and Pause-and-Migrate(PM). 
For IE and PM, the default thresholds of the Condor sys-
tem were used to define idle machines; 1 minute average 
CPU load is below 0.3 and no keyboard/mouse activity 
has been detected for the past 15 minutes. This large re-
cruit time is typically required for coarse-grain cycle 
stealing since its obtrusive migrations should be                                                         
2 Linger-Forever is the same as Linger-Longer with no migrations. 
3 Immediate Eviction sets the pause time to zero. 

since its obtrusive migrations should be minimized. In 
contrast, for Linger-Longer and Linger-Forever, we 
lower the keyboard idle time to 1 minute because job 
migration is unobtrusive thanks to our resource regula-
tion mechanisms. For Pause-and-Migrate, a guest job 
is suspended for 10 minutes before migration. 

5.2 Experiment results 

Finally, we present a head-to-head performance 
comparison between our fine-grain cycle stealing and 
traditional coarse-grain cycle stealing. The experi-
ments ran 5 different guest job sets with 4 different 
policies (LL, LF, IE and PM) in an eight machine 
Linux cluster.  

We first analyze the cluster performance for the 
guest job sets using five metrics. Average completion 
time is the average time to completion of a guest job. 
This includes waiting time before initially being exe-
cuted, paused time, and migration time. Variation is 
the standard deviation of job execution time (time from 
first starting execution to completion). Family Time is 
the completion time of the last job in the family of 
processes submitted as a group 4 . Throughput is the 
average amount of processor time used by guest jobs 

                                                        
4 This metric is intended to capture response time of a parameter-sweep 
style parallel application as its results can be used only after all its paral-
lel tasks finish.  

  Idle LL LF PM IE 
Avg Job Time 2148 3804 3732 6694 6377 

Variation 2.3% 1.1% 2.2% 52.9% 4.6% 
Family Time 4206 7528 7376 13315 12370 
Throughput 8.0 4.5 4.6 2.5 2.7 

mg.W.1m.480 

Migration 0 0 0 7 13 
Avg Job Time 2873 4398 4083 6789 6124 

Variation 3.8% 4.2% 8.0% 65.8% 1.9% 
Family Time 3887 6870 6230 11674 10340 
Throughput 8.0 4.5 5.0 2.7 3.0 

mg.W.30m.16 

Migration 0 9 0 10 16 
Avg Job Time 2145 3239 3232 5070 4995 

Variation 1.6% 2.8% 15.1% 7.8% 7.8% 
Family Time 3646 5842 5828 9496 9374 
Throughput 8.0 5.0 5.0 3.1 3.1 

sp.A.10m.48 

Migration 0 4 0 7 14 
Avg Job Time 1986 3468 3478 6287 5919 

Variation 0.0% 0.0% 0.7% 3.0% 1.5% 
Family Time 3861 6814 6836 12469 11728 
Throughput 8.0 4.5 4.5 2.5 2.6 

lu.B.1.5m.320 

Migration 0 2 0 7 14 
Avg Job Time 2622 4223 3899 5950 5446 

Variation 0.3% 23.6% 47.5% 61.0% 36.6% 
Family Time 3501 6733 6080 10190 9160 
Throughput 8.0 4.2 4.6 2.7 3.1 

lu.B.30m.16 

Migration 0 9 0 8 10 

Table 2: Guest performance for different job sets 
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per second when the number of jobs in the system was 
held constant.  Migration is the total number of process 
migrations observed. The results are summarized in 
Table 2. Notice that the column with the policy Idle is 
used as the base case where guest jobs were run on a fully 
idle 8 machine cluster. 

For the average job time, LF is 60% to 70% better 
than IE for most guest job sets. However, in the case of 
lu.B.1.5m.320, the gain decreases to around  

50%. This is due to the fact that large size guest jobs 
occasionally struggled to get enough memory on some 
non-idle machines (recall that lu.B requires 165 MB of 
memory where the total memory of each machine is 192 
MB). LF performs slightly better than LL since it can 
consume almost all the available cycles from both idle 
and non-idle machines and hence reduce the waiting 
time in queue. 

For the family time and the throughput, the perform-
ance gain of LL and LF is similar to that for the average 
job time, a 60% to 70% gain for LF and 50% to 70% for 
LL for most cases. Again, the improvement is smaller for 
lu.B.30m.16, only 50% for LF and 36% for LL. However, 
this difference is not surprising since, for large-memory 
guest jobs, fine-grain cycle stealing will be limited by the 
available memory. The smaller variation of LL demon-
strates that guest jobs were serviced more fairly than LF. 

The number of migrations is also measured for the 
different policies and guest job sets. For the short dura-
tion guest jobs (mg.W.1m and lu.B.1.5m), LL reduces 
migrations significantly since guest jobs linger on non-
idle nodes and complete before getting to the break-even 
point between cost and benefit. For the large duration 
jobs (mg.W.30m and lu.B.30m), LL migrates almost the 
same number of guest jobs as PM. PM migrates fewer 
guest jobs than IE since PM avoids unnecessary migra-
tions when a non-idle period of a machine is shorter than 
a pause time. 

We now turn our attention to host job delay. Through-
out this paper, we have strived to limit host job delay 

caused by guest jobs. So, every 1 minute, we measured 
the delay of two host tasks, Musbus and Memload, 
which have been described early in this chapter. For 
Musbus, we computed delay by subtracting the base 
Musbus time from the measured time. The base time 
for all possible configurations (CPU usage for every 
10% between 0 to 100%, both with and without edit 
script) was measured by running Musbus on a fully idle 
node. 

The average delay for each guest job set is shown in 
Table 3. Musbus without guest jobs produced some 
delay (0.68%) as shown in the first column of the table. 
It means that the 0.68% delay is beyond the measure-
ment precision. Interestingly, for small and medium 
size guest jobs, LL and LF exhibits less delay than PM 
and IE. 

A histogram of Musbus delay with mg.W.30m.16 is 
shown in Figure 5. For PM and IE, there exist more 
delays, between 6% - 12%, than for LL and LF. These 
delays were caused by job migration in PM and IE due 
to lack of resource prioritizing mechanisms. In LL and 
LF, migration itself uses only idle resources at the Lin-
ger priority. 

 Delay (%) LL LF PM IE 
No Guest musbus  0.68 0.68 0.68 0.68 

 memload  0.20 0.20 0.20 0.20 

mg.W.1m.480 musbus  0.82 0.88 1.44 2.05 

 memload 0.25 0.24 0.32 0.42 
mg.W.30.16 musbus  1.03 1.10 1.85 1.85 

 memload  0.24 0.24 0.41 0.43 
sp.A.10m.48 musbus  1.16 1.11 2.20 2.34 

 memload  0.26 0.25 0.46 0.45 
lu.B.1.5m.320 musbus  2.19 1.91 1.77 1.92 

 memload  0.14 0.27 0.20 0.10 
lu.B.30m.16 musbus  2.81 2.98 2.66 2.20 

 memload  0.24 0.44 0.22 0.17 

Table 3: Host job slowdown for different guest job sets 
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For large size guest jobs (lu.B), LL and LF shows 
more Musbus delay than PM and IE. The delay histo-
gram for the guest job set lu.B.30m.16 is shown in Figure 
6. In the histograms for LL and LF, there are some in-
stants whose delay exceeded 20%. These occasional de-
lays were caused since Musbus and the large memory 
guest jobs were running at the same time. However, no 
such noticeable delays were detected for Memload as 
shown in Figure 7. This demonstrates that our current 
prioritized memory replacement effectively protected the 
memory pages of Memload. In contrast, Musbus was 
occasionally delayed since our memory replacement 
mechanism could not prevent a large memory guest job 
from sweeping the file buffer cache (recall that Musbus 
contains a compile workload). However, despite the fact 
that lu.B was very aggressive in using memory, these 
noticeable delays occurred less than 5% of the time. 

Although most of the metrics for this experiment 
match the estimated performance gain in the simulation 
study in [18], the throughput (the equivalent number of 
idle machines) does not. In the prototype experiment, the 
equivalent idle machines are 4 to 5 on an 8 machine clus-
ter (50% to 62%) whereas they were 52 to 55 on the 64 
machine cluster simulations (80% to 85%). This is due to 
the fact that the mean CPU utilization in the traces used 
had a higher load than the traces used in the simulation 
study. We believe that increasing the number of test ma-

chines by using more trace data will produce results 
closer to the simulations. 

6. Related work 

Previous work on exploiting available idle time on 
workstation clusters used a conservative model that 
would only run processes when the local user was away 
from their workstation, and no local processes were 
runnable.  Condor [2], LSF [3], and NOW [11] use 
variations on a “social contract” to strictly limit inter-
ference with local users. However, even with these 
policies, there is some disruption of the local user when 
they return since the guest process must be evicted and 
the local state restored. The Linger-Longer approach 
permits slightly more disruption of the user, but tries to 
limit the delay to an acceptable level.  

A system that used non-idle workstations was the 
Stealth distributed scheduler [19]. It implemented a 
priority-based approach to running guest processes. 
However none of the tradeoffs in how long to run guest 
processes, or the potential of running parallel programs 
were investigated. Commercial software from Entropia 
[20] also supports fine-grain cycle stealing on desktop 
PCs running MS Windows. However, it is not clear 
how unobtrusiveness is provided.  

In the area of operating system support for provid-
ing resource management, research and commercial 
operating systems have provided similar functionality. 
In IRIX [21], the Miser feature provides deterministic 
scheduling of batch jobs. Miser manages a set of re-
sources, including logical CPUs and physical memory, 
that Miser batch jobs can reserve and use in preference 
to interactive jobs. This strategy is the opposite of our 
approach, which promotes interactive jobs. 

Verghese et al [22] proposed a way to isolate the 
performance of applications running on an SMP sys-
tem. While their approach requires changes to similar 
parts of the operating system, their primary goal was to 
increase fairness to all applications, while our goal is 
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to create an inherently unfair priority level for guest 
processes. 

Aron and Druschel’s soft timers [23] provide a way to 
implement rate-based clocking of network protocols.  
Although their motivation, avoiding the penalty of TCP 
slow-start for small file transfers over high delay-
bandwidth networks, is different than ours, limiting the 
fraction of the server’s network bandwidth that a single 
http client or virtual host server gets, both techniques can 
be used to achieve similar ends.   

Also, many have studied general quality of service 
(QoS) support for server applications. The reservation 
domains of Eclipse [24] and Resource Containers [25] 
can group a set of processes or threads as a unit for re-
source scheduling. This is similar to our job classes. The 
Nemesis kernel [26] also provides QoS with rate-based 
real-time scheduling for I/O as well as CPU. However, 
those systems are integrated deep into the kernel, while 
our mechanism resides between the kernel and the user-
level I/O library and can be loaded and unloaded at run-
time. Our mechanism is lightweight since we do not add 
any extra queues for resource scheduling. Our mecha-
nism just intercepts resource requests, keeps track of the 
rate, and puts them into sleep for an appropriate time if 
the requests seem to exceed the limit. However, our rate 
windows mechanisms can be used as a lightweight and 
portable scheduling mechanism to support those con-
cepts. 

The idea of regulating network traffic rates has been 
extensively studied. Congestion avoidance schemes such 
as leaky bucket [27] and its variants [28, 29] use averages 
over various time intervals to determine which traffic is 
within its negotiated bandwidth.  However, since these 
approaches are designed for policing traffic at routers, 
they must drop non-conforming traffic. Contrarily, since 
our approach is at the source, we can delay traffic to en-
force bandwidth limits. 

The idea of resource partitioning using virtual ma-
chines has been popular both in the 1970s [30] as well as 
in recent projects such as Disco [31].  The key difference 
is that while virtual machines provide hard isolation of 
resources between VMs at considerable runtime over-
head, our approach is a simple extension to an existing 
operating system or runtime library. 

 
7. Conclusions and future work 

In this paper, we presented the design, implementa-
tion, and performance of fine-grain cycle stealing along 
with a suite of resource policing mechanisms that provide 
the vital safety net for unobtrusiveness.  

We implemented a prototype fine-grain cycle stealing 
system, Linger-Longer. The operating system extension 
for starvation-level CPU priority, prioritized memory 

replacement and Rate windows for I/O and network 
throttling have been integrated to the prototype. Also, a 
new adaptation migration module was added. For the 
guest job scheduling, migration and checkpointing 
mechanisms, we leveraged the Condor system.  

Using the prototype, we conducted the experiments 
on a desktop Linux cluster. We ran a group of guest job 
sets from NPB benchmark, with various sizes and du-
rations. The local workload was generated using Mus-
bus benchmark, a script based interactive workload. 
The configuration of each instance of Musbus was 
driven by the resource usages of the UC Berkeley trace.  

The results demonstrated that fine-grain cycle steal-
ing can significantly increase efficiency in using idle 
cycles while limiting obtrusiveness to machine owners. 
Fine-grain cycle stealing policies, LL and LF, im-
proved the cluster throughput by 50% to 70% for most 
cases. However, this gain can be reduced to 50% if we 
run guest jobs that require more than 50% of total 
memory of the machine. For all the cases, acceptable 
unobtrusiveness was achieved; on the average, the host 
job slowdown was limited within 3%. 

To measure the benefits of Linger-Longer in a more 
prevalent PC Grid environment, we are currently con-
ducting experiments using Window-based interactive 
workload that includes web browsers and GUI-based 
text editors. 
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