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PENALIZED PARTIALLY LINEAR MODELS USING ORTHONORMAL WAVELET BASES
WITH AN APPLICATION TO FMRI TIME SERIES

M. J. Fadili

GREYC UMR CNRS 6072
ENSICAEN 14050 Caen France

ABSTRACT

In this paper, we consider modeling the non-parametric com-
ponent in partially linear models (PLM) using orthogonal
wavelet expansions. We introduce a regularized estimator
of the non-parametric part in the wavelet domain. The key
innovation here is that the non-parametric part can be effi-
ciently estimated by choosing an appropriate penalty func-
tion for which the hard and soft thresholding estimators are
particular cases. This avoids excessive bias in estimating the
parametric component. We give an efficient estimation al-
gorithm. A large scale simulation study is also conducted
to illustrate the finite sample properties of the estimator.
The estimator is finally applied to real neurophysiological
functional MRI data sets that are suspected to contain both
smooth and transient drift features.

1. INTRODUCTION AND PROBLEM POSITION

In the last ten years, there has been an increasing interest
and activity in the area of partially linear regression in the
statistical community. Many methods and techniques have
been studied. A very useful work bringing an up-to-date
presentation of the state of the art of semi-parametric re-
gression techniques in various statistical problems can be
found in [1]. Let’s assume a linear dynamical model of the
form :

ye = X7 B+g(t) +e,1<t<N (1)

where N is the number of observations, 8 = (81, ..., )T
is a vector of unknown parameters, g is essentially an ar-
bitrary and unknown (possibly nonlinear) function over R,
X, = (Xu,,...,X,,)T are vectors of explanatory variables
that are either random i.i.d. or fixed design points, €; are
i.i.d. error processes with E(s;) = 0 and finite variance
0 < E(e?) = 0% < oo, and the &; and X, are mutu-
ally independent. In practice, there is a growing number
of enormous data sets for time series analysts in finance,
economics, geophysics, biological signals, where the PLM
is of a prime interest and allows one to investigate the struc-
tural relationships between factors with a high flexibility.
PLMs are semi-parametric models since they contain both
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parametric and non-parametric components. In the con-
text of PLM, interest focuses on the construction of effi-
cient estimation procedures for both the parametric and non-
parametric parts. Much attention has been directed to esti-
mating Eq.1, see [1] for a review. Most authors have con-
structed estimation procedures based on either the kernel
method, the local linear method (local polynomial or trigono-
metric polynomial), the orthogonal series or the spline smooth-
ing approach. Estimators have been proposed for both the
i.i.d. and correlated observations.

Following [2], under suitable conditions, the non-parametric

part can be characterized by W+, where W is a N X k-
matrix, « is an additional unknown parameter vector and
k is unknown. The PLM in (1) can be then rewritten in a
matrix form:

Y =XB84+Wy+e 2)

For identifiability, we here consider that 1 is not spanned
by the vectors of X, i.e. the mean of the vector Y is ex-
plained by WW. Our concern in this paper is modeling the
non-parametric component using orthonormal wavelet ex-
pansions. In this case the matrix Wisa N x NN = 27
and the estimation problem is ill-posed. One can then im-
pose side constraints to narrow down the class of candi-
date solutions and produce regularized estimates. Recently,
authors in [3] introduced a wavelet-hard thresholding es-
timator (nonlinear) and the Minimum Description Length
(MDL) principle to automatically select a subset of coeffi-
cients in the optimal basis representing the non-parametric
part. In [4], a linear least-squares wavelet estimator for the
non-parametric part was proposed. In their work, choosing
the detail coefficients retained in the reconstruction amounts
to choosing the coarsest decomposition scale which equiv-
alent to a simple low-pass filtering whose dyadic cutoff fre-
quency is selected by means of a model complexity criterion
(e.g. Akaike or Bayesian Information Criteria (AIC, BIC)).
In [5], authors proposed an L; penalty function which is
equivalent to the same procedure as in [3] replacing the hard
by soft thresholding. We here propose to unify these ap-
proaches using regularization constraints on +.

By orthonormality of V' we propose to minimize the
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following penalized least-squares (PLS) problem to estimate
0 and ~:

X2(3,7) = 3w, — X5, 8 —7a)*+
J—1 27 -1
D0 Xoheo |5 Wws — Xeo B = 75)> + Ap(1.k])
(3)

where y,,, and y,,; , are the approximation coefficient at

coarsest scale 0 and the detail coefficients atscale j = 0,...,J—

1 and location k = 0,...,27 — 1 of the DWT of Y. Xy,
and () are defined similarly for X and -y, where Xg(') is
a row in the column-wise DWT (X, ) of the design matrix
X. The regularizing penalty function p is not necessarily
convex on R™ and irregular at point zero to produce sparse
solutions. However, it remains a challenging task to opti-
mize such nonconvex functionals. In particular, the PLM
hard and soft thresholding rules ([3, 5]) are special cases
that correspond respectively to the smooth clipped penalty
defined in Eq.7 [6] and the L, penalty. These estimators
have unappealing features (e.g. excessive bias for the soft
thresholding) and much more efficient estimators can be ob-
tained with appropriately designed function p (e.g. Sobolev
H? norm that will be treated in the following).

The PLS for PLM estimation is attractive for several rea-
sons. The principle of adding a penalty term to a sum of
squares or more generally to a -log-likelihood applies to a
variety of statistical noise models. There is also a Bayesian
interpretation to Eq.3. Minimizing Eq.3 corresponds to the
MAP estimator with a prior density exp (—Ap(|7y;,%|)) im-
posed on each ;.

2. PENALIZED PLM WAVELET ESTIMATOR

We now turn to the minimization problem in Eq.3. We are
able to state the following:

Theorem 1 Let p(.) be a nonnegative, nondecreasing and
differentiable function on R*. Y € L?([0,N — 1]) and
1 is not spanned by the vectors of X. The solution to the
minimization problem 3 exists and is given by:

Ya = Ywq 4)
B=(X5Xw) XL (Yw —4) (5)
N 0 if |ri k] <
Aik = . o Flrirl <po- )
ik — Asign(r; )0 ([Ykl) i [rixl > po

where ;. = Yu, , — X1, kﬁA and py = m>ig1(r + Ap/(r)).
- ps

The proof follows mainly from differentiation of Eq.3 and
arguments from [6]. The estimate of [ is the least-squares

estimate when + is known. The estimation of the non-parametric

part is essentially a thresholding rule. One can easily verify
that soft thresholding [5] is a special case where p(vy) = ||

and hard thresholding [3] corresponds to the penalty func-
tion:

P =X = A"y = N2y < A) M

The approximation coefficient (mean of the signal) is not
thresholded and is always retained in the reconstruction.
Other possible penalty functions include L, norms (¢ > 0)
and expressions for the threshold py can be derived. An-
other possible choice is the classical regularization in the
wavelet domain using the Sobolev H® norm [7] assuming
g e H*:

p() = 2% byl ®)
7k

where s is the Sobolev smoothness degree. Actually, one
can use more general norms since the norm equivalence in
the wavelet domain has been proved for any Besov space
B; , and used here for p = ¢ = 2. Thus, for this penalty
function, the PLS problem can be written in a matrix form:

1
(5.7 = 51V = XuB =B+ DY ©)

where D = diag(27¢). This minimization problem has a
flavor of ridge regression. It has a unique closed-form solu-
tion:

Proposition 1 Let g € H*, Y € L?([0,N — 1)) and 1y is
not spanned by the vectors of X. Then, minimizers of Eq.9
are:

Ya = Yw, (10)

Brs = (XgXw) 'XGYw (1)

y’Lij)C - X'Z;jﬁkﬁLS
1+ 2)X227s

ik = , foreach (j, k)  (12)

where P+ = diag(M), Xw =PLXy and Yy = PLY,,.

14272278

The proof can be obtained either directly by differentiating
Eq.9 and back-substitution or as a corollary of Theorem 1.
This estimator can be seen as an extension to the wavelet
domain of the kernel smoothing estimators [2].

2.1. The regularized PLM estimation algorithm

From the structure of the updating equations in Theorem
1, we naturally see that we can use the iterative (backfitting-

like) algorithm to estimate the parametric and the non-parametric

part of the PLM:
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Algorithm 1 The penalized PLM wavelet estimator
1: For any given wavelet, calculate the column-wise DWT

of Y and X. Setl = 0,7 =0,
repeat

Update 30+ = (XTX,, ) *XT (Y, — V).

Update v("+1) using Eq.4 and 6.
until |5 — 30|, < e
Calculate the inverse DWT of (") and get an estimate
for g.

A o

As far as the Sobolev penalty is concerned, there is no
need to iterate the process and the estimates are obtained
after one pass from Proposition 1.

2.2. Selection of the regularization parameter

An important issue in our penalized PLM estimator is the
choice of the regularization parameter which influences the
threshold py. One can use the traditional universal threshold
value A\yp = o+/2log N. However, this threshold is known
to be somewhat too large. Alternatively, one can use a lower
universal threshold Ay 4 = o1/21log N — log(1 + c2log N)
(¢ > 1) derived by [6] in wavelet non-parametric regression.
Another popular thresholding scheme is 30 which is very
close to A4 when 1 < ¢ < 1.7 for N € [26,211].

The generalized cross-validation criterion (GCV) has been
already adopted for objectively choosing the regularizing
parameter in penalized non-parametric regression (see e.g.
[7]. GCV attempts to provide a data-driven estimate of \
which minimizes the unobservable risk estimate. The GCV
function in our Sobolev-penalty wavelet estimator of the
PLM is then taken to be:

(N - 1)71 Zj7k(ywj‘k - yij,k)z
[(N —1) — trace(P + Qx,,P1))

GCV(\) = (13)

where Qx, = Xw(XTX,,)"*XT. One must be aware
that in the GCV, only the detail coefficients are taken into
account in matrices X,, and P which justifies the factor
N — 1 used.

2.3. Asymptotic properties and inference

Here, we do not present any theoretical study about the
asymptotic properties of our wavelet-domain regularized es-
timator of the PLM. Instead, we support our claims using
arguments from the PLM kernel smoothing asymptotics lit-
erature [1]. Our conjectures will be confirmed by simula-
tions. It has been established that PLS estimators of 3 of
PLMs using kernel smoothing are asymptotically Gaussian.
They are also biased even if the true \ is known. Therefore,
our estimator is also expected to be Gaussian and subject to
bias. However, this bias will be negligible. As far as the es-
timator of g is concerned, its bias and variance is expected

to be asymptotically of the same order as if 5 were known
exactly. Our Monte-Carlo simulations, reported hereafter,
support these unproved conjectures.

In most applications, e.g. fMRI, one is essentially in-
terested in testing the significance of an effect correspond-
ing to a covariate in the design matrix. Then, the asymp-
totic normality and the estimated vector ﬁ (from Theorem
1 or Proposition 1), justifies an approximate ¢ or F' statis-
tics for inference purposes. For example, one can write the
t-statistic for the Sobolev-penalty regularized wavelet esti-
mator as:

p— B (14)

v/ Var(5)

where
_ 2 ~
var(9) = A g (x7R0) )

here A = P + Qx,P* is the so-called hat matrix. The ¢
statistic has v = trace((In — A)T(In — A)) effective de-
grees of freedom. Similar formulae can be derived for any
penalty function (e.g. soft or hard thresholding, etc).

3. LIBRARY OF ORTHONORMAL BASES

A library of bases in a linear space is a collection of wave-
forms whose elements are constructed by choosing individ-
ual subsets from a large set of vectors. In the context of
PLMs, we are mainly concerned about decomposing the
non-parametric component over family of waveforms that
are well localized both in time and frequency. The most
suitable basis for a particular signal is adaptively selected
from the library. This approach leads to a vastly more effi-
cient representation for g compared to confining ourselves
to a single basis. We here restrict ourselves to complete
dictionaries (bases), thus containing exactly N atoms such
as the orthogonal wavelet transform. For example, one can
use different wavelet bases each corresponding to a specific
mother wavelet. We propose to minimize any model selec-
tion measure (MDL as in [3], AIC, BIC or GCV) to pick up
the best atoms subset representing g from the best dictionary
in the library.

4. RESULTS AND DISCUSSION

4.1. Simulation study

We first illustrate the finite-sample behavior of the PLS es-
timator by performing a simulation study on some test func-
tions g that have been widely used in the literature [1]. These
signals have different smoothness and time-frequency lo-
calization properties ranging from C°° functions to highly
non-stationary signals with jumps, isolated singularities and
time-dependent frequency content. Traditional spline-like
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PLM estimators are expected to work poorly on the latter
functions. The noise ¢ was 1 and the factors of the simu-
lation were : the design matrix X, 3, g and its amplitude
« = SNRo, and the number of samples N. For each com-
bination of these factors, a simulation run was repeated 500
times. For each simulation run, we computed the bias and
PSNR on g, the bias, the variance as well as the X2 distance
to normality of the B. Fig.1 shows an example of the perfor-
mance of our PLS estimator on the Corner function which
is piecewise smooth with two big jumps in its first deriva-
tives. Three penalty functions were compared, namely the
hard thresholding penalty, the Sobolev and the L; norms.
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Fig. 1. Simulation results of the PLS estimator on the Cor-
ner function.

TRl sinel
Spectm

Fig. 2. Estimated drift and spectrum of detrended data

The output PSNR is comparable between the Sobolev
and hard thresholding-based estimators but is higher than
soft thresholding. This is consistent with non-parametric
regression expectations. As expected from our claims, there
is a bias (negative) in estimating /3 for all the penalty func-
tions. At high SNRs, this bias is the smallest for the Sobolev
norm and the highest for the hard penalty while the opposite
tendency is observed at low SNRs. However, this bias was
observed to decrease rapidly and becomes negligible with
increasing NN. For inference purposes, the statistical score in
Eq.14 should be asymptotically normal with unit variance.
Indeed, as shown by Fig.1 the standard deviation of this
score is very close to one and tends to be somewhat under-
estimated in the case of the soft thresholding rule. The om-
nibus test x? score to normality is also shown with the cor-
responding 5% critical level. Again, the Sobolev norm and
the hard thresholding penalties give the best result. There-
fore, if the main interest is inference on  (without underes-

timating g), then our results suggest that the Sobolev-based
estimator is the most appropriate provided that the smooth-
ness parameter s is known or can be efficiently estimated,
e.g. by the GCV criterion. Otherwise, the hard thresholding
constitutes a better alternative.

4.2. Application to fMRI data

To further illustrate our method, we also consider an ap-
plication to real data sets in fMRI. Fig.2 shows the esti-
mated trend superimposed on the original time course of a
pixel in an fMRI event-related visual experiment (N = 128,
stimulus at f = 0.606Hz shown in red). Sobolev norm
and hard thresholding rule give comparable estimates of the
trend while soft thresholding provides an oversmooth esti-
mate. For signals with isolated singularities (not shown),
hard thresholding gave much better estimates unless the s
was estimated accurately. After detrending, the low-frequency
drift has been adaptatively removed without altering the stim-
ulus component at 0.606Hz. Furthermore, we have observed
that the residuals are Gaussian while serious departure from
normality was observed before detrending.

5. CONCLUSION

In this paper, a flexible and powerful PLS estimator with
orthonormal wavelet library was proposed for PLMs. The
model can be easily extended to long-memory noise case.
For overcomplete dictionaries, the Block Coordinate Relax-
ation algorithm can be used efficiently to solve the PLS min-
imization problem. This is the area of ongoing research in
our group.
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