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Abstract— We treat a specific case of codes based on bipartite
expander graphs coming from finite geometries. The code sym-
bols are associated with the branches and the symbols connected
to a given node are restricted to be codewords in a Reed-Solomon
code. We give results on the parameters of the codes and methods
for their encoding.

I. INTRODUCTION

We consider specific cases of the codes based on bipartite
expander graphs described in [1] and [2] and based on earlier
work [3]. The nodes are labeled by the points and lines of a
finite geometry, and there is a branch connecting a line node
to any node labeled by a point on the line. The code symbols
are associated with the branches, and the symbols connected
to a given node are restricted to be codewords in a Reed-
Solomon (RS) code over the field that is used for constructing
the geometry.

These codes can be seen as generalizations of products of
RS codes (or concatenated codes with such codes as outer
codes). They offer a very favorable trade-off between per-
formance and complexity. Section II describes the properties
of expander graphs derived from geometries. In particular a
lower bound on the minimum distance is derived from the
eigenvalues and eigenvectors of the graph. In Section III we
study the rate of the codes. Section IV gives a method for
encoding codes from Euclidean planes by evaluating certain
polynomials. Section V describes how the code symbols can
be organized into a square array to facilitate the processing.
Codes from generalized quadrangles are particularly suitable
for such a format. Finally Section VI contains some results on
performance with iterative decoding.

II. EXPANDER GRAPHS FROM GEOMETRIES

Certain bipartite graphs derived from generalized polygons
have perfect expansion properties.[4]. The generalized poly-
gons are incidence structures consisting of points and lines
where any point is incident with the same number of lines
and any line is incident with the same number of points. A
generalized N-gon defines a bipartite graph G that satisfies the
following conditions:

• For all nodes u, v ∈ G, d(u, v) ≤ N , where d(u, v) is
the length of the minimum path connecting u and v.

• If d(u, v) = h < N , then there is a unique path of length
h connecting u and v.

• Given a node u ∈ G there exists a node v ∈ G such that
d(u, v) = N .

We note that this implies that the girth of the bipartite graph
is at least 2N . Most of this paper is concerned with graphs
from finite planes, and in this context the 3-gons are derived
from finite projective planes.

Let M be an incidence matrix for a projective plane with
m = q2 + q + 1 points, (x : y : z), and q2 + q + 1 lines
of the form ax + by + cz = 0. The graph is invariant to an
interchange of the two sets of variables.

The bipartite graph with m nodes in each set can be
described by the adjacency matrix

A =
(

0 M
MT 0

)

Thus each row has q + 1 1s and the largest eigenvalue of
A is q + 1 and the corresponding eigenvector is the all-ones
vector. The graph may be seen as a simple expander graph:
The eigenvalues are ±q + 1 and ±√

q ( all real since A is
symmetric).[4]

Starting from a node in the right set, q +1 nodes in the left
set can be reached in one transition, and q(q + 1) nodes in
the right set can be reached from these nodes. The graph can
be used to define a code by associating a symbol with each
branch and letting all branches that meet in a node satisfy the
parity checks of an (n, k, d) RS code where n = q + 1 . Thus
the length of the total code is

N = mn = (q2 + q + 1)(q + 1)

The rate of the code associated with the nodes is r = k
q+1 ,

the total rate is bounded by

R ≥ 2r − 1

The minimum distance is always lower bounded by

D ≥ d(d(d − 1) + 1) = d(d2 − d + 1)

Any nonzero node on the right side has at least d nonzero
branches connecting to nodes in the left set, and these reach
d(d − 1) nodes in the right set with nonzero branches. For
large values of d, it follows from the expansion properties of
the graph that the minimum distance is significantly larger [1].

Lemma 1: The size of subgraph with s nodes in each part
where all nodes have degree at least j is

s ≥ m(j−λ)
n−λ
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where λ is the second largest eigenvalue of A.
Proof: Let X be a vector with 1s in positions corresponding

to nodes in the subset and 0 otherwise, and let Y be the
corresponding balanced vector. Thus Y has s with value
1 − s/m and the rest are −s/m. The bound will be satisfied
with equality if Y is an eigenvector with eigenvalue λ, since
each node in the subset is then connected to j other nodes in
the subset and n − j nodes outside the subset.

In particular j = d gives a lower bound on the minimum
distance of the total code:[5]

D ≥ d(q2+q+1)(d−λ)
q+1−λ

We shall return to this property in Section VI.
It is sometimes more convenient to let M be an incidence

matrix for an Euclidean plane with m = q2 points, (x, y),
and q2 lines of the form y = ax + b. The lines of the form
x = c are omitted, and in this way the graph is invariant to
an interchange of the two sets of variables.

Thus each row has q 1s and the eigenvalues are ±q, ±√
q

and 0.
All branches that meet in a node satisfy the parity checks

of an (n, k, d) RS code with n = q. Thus the length of the
code is

N = q3

Example 1: For q = 16, the projective plane gives codes of
length N = 4641. The minimum distance is lower bounded
by

D ≥ 21d(d − 4)
A subgraph with 42 nodes of degree 5 can be found as a

sub-plane over q = 4, and for this reason the lower bound is
tight for d ≥ 5.

In Section V we consider longer codes, in particular codes
where the bipartite graph is derived from a generalized quad-
rangle.

III. THE DIMENSION OF THE CODE

The dimension of the graph code derived from a finite plane
is lower bounded by

K ≥ N − 2m(n − k)

since the last term is the total number of parity checks in the
component codes. However, these checks are not all linearly
independent. To find the actual dimension we must specify
how the symbols of the component codes are mapped onto
the branches. In the Euclidean plane, the node corresponding
to a particular pair (a, b) connect to node (x, y) whenever y =
ax + b. We choose the parity check matrix for the component
code as

H =





1 1 1 . . . 1
x0 x1 x2 . . . xq−1

x0
2 . . . . . . . . . . . .

. . . . . . . . . . . . . . .
xq−k−1

0 . . . . . . . . . . . .





Thus the codewords can be found by evaluating polynomials
in x of degree less than k for all values of x. Since y is a linear

function of x, we can also evaluate a polynomial in x and y
of degree less than k in the q pairs. With this specification of
the code we have:

Theorem 1: The dimension of the graph code based on a
Euclidean plane over Fq is

k3 for k ≤ q
2

m(2k − n) + (n − k)3 for k > q
2

Lemma 2: The number of linearly independent monomials
of degree < k is k3.
Proof: Clearly the total number of monomials of degree < k
in 2 variables is k(k+1)

2 , and the number of monomials in 4
variables is the square of this number. However, polynomials
that are equivalent modulo y − ax − b have the same values
on the branches of the graph. We can get a set of inequivalent
monomials by not including terms that have ax as a factor.
The number of monomials of degree less than k with a factor
ax is simply found as the number with degree < k − 1. Thus
the total number is

k2(k+1)2

4 − k2(k−1)2

4 = k3

Proof of Theorem: We may think of the codewords as func-
tions with arguments and values in the field. All such functions
have a unique representation as polynomials of degree at most
q − 1 in each variable. If the parity check matrices of the
component codes are chosen as evaluations of low degree
polynomials, the codewords are evaluations of polynomials
of degree less than k. It then follows from the lemma that
k3 is a lower bound on the dimension. If two functions have
the same values in the points that satisfy y − ax − b = 0,
the difference is a multiple of this polynomial as long as
the degrees are low enough. However, for polynomials of
higher degrees, calculations modulo y − ax − b and the
identities aq − a = 0 for elements in the field, give rise
to equivalences between pairs of polynomials with different
degrees in (x, y) and (a, b). We consider these equivalences in
detail in the next section. But as long as the total degrees of the
polynomials is < q, this situation cannot occur. In particular,
if degree(x, y) < q/2, degree(a, b) < q/2, there is a one-
to-one relation between codewords and polynomials, and thus
the theorem holds for k < q/2. The parity check matrix of
the graph code is a block matrix where the blocks are the
parity check matrices for the component codes. Consider the
rows of the parity check matrix corresponding to the nodes
on the right. Since each block has nonzero entries only for
the q positions associated with a particular node, and these
q−k nonzero rows are the parity check matrix of an RS code,
it is clear that the q2(q − k) rows are linearly independent.
Similarly the rows defining parity checks on the left are
mutually independent. A vector which is spanned by both sets
of rows can be described as follows: Each set of symbols
corresponding to a set of branches that meet in a node on the
right can be obtained by evaluating a polynomial in x of degree
less than q − k. Similarly the set of positions corresponding
to a left node can be found by evaluating a polynomial in a.
Thus for these two descriptions to coincide, the total vector
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has to be an evaluation of a polynomial in a and x or in (a, b)
and (x, y) of degree less than q − k in both sets of variables.
However, the dimension of this space is given by the lemma,
and the last part of the theorem follows.

The same result is true for projective planes when the
component codes of length n = q + 1 are specified as
evaluations of homogeneous polynomials. In this case the
component codes can be described as evaluations where the
highest degree coefficient of the information polynomial is
included as an extra position (a point at infinity). Choose this
point as a parity position in the component codes, and assume
that the information positions of the total code is a subset
of the information symbols for the component codes. When
the line at infinity is deleted from the projective plane, the
component codes are punctures to (q, k) RS codes, and we
see that the dimension is the same in the Euclidean plane.

For longer codes the rates are closer to the simple lower
bound.

IV. ENCODING AS EVALUATION

Since a graph code is described by the properties of a large
parity check matrix, it is not immediately clear how encoding
can be performed in a simple way [3]. Here we describe an
encoding of codes from Euclidean planes based on evaluations
of a suitable set of polynomials.

We represent an edge in the bipartite graph by a quadruple
(x, y, a, b) in Fq

4 where y = ax + b. A codeword is then
obtained by evaluation of a polynomial from ( a subset of
) Fq[X, Y,A, B]. We therefore have that polynomials which
are equivalent modulo the ideal I spanned by Xq − X, Y q −
Y, Aq−A,Bq−B, Y −AX−B evaluate to the same codeword
and therefore we only have to consider polynomials in V =
Fq[X, Y,A, B]/I . Our first task is to find the dimension of
V as a vector space over Fq. This can be done by finding a
Groebner basis of I with respect to some monomial order and
then finding the leading monomials. The result is

Lemma 3: The dimension of V as a vector space over Fq

is q3.
Proof: For the purpose of the proof, we use the lexicographic

ordering y > x > b > a. In this case the Groebner
basis consists simply of the 5 original basis polynomials. The
’footprint’ for this basis consists of all monomials in a, b, and
x of degree < q in each variable. Thus the dimension is q3.

Alternative proof: The dimension of V equals the size of
the “footprint” of a Groebner basis for the ideal I which is
the same as the number of points in the algebraic closure of
Fq on the variety V (I). Clearly this number is q3.

To obtain the set of polynomials that are evaluated to code-
words we take a different ordering, the weighted degree or-
dering of the monomials with weight(x, y) >> weight(a, b).
In characteristic 2 we get a Groebner basis consisting of the
original 5 polynomials and

yaq−1 + y + baq−1 + b
y2aq−2 + b2aq−2 + bx + xy

...
yq−1a + yq−2ba + . . . + bq−1a + bxq−2 + xq−2y

xq−1y + bxq−1 + y + b
xq−2y2 + xq−2b2 + ay + ab

...

Among the monomials in the footprint, all polynomials of
degree less than k in (a, b) and (x, y) evaluate to codewords.
In addition the weighted degree basis provides the monomials
which have degree < k in (x, y), but higher degree in (a, b).
By reversing the total order to degree(a, b) >> degree(x, y),
we can reduce these monomials to polynomials with the lowest
possible degree in (a, b) and find the space that has low degree
in both representations. Thus these additional functions have
two equivalent representations, one with degree < k in (a, b)
and another with degree < k in (x, y). The procedure is
illustrated in the example.

Example 2: For q = 16, N = 212, and the dimensions of
the codes for k = 1 to 15 are

1, 8, 27, 64, 125, 216, 343, 512,
855, 1240, 1661, 2112, 2587, 3080, 3585.

Part of the basis for the code with k = 12 is obtained by
evaluating all monomials of degree < 12 in both (x, y) and
(a, b). It follows from the lemma that there 123 = 1728 such
monomials, and 384 additional basis functions are needed.
Considering those polynomials in the Groebner basis with
degree(y) > 11, we find

y12a4 + x11y
= y8b4a4 + y4b8a4 + ba11

y13a3 + y12ba3 + x12y
= y9b4a3 + y8b5a3 + . . . + b13a3 + bx12

y14a2 + y12b2a2 + x13y
= y10b4a2 + y8b6a2 + . . . + b14a2 + bx13

y15a + y14ba + y13b2a + y12b3a + x14y
= y11b4a + y10b5a + . . . + b15a + bx14

The terms on the left have degree at most 4 in (a, b), and
the terms on the right degree at most 11 in (x, y). Thus we get
codewords by multiplying each polynomial by a polynomial
of degree at most 7 in (a, b). This gives 9 ·8/2 polynomials in
each case, or at total of 144. An additional 144 are obtained by
interchanging a and x. b and y. There are 72 polynomials of
degree 12. However we can find more polynomials of degree
13 if we multiply the first equation by b and the second by
a. When the equations are added, the highest order terms
in (a, b) cancel, and we still have degree(a, b) = 4. If the
result is multiplied by a polynomial of degree at most 6
in (a, b), the result is a linear combination of polynomials
considered earlier, but the 8 terms obtained by multiplying
by a degree 7 monomial are new. Thus there are a total
of 8 · 11 = 88 polynomials of degree 13. The degree 14
polynomials similarly has a single term on the left with degree
4 in (a, b), and it can be cancelled by one of the lower degree
polynomials. This gives 8 · 13 = 104 polynomials of degree
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14. Finally we find 8 · 15 = 120 polynomials of degree 15,
which completes the basis. Note that for polynomials of degree
< q/2 this approach does not give multiple versions.

V. CODEWORDS AS SQUARE ARRAYS

In this section we show how the graph can be used to obtain
a regular organization of the code symbols as a square array.
This significantly facilitates encoding and decoding, where
accessing the relevant code symbols from the graph description
can be a significant part of the total computational complexity.
For a code protecting a large data set, it may also be an option
to decode only a subset of current interest.

If the graph is derived from a Euclidean plane, we can index
the array by the the values of the variables a and x. Thus a set
of rows contains nodes corresponding to the parallel lines that
have a particular value of a, but different values of b, and the
columns are interpreted in a similar way. Each combination
of a, x contains q code symbols, which can be represented by
a square sub-array if q is a square (or in a third dimension).
In this way the q symbols that are needed for processing a
particular component code are always obtained by selecting
a set of √

q rows (columns) and taking a symbol from each
group of √q columns (rows).

A graph for a longer code can be derived from a generalized
quadrangle. The construction can be described in projective
3-space over Fq in the following way: A linear one-to-one
mapping between points and planes is selected, and each such
pair defines a node in the right set of the bipartite graph. The
left set consist of all lines in any particular plane which pass
through the corresponding point. The branches of the graph
connect the lines to the planes that they are contained in (or
points that they contain). There are q3 + q2 + q + 1 nodes in
each set.

We can obtain a total code of length q4 by restricting the
projective space to a Euclidean 3-space. In this case we can
organize the array in such a way that each row or column
consists of q interleaved component codes of length q. First
a special point and line in plane at infinity is chosen. The
remaining plane contains q2 points, which identify the rows
of the array. Each such point is connected to q line nodes
representing the interleaved component codes in that row.
Similarly the q2 lines which are not used and do not contain
the special point identify the columns, and each line contains
q point nodes representing the component codes. It follows
from the girth of the graph that each coordinate in the array
is assigned a unique symbol in this way.

Even longer codes can be constructed from generalized
hexagons, but it is known that it is not possible to find larger
n-gons with degree q + 1.

VI. PERFORMANCE

Clearly it is desirable to base decoding of the graph code on
the simple decoding algorithm for the component RS codes.
One can also think of the codes as concatenated codes with an
initial decoding step based on the (possibly redundant) binary
image of the component codes.

In our discussion of iterative decoding we assume that
decoding of the component RS code either corrects the errors
or fails to produce a result. In the latter case, the received
word is left unchanged. It is well-known that the probability
of decoding when more than t errors have occurred is closely
approximated by 1/t!, and for moderate values of t these
rare events have little influence on the performance. For
short component codes with small t one can choose an even
minimum distance to get sufficiently reliable decisions.

The error pattern can be described by a graph which is
obtained from the original bipartite graph by including only
branches containing errors. Iterative decoding is then described
as a process of removing a node with at most t branches and
any branches connecting to the node. It is well-known that the
process terminates with an empty graph or with a subgraph
where all nodes have degree at least t + 1.

It follows immediately from this description and Lemma
1 that any error pattern of weight less than D/4 is decoded
in this way. This result is similar to the decoding of product
codes by rows and columns, but it should be noted that for
graph codes, the minimum distance increases linearly with the
code length. If a set of nodes is not decoded, it is possible to
erase the corresponding symbols and increase the number or
errors that can be corrected to at least D/2.

However, as for standard product codes and concatenated
codes, more errors are corrected in most cases. The perfor-
mance of the graph codes under iteration of the decoding
of the component codes can be analyzed using methods of
random graphs [6]. It follows that the code will be successfully
decoded with high probability even if the average number
of errors in each component RS code is slightly larger than
(q − k)/2. Thus in most cases m(q−k)

2 errors are decoded.
In the analysis of random graphs it is assumed that the

branches are selected randomly. However, it is easily verified
that the arguments are unchanged if the underlying structure
is assumed to be a complete bipartite graph. Thus the cited
result applies directly to iterative decoding of product codes.
Thus it is clear that even though any remaining graphs with
degree t + 1 with high probability are very large, there is
a small probability of getting a graph with on the order t
nodes. Moreover, the probability of failure does not decrease
exponentially with the block length if t is fixed. The cited
result can also be obtained by taking an average over bipartite
graphs of fixed degree as long as the degree is significantly
greater than t: Select the error positions randomly first, and
then proceed to randomly select the remaining branches of the
graph. Most graphs in this ensemble have good performance
due to their expander properties, and the average second
eigenvalue is of the order √

q. Consequently most of them
have minimum distances approximately satisfying the lower
bound of Section II. The specific codes considered in this
paper are slightly better than average in these respects, and
simulations have verified that the number of errors corrected
in typical cases coincides with the result of [6].

Example 3: For q = 16 and k = 12, the rate of the code
from the Euclidean plane is 0.5156. The lower bound on the
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minimum distance is 105, but we expect to be able to correct
512 symbol errors in most cases. For correcting binary errors
we could represent each symbol as 5 bits with a parity symbol.
The lower bound on the minimum distance is 210 in this case,
but we expect to correct about 1000 binary errors.
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