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A Fast Free-viewpoint Video Synthesis Algorithm for Sports Scenes

Jun Chen, Ryosuke Watanabe, Keisuke Nonaka, Tomoaki Konno, Hiroshi Sankoh, and Sei Naito

Abstract—In this paper, we report on a parallel free-
viewpoint video synthesis algorithm that can efficiently recon-
struct a high-quality 3D scene representation of sports scenes.
The proposed method focuses on a scene that is captured by
multiple synchronized cameras featuring wide-baselines. The
following strategies are introduced to accelerate the production
of a free-viewpoint video taking the improvement of visual
quality into account: (1) a sparse point cloud is reconstructed
using a volumetric visual hull approach, and an exact 3D
ROI is found for each object using an efficient connected
components labeling algorithm. Next, the reconstruction of a
dense point cloud is accelerated by implementing visual hull
only in the ROIs; (2) an accurate polyhedral surface mesh is
built by estimating the exact intersections between grid cells
and the visual hull; (3) the appearance of the reconstructed
presentation is reproduced in a view-dependent manner that
respectively renders the non-occluded and occluded region
with the nearest camera and its neighboring cameras. The
production for volleyball and judo sequences demonstrates the
effectiveness of our method in terms of both execution time and
visual quality.

I. INTRODUCTION

Free-viewpoint video (FVV) is a well-known technique
that provides an immersive user experience when viewing
visual media. Compared with traditional fixed-viewpoint
video, it allows users to select a viewpoint interactively and
is capable of rendering a new view from a novel viewpoint.
Since a virtualized reality system [1] that distributes 51
cameras over a 5 m dome with controlled lighting and well-
calibrated cameras was introduced, FVV has been a long-
standing research topic in the field of computer vision rang-
ing from model construction of a static object for films [2]
to the generation of dynamic object models for sports scenes
[3]-[5]. Moreover, this has not been confined to academia,
the companies LiberoVision, Intel, and 4DViews also attach
importance to the technique and have been providing visual
effects applications for various purposes.

Techniques for rendering a free-viewpoint video for sports
scenes from multiple cameras in an uncontrolled environment
can be categorized into two classes: billboard-based [6]—
[10] and model-based methods [11]-[17]. Billboard-based
methods construct a single planar billboard for each object,
acquire the visual texture from the nearest camera, and
estimate the 3D position of each object using geometric
properties among the cameras [6] or utilize a deep learning
based method [18]. The billboards rotate around a specific
axis with the movement of the viewpoint providing a walk-
through and fly-through experience. It achieves good results
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with very little overhead incurred in the construction process.
However, the transition between views is not smooth because
the billboard is constructed only for the viewpoint where
a camera is placed. Another issue to overcome with these
methods is occlusion, that is, multiple objects obscure each
other in each camera. Model-based methods describe a scene
by means of a 3D mesh [11] or point clouds [12]. The appear-
ance of a scene is reproduced by mapping a corresponding
texture onto the 3D model. These methods offer the function-
ality of full freedom of virtual view and continuous change
in appearance. Visual hull [19], [20] is a 3D reconstruction
technique that approximates the 3D model of an object by
back-projecting foreground silhouettes into 3D space. With
the advantage of low algorithmic complexity and robustness
on calibration, it is often used in FVV production. However,
the computation time and memory consumption grow rapidly
as the resolution of a pre-defined 3D volume increases. The
shape-from-photo-consistency [13], [14] computes a more
accurate 3D approximation of the scene, but it is usually
sensitive to calibration errors and object textures. There are
also some hybrid methods [15]-[17] that combine photo-
consistency constraints, silhouette constraints, and sparse
feature correspondence to reconstruct a scene with a high
degree of accuracy. However, the simultaneous process of
several constraints makes them impossible to accomplish a
production in a short time.

The goal of our research is to find a solution that recon-
structs a 3D scene representation for sports event efficiently
and improves the visual quality of synthesized virtual images.
To achieve it, we propose a GPU-based parallel FVV synthe-
sis algorithm whose main contributions are: (1), a coarse-
to-fine volumetric visual hull reconstruction is performed to
reduce the computation time of the 3D shape approximation
for a large space; (2), an accurate polyhedral mesh is built
by estimating the exact intersections between grid cells and
the visual hull boundary, which smooths the mesh surface
while retaining the robustness of the visual hull; (3), a view-
dependent rendering method is performed to improve the
visual quality of synthesized images, in which the nearest
camera renders the non-occluded parts while its neighboring
cameras render the occluded parts. In the following sections,
we will explain our method in detail, demonstrate its perfor-
mance by comparing it to existing algorithms with volleyball
and judo sequences, and discuss the influence of parameters
on time complexity.

II. PROPOSED PARALLEL ALGORITHM

Fig. [1| represents the processing flow of our algorithm.
It comprises four steps: volumetric visual hull reconstruc-
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Fig. 1: Overview of our FVV synthesis method. (a) A color image and its silhouette. (b) Volumetric visual hull reconstruction.
(c) Surface polygonization. (d) Visibility detection (e) View-dependent rendering.

tion, surface polygonization, visibility detection, and view-
dependent rendering. In addition to these, some pre-processes
such as camera calibration and silhouette extraction are
carried out.

A. Pre-processes

In our setting, the cameras remain static while recording
the scene. This allows the cameras to be calibrated in advance
using the camera model proposed by Jean-Yves Bouguet
[21]. What should be noted here is that each camera is
calibrated individually without the involvement of stereo
camera calibration.

A silhouette is a binary image that is obtained by separat-
ing the observed objects from the background. Since player
occlusion often occurs during sports events, the accuracy
of the existing segmentation algorithms fails to meet the
demands of FVV production. To solve this problem, we
propose an adaptive background subtraction method. Our
method first performs Mask R-CNN [22] to predict objects’
silhouettes in an image and then generates a distance map
that represents the shortest distance from a pixel to the
predicted region. In the next step, we extract objects’ silhou-
ettes using a background subtraction method [23] in which
thresholds for separation are adaptively updated according to
the shortest distance in the distance map. Fig. 2] (a) shows the
foreground region extracted by Mask R-CNN in which some
objects are not segmented correctly. Fig. [2] (b) is a distance
map where the darker color represents the distance nearer to
the predicted silhouettes. Fig. [2| (c) shows the segmentation
results obtained by the conventional method [23]. It can
be seen that the spectators in the stand are separated from
the background because their poses change dynamically
during recording. Fig. 2| (d) presents the segmentation results
obtained using our proposed method. It can be seen that
the noise in the conventional method is removed while the
missing parts in Mask R-CNN are recovered.

B. Volumetric Visual Hull Reconstruction

To approximate the 3D shape of an observed object,
the volumetric visual hull first discretizes a pre-defined
3D volume into voxels, and then tests whether a voxel is
occupied or not by projecting it onto all the silhouettes. The
voxel which falls outside the silhouettes is considered to be
an unoccupied one. While it is robust and efficient, the voxel
density in a pre-defined 3D volume seriously affects the
accuracy of a visual hull. A higher density produces a better

Fig. 2: Silhouette extraction. The red rectangular is the
enlarged views of a selected region. (a) Predicted foreground
region by Mask-RCNN. (b) Distance map. (c) Segmentation
by the fixed-parameter background modeling method. (d)
Segmentation by the proposed method.

shape approximation. However, along with the increasing
of voxel density, the memory consumption and execution
time also increase sharply. To solve these problems, we
propose a coarse-to-fine visual hull construction method in
which a rough 3D shape approximation is carried out with
low-resolution voxels and then an accurate reconstruction is
performed on the ROIs with high-resolution voxels.

1) Visual Hull Reconstruction with Sparse Voxels: In this
step, we approximate the 3D shape of an observed scene with
sparse voxels defining the whole scene as a pre-defined 3D
volume. Fig. [3] (a) demonstrates a sparse reconstruction for
a volleyball sequence in which the interval of voxels along
the z, y, z—direction is 50 mm, while the number of voxels
for occupy testing and occupied are 2.3 x 107 and 9.6 x 103,
respectively.

2) Noise Filtering and 3D ROI Extraction: Once the
sparse volumetric visual hull is obtained, the individual
objects are clustered using a connected components labeling
algorithm [24]. The original algorithm is designed for a 2D
image. Here, we extend it to 3D space. We express the
pre-defined 3D volume as a binary volume in which only
the occupied voxel is denoted as ON state. The volume is
divided into independent blocks, and each block is assigned
to different GPU processors to perform local and global
labeling. It should be noted that 26-adjacency is used in both
the local and global label stages. The minimum 3D bounding
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(a) Sparse volumetric visual hull
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(b) Dense volumetric visual hull

Fig. 3: Volumetric visual hull.

box for a connected point set is found by traversing the final
label map. Fig. ] shows a clustering result in which each
object is assigned a unique color as well as showing the
minimum bounding box of each object. The reconstructed
visual hull may contain noise that comes from imperfect
silhouettes. To remove noise, we establish a criterion taking
into account the number of voxels in one point set as
expressed in Eq. ().

s - {OFF,
ON,

if Ty < N(Sp) < Ty
otherwise '

(D

Here, N(S;) expresses the number of voxels in the ¢—th
point set S;. We remove a point set if the number of voxels
of the point set is less than a specified voxel number T, or
larger than another specified voxel number 7T7,;.

3) Visual Hull Reconstruction with Dense Voxels: In this
step, we construct a high-density point cloud for each object
considering each 3D ROI as an individual pre-defined 3D
volume. Fig. [3] (b) shows the dense reconstruction for the
same volleyball sequence in which the interval of voxels
along the x,y, z—direction is 20 mm, while the number of
voxels for occupy testing and occupied is 3.6 x 107 and
1.4 x 105, respectively. By comparing Fig. [3| (a) and (b), it
can be seen that the proposed method increases the number
of occupied voxels around 15-fold in the case where the
number of voxels for testing is similar.

C. Surface polygonization

The volumetric visual hull can be represented by a set of
grid cells, in which the eight vertices of a cell may be in same
or different states. Cells with different vertex states intersect
with the visual hull, while the others are inside or outside
the visual hull. The intersection, also called isosurface, cuts
the edge, the two endpoints of which have different states.
To obtain the exact isosurface, we project the intersected
edge onto each image plane as demonstrated in Fig. [3] (a).
The projection of the vertex with ON state P,, falls in
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Fig. 4: 3D ROI extraction for sparse point cloud.
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Fig. 5: Exact isovalue computation. (a) Project the edges of
a grid cell onto image plane. (b) Find the exact intersection
using Bresenham’s line algorithm.

the foreground in all the silhouettes, while the projection
of the other vertex P, falls in the background in at least
one silhouette. For a specific silhouette, We find the exact
intersection between the projection line with a silhouette
using Bresenham’s line algorithm. The last foreground pixel
when traversing the projection line is considered to be
intersection pixel denoted as P; (shown in Fig. E] (b)). The
isovalue )\; in camera i can be calculated by the following
equation:

A = M
‘ ||Poff_Pon||
To guarantee the polygonal mesh is the maximum approxi-
mation of object’s shape, we define the isovalue A for a grid
cell edge as the minimum of intersections A\;(i = 1,--- , N)

in all cameras as represented by the following equation. [NV
is the number of cameras.

)\:min{)\17)\2,---7)\N}. (3)

2

Once the isovalue for each grid cell is obtained, the isosur-
face is built by following the configurations of the marching
cubes algorithm. Finally, we express the surface using trian-
gles.

D. Visibility Detection

To determine the visibility of a specific camera i, we
perform two operations including the computation of the
depth image and determination of occlusion.

1) Computation of depth image: We project each triangle
on an object surface onto the image plane of camera ¢ to
form a 2D triangle. The depth ‘DJ of a pixel j that is
bounded by the m—th 2D triangle is assigned the distance
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Fig. 6: System overview.

(a) The first content (b) The second content

Fig. 7: The input image of the Volleyball contents.

from its corresponding 3D triangle to the camera center.
After projecting all the triangles, the depth ‘D7 of a pixel j
is determined by Eq. @).

ipi :min{iD{,iD;--. ,iD{VI}. @)

Here, M expresses the number of 3D triangles corresponding
with pixel j. The upper image in Fig. [T] (d) shows the
computed depth image, in which the darker color indicates
that the distance to the camera center is greater. To find the
pixels bounded by a triangle, we assume that a triangle is
orientable and the bounded pixel is on the same side of each
edge.

2) Visibility detection: The visibility of each triangle in
each camera is tested by comparing the distance from the
triangle to a camera plane with the cached value in the depth
image. If the difference is larger than a threshold T, we
consider that the triangle is occluded. The bottom image in
Fig. [T] (d) presents an occlusion map of a specific camera
where the occluded parts are shown in grey. It should be
noted that 7, is assigned a high value in our implementation
so that the self-occlusion is ignored.

E. View-dependent Rendering

When users experience FVV, the 3D coordinate and the
direction of a virtual viewpoint are calculated. The uppermost
reference camera for rendering is identified as the nearest
camera by calculating the distance from the virtual viewpoint
to each camera. Coupled with the occlusion maps, the non-
occluded parts are rendered by the uppermost reference
camera, while the neighboring cameras render the occluded
regions.

III. EXPERIMENTS

A. Visual quality evaluation

To demonstrate the performance of our method, we com-
pared it to two approaches. The first one [6] is a billboard-
based method that reconstructs a billboard for each object

including an occluded object by employing a rough 3D
model. The second one [20] is a typical 3D model-based
method that approximates the object shape using visual hull
and builds the mesh representation using the conventional
marching cubes algorithm.

We initially evaluated the proposed method with volleyball
sequences that are captured with ten synchronized cameras.
The resolution of each camera was 3840 x 2160, and the
frame rate is 30 fps. The target space for reconstruction was
set to 18 meters wide, 18 meters deep, and 9 meters high.
Fig. [6] shows the camera configuration in the stadium and
recording environment. The camera threshold in [6] for the
reconstruction of a rough 3D shape is 9, while the isovalue
for isosurface extraction in [20] is 0.5. The voxel size in all
the three methods is 2cm x 2em x 2 em. Fig. [7] shows the
input images of two volleyball contents captured by camera
01. It can be seen that the players in the red rectangular
are occluded. Fig. [§] and [9] demonstrate virtual viewpoint
images generated by the three methods. The top row shows
the synthesized representations of the whole scene, while the
bottom row presents reconstructed models (2D billboard or
3D polygon mesh) and close-up views. The virtual viewpoint
images are rendered mainly by camera 01 because it is the
camera nearest to the virtual viewpoint. First, let us focus
on the results by [6] (shown in Fig. [§] (a) and [9] (a)). The
binary 2D billboard on the left bottom illustrates that this
method can estimate the pose of an object reasonably, while
the close-up view on the right bottom shows that some
occluded regions failed to be rendered. Next, let us look
at the results by [20] (shown in Fig. [§] (b) and [9] (b)). We
found that [20] produces jagged artifacts in the surface of
the reconstructed polygonal mesh, which affect the quality
of rendering. From the close-up view, it can be seen that
black noise exists in the object boundary. Furthermore, the
appearance of the occluded area is misaligned. As for the
results by our approach (shown in Fig. |§| (c) and |§| (c)), it
can be observed that the reconstructed polygonal mesh is
smooth, while the color appearance of occluded regions was
appropriately reproduced.

A judo sequence that is captured with sixteen synchronized
cameras was also employed to evaluate the visual quality
of virtual images synthesized using the proposed method.
The resolution of captured images is 1920 x 1080 while the
predefined 3D volume is 5m X 6m x 2.1 m. For all the
methods, voxel size for 3D reconstruction is kept at 4 cm x
4cm x 4cem. The camera threshold in [6] and the isovalue
in [20] are 14 and 0.5, respectively. Fig. [I0] (a) presents the
input images of a selected camera, which were captured at
different times. Fig.[T0](b), (c), and (d) show the synthesized
images obtained by the three methods with a virtual stadium
model. The red rectangular on the virtual playground is a
point of reference, allowing people to sense the difference
among the synthesized images. Concerning the results in (b),
it can be seen that the position and shape of reconstructed
objects are different from those obtained by 3D modeling
methods even though their virtual viewpoints are the same.
The reason for this phenomenon is that the objects in (b)
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Fig. 8: Synthesized FVV of the first volleyball sequence viewing from a virtual viewpoint. (a) result by [6]. (b) result by
[20]. (c) result by our method. The left bottom figure of (a) is reconstructed binary 2D billboard while the left bottom figure

of (b) and (c) are reconstructed 3D polygonal mesh.
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Fig. 9: Synthesized FVV of the second volleyball sequence viewing from a virtual viewpoint. (a) result by [6]. (b) result
by [20]. (c) result by our method. The left bottom figure of (a) is reconstructed binary 2D billboard while the left bottom

figure of (b) and (c) are reconstructed 3D polygonal mesh.

are represented by 2D billboards that cannot describe the
exact 3D pose of each object. Regarding the results in (c),
the boundary of the reconstructed objects is jagged. The
imprecise polygonization in [20] decreases the realistic visual
effect. The observation from (c) is that the reconstructed
model retains the same pose with those obtained by [20]
while the object boundary is smooth and natural.

B. Execution time evaluation

In the production of FVV, steps (B)—(D) are accelerated
by executing them in parallel on a GPU board on the server
side, while step (E), rendering, runs on the client side.
To achieve high computational efficiency, we grab all the
memory the production needs from GPU immediately at
startup of the application. The data transfer between CPU and
GPU and processes for production are managed separately
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(a) Images captured at different time by a selected camera

(d) Synthesised images by the proposed method

Fig. 10: Synthesized FVV of a judo sequence with a virtual stadium model

TABLE I: Execution time of production in milliseconds.

\ \ [6] | [20] ] proposed |
Ist Volleyball content 15650.15 | 1411.59 36.39
2nd Volleyball content | 14006.47 | 1436.17 33.66
Judo content 956.58 17.73 7.30

by two CPU threads. The reference methods, [6] and [20],
are implemented in the same manner. We use a PC with
Intel(R) Core(TM) i7-6700K CPU, 4.00 GHz & 4.00 GHz,
32.0 GB RAM, NVIDIA Geforce GTX 1080Ti and Windows
7 Professional Service Pack 1.

Table [] shows the execution time for the processes in
CUDA excluding the time taken for device memory allo-
cation and data transfer when the voxel sizes for sparse
and dense volumetric visual hull approximation for the
three sets of content are respectively (50 mm,20mm),
(50mm,20mm) and (80 mm,40mm). The reported exe-
cution time is the average over 200 continuous frames to
remove any fluctuations caused by the different distributions
of the athletes. The creation of 2D billboards swamped the
computation time of [6]. It created 130 and 32 billboards for
the volleyball and judo sequences, respectively. As for [20],
the noise filtering is the most time-consuming component
that contributes to the production and accounted for around
90% and 50% for the volleyball and judo sequences, respec-
tively. The different percentages indicate that the execution
time changes significantly as the resolution of the pre-defined

TABLE II: Execution time for each process in milliseconds.

\ [ Ist V [ 2nd V | Judo

(B-1) Sparse visual hull 0.54 0.58 0.06
(B-2) Noise filtering & 3D ROI extraction | 21.49 19.75 2.11
(B-3) Dense visual hull 1.23 1.13 0.23
(C) Polygonization 3.90 3.67 0.65
(D-1) Computation of depth image 5.93 5.52 2.99
(D-2) Visibility detection 3.30 3.01 1.26

volume increases. Comparing these results, the proposed
method can be executed more quickly than the other meth-
ods. Moreover, it demonstrated consistent performances for
the three sequences. The average execution times for each
of the production processes are shown in Table These
times indicate that the noise filtering and ROI extraction still
consume the most time, especially for a sports event taking
place in a large space.

C. Discussion of parameters

To clarify the effect of voxel sizes on execution time, we
performed another two experiments with the first volleyball
sequence. In the first experiments, we conducted FVV pro-
duction while varying the voxel size for sparse visual hull
from 20 mm to 60 mm (stride is 10 mm) but keeping the
voxel size for dense visual hull steady at 20 mm. Fig. [T
(a) shows the execution times. When the voxel size for
both coarse and fine visual hull construction is 20 mm, the
acceleration function is disabled. The time consumed in this
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Fig. 11: Execution time versus different voxel sizes.

case is around 310 ms, which was the highest among the
tests. The time curve proves that the execution time has a
positive association with the voxel size for sparse visual hull.
It can be reduced by increasing the voxel size. Fig. [T1] (b)
presents the time consumed in the second experiments, in
which we varied the voxel size for dense visual hull from
15 mm to 35 mm (stride is 5 mm) but kept the voxel size
for sparse visual hull steady at 50 mm. The results indicate
that the number of voxels in dense visual hull construction
does not have a marked effect on production time.

IV. CONCLUSIONS

In this paper, we proposed a novel parallel approach to
solve the fast FVV synthesis issue that occurs in sports sce-
nario. Our method first employs a sparse-to-fine volumetric
visual hull construction strategy to reduce the time needed
for 3D shape approximation and then applies an accurate
isosurface extraction method to give a high-quality mesh
representation to the 3D model. Coupled with the occlusion
map in each camera, the appearance of the scene at a virtual
viewpoint is reproduced in a view-dependent manner. We
implemented the proposed method on a PC with a GPU and
verified its performance with volleyball and judo sequences.
The experimental results show that our method outperforms
existing approaches in terms of both visual quality and
execution time.
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