arXiv:1601.06880v1 [cs.IT] 26 Jan 2016

Bounds on Asymptotic Rate of Capacitive Crosstalk

Avoidance Codes for On-chip Buses

Tadashi Wadayama and Taisuke Izumi
Nagoya Institute of Technology, Japan

Email: wadayama@nitech.ac.jp, t-izumi@nitech.ac.jp

Abstract

In order to prevent the capacitive crosstalk in on-chip buseveral types ofapacitive crosstalk avoidance codeave been
devised. These codes are designed to prohibit transititterpa prone to the capacity crosstalk from any consecuiewords
transmitted to on-chip buses. This paper provides a rigoemalysis on the asymptotic rate (@f, ¢)-transition free word sequences
under the assumption that coding is based on a pair of astatefoder and atateless decodeihe symbolg andq represenk-bit
transition patterns that should not be appeared in any catige two words at the same adjacénbit positions. It is proved that
the maximum rate of the sequences equals tcsthmgraph domatic numbeaf (p, g)-transition free graph. Based on the theoretical
results on the subgraph domatic partition problem, a pailowkr and upper bounds on the asymptotic rate is derived. e a
present that the asymptotic rate2 + log, (3 + \/ﬁ) ~ (.8325 is achievable for th@ = 01 «» ¢ = 10 transition free word
sequences.

I. INTRODUCTION

A VLSI-chip consist of several components such as CPU cardsealiable interconnection between them are essentialitd b
a robust system on-chip. Inter components usually comnatmigith each other via an on-chip bus, which is a bundle e§lifror
example, a CPU chip with multiple cores equips data busegxXohanging data among the cores. In recent VLSI technology,
shrinking the circuit size is still of great importance besa it leads to better yields, lower power consumption, asdef
computation. However, shrinkage of VLSI-chip tends to eaasiegative impact on reliable inter-component commuioicatn
order to decrease the circuit size, we have to make the lidéhveind line spacing narrower. It results in increased degrare
between adjacent lines in on-chip busés [6]. When the closdulency is sufficiently high, the capacitive couplingsamatn two
adjacent lines become nonnegligible. The capacitive ¢éogphduces theapacitive crosstalkwhich significantly degrades the
reliability of data exchange over buses.

Assume that we have 3 adjacent links, Lo, L3 in an on-chip bus. The center link, is called avictim line BetweenL;
and L, (and alsoLs, and Ls), there are capacitive couplings. Consider the situatiberes the sender component changes the
signals emitted to the bus fro(d, L2, L3) = (0,1,0) to (L1, L2, L3) = (1,0, 1) at a certain time instant. The abrupt increase
of the voltage inL; and L3 induces transient current flows from the both side lihgsand L3 to the victim line L, through the
capacitive coupling between them. As a result, the timinghefvoltage transition in the victim line is delayed agaioisters at
the receiver component. This phenomenon is callecc#pacitive delaywhich is one of the major harmful effects of capacitive
couplings.

In order to avoid or to weaken the effect of the capacitivesstalk, several techniques for avoiding the capacitivestedk
have been devised. A simple method is to insert several grboes into the buses to shield the signal lines. This meth@hsy
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to implement but it cannot provide an optimal solution innterof space efficiency. Another promising method for prewent
the capacitive crosstalk is to explaifipacitive crosstalk avoidance codf&. The main idea of capacitive crosstalk avoidance
codes is to prohibit transition patterns prone to the capacosstalk from any consecutive two words transmitted tus. For
example, if two consecutive words do not have any adjacansition010 <+ 101, the immunity to the capacitive crosstalk is
expected to be improved][6].

Pande et al.[]7], Sridhara and Shanbhag [8] presented catingmes satisfing the condition that a codeword having the
pattern010 (resp.101) are not followed by a codeword having the patteéno1l (resp.010) at the same bit positions. They call
the codes satisfying the above constrdorbidden overlap codes (FOCRAnother type of a constraint is also discussed by the
same authors. The coding to avoid the transition pattétns; 10 is said to be forbidden transition coding (FTC) [F] [8]. For
example, Pande et al.l[7] proposed a simple 3-bit input/4biput stateless FTC. Recently, Nisen and Kudekar predeam
advanced joint FTC and ECC[10] and showed a density evolitalysis.

This paper provides a rigorous analysis on the asymptdiocafathe(p, ¢)-transition free word sequences under the assumption
that coding is based on a pair of a stateful encoder astdtaless decodeThe (p, ¢)-transition free word sequences is a natural
generalization of FOC and FTC. The symbglsand ¢ represent:-bit transition patterns that should not be appeared in any
consecutive two words at the same adjadebtt positions. The term “asymptotic” represents the diarawhere the word length
grows to infinity.

Victor and Keutzer[[9] presented rate analyses for (the 01)-transition free word sequences in the case where both of an
encoder and a decoder are stateful, and in the case wher@bititam are stateless. The asymptotic rates for combiratibn
a stateful encoder and a stateless decoder remains to hedsamt thus it brings us a theoretical interest and chadleiipe
stateless decoder has a significant practical advantagettovestateful decoder because it can prevent error projpagat the
decoder caused by decoding errors.

Il. PRELIMINARIES

The argument presented in this paper heavily relies on giegary, especially on domatic partition probleris [4] andgraph
domatic partition problems[5]. Notation and several fuméatal facts required throughout the paper will be intretlin this
section.

A. Notation

Let G = (V, E) be an undirected graph, where the sétend F represent the sets of vertices and edges, respectivelya For
nodev € V, the degree ob is denoted byi(v). The symbols)(G) and A(G) represent the minimum and maximum degrees
of G, respectively. Thedge densitpf G, denoted by(G), is defined ag(G) 2 |E|/|V]. The set of consecutive integers from
a to b is denoted byfa, b]. The symbolZ represents the set of integers.

B. Subgraph domatic partition (SubDP) problems

The directed graph version of subgraph domatic partitiarb(3°) problem was first discussed by Wadayama, Izumi and Ono
5.

In the following analysis, we use the undirected subDP mobés a key tool. To present its definition, we need to clahéy t
definitions of dominating sets and domatic partitions.



Definition 1 (Dominating set)A dominating setD of G = (V, E) is a subset o/ such that any node € V' belongs toD
or is adjacent to a node iD.

Definition 2 (Domatic partition):Let Dy, D», ..., D, be a partition ofV; namely,ﬂie[lyk] D; =V and any pair of subsets
D, and D; is disjoint. The partition is called domatic partitionif all the subsetsD;, Do, ..., D, are dominating sets.

The domatic numbeD(G) is the largest number of subsets in a domatic partitiod/pf.e.,
D(G) 2 max{k|D1, Da,..., Dy is a domatic partitioh. (1)

A number of theoretical studies on domatic partitions asdajiplications have been published [4]. It is known that cating
the domatic numbeD(G) is an NP-hard problem. The domatic number can be upper bduomyle

D(G) <46(G) +1, (2)
which is called thedegree bound4]. A non-trivial lower bound proved by Feige et dll [2] hdmetform:
D(G) = (1 -0(1))(6(G) + 1)/ In A(G), ©)

that is derived using Lovasz local lemnia [1].

The SubDP problem proposed inl [5] is a natural extension efdomatic partition problem, which admits choosing an
appropriate subgraph to increase the domatic number. Tiitedsdinition of an undirected graph version of the SubDPojem
is given as follows.

Definition 3 (SubDP problem)Let G = (V, E) be a given undirected graph. The problem to find the SubDP euSd~)
maxgece D(G') is called theSubDPproblem. The notatioidi”’ C G means thaty’ is a subgraph o6

=

In a broad sense, we want to have not only the SubDP numbetdouthee corresponding subgraph and the maximal domatic
partition of G’. It should be noted that the subDP problem is proved to be &8-f].

1. (p,q)-TRANSITION FREE WORD SEQUENCES

A. (p,q)-transition free word sequences

Let p andq be binary 0 or 1) sequences of length; e.g.,p = 101 andq = 010 (k = 3). The pair of sequencesandgq is
called aforbidden transition pair In what follows, a word means a binary sequence of lemgth> k) that corresponds to the
set of signals exchanged in an on-chip bus. Two binary semserandy of finite or infinite length are said to b, ¢)-violating
if there is an index € Z satisfying

P=Tit1Ti+2 - Titk, § = Yi+1Yi+2 - Yi+k

or

q = Ti41Ti+2 " Titk, P = Yi+1Yi+2 " Yit+k,

wherex; andy; denotei-th elements of the sequencesandy, respectively. Otherwise, the pairandy is said to be(p, q)-
transition free

Our goal is to design an encoder and a decoder that generateseguences (i.e., word streams exchanged in the busés) wit
the (p, ¢)-transition free property.



Definition 4 (p, ¢)-transition free word sequenceBuppose that we have an infinite sequence of words, o, ...) where
a'(i € Z) is a word of lengthn. If o' and a’*! are (p, ¢)-transition free for anyi € Z, then the sequence is said to be
(p, q)-transition free word sequence.

In the scenario of the data transmission over on-chip buisés,reasonable to assunie = 10,¢ = 01) (FTC) or (p =
101,q = 010)(FOC) [€] [7] [8]. In order to avoid (or weaken) the effect ofpacitive crosstalk(p, ¢)-violating two words
should not be sent consecutively. This means that a wordesegusent to the buses should bépag)-transition free word
sequence.

B. Asymptotic rate ofp, ¢)-transition free word sequences

In this paper, we will discuss state dependent encodersdoverting a message sequence t@pag)-transition free word
sequence. An encoder consists of emcoding functior€ : [1, M] x {0,1}™ — {0,1}" that computes the next state of the
encoder from a message in the rarigeV/] entered into the encoder and the current state kept in thedencThe symbolM/
represents the cardinality of the message alphabet. A stat#s of the encoder consists of wordgng)-transition free word
sequences. An infinite sequence of stdtes, s;,...) generated by the recursion;, = £(m;, s;) must be a(p, ¢)-transition
free word sequence for any message sequéncem;,...). The states;;; computed by the encoding functi¢his sent to the
channel and then the encoder state is updated,tp

A decoding functiorD : {0, 1} — [1, M] must satisfy the following consistency condition:

m = D(E(m, s)) 4)

for any m € [1,m] and anys € {0,1}". This means that the decoding function satisfying this descy condition can
immediately obtain the correct message by observing anubf@itpm the encoder. Note that the decoder does not havenaiter
memories to keep its state, which is a desirable feature figcmder to prevent error propagation due to channel noises.

For a given forbidden transition p&ip, ¢), a pair(n, M) is said to beachievabléf there exists a pair of encoding and decoding
functions satisfying the consistency conditibh (4). Theximaum rate of(p, ¢)-transition free word sequences is naturally defined

by

logo M
R(p,q,n) & max B2 (5)
(n,M) IS achievable n
Based on this maximum rate, we define the asymptotic rate,af)-transition free word sequences by
A
R(p, q) = limsup R(p, ¢, n). (6)

n—r00

The problem setup is slightly different from the convenéibproblem setups of coding for constraint sequences tha aln
encoder to have multiple words in its memories instead of arsingle word assumed in this paper. In our scenario, thebeum
of possible words are exponential to It thus may be reasonable to investigate the simplest emdbét requires the least
hardware complexity.

C. (p, g)-transition free graph

It will be convenient to name the state transition graphsesgnting thep, ¢)-transition free constraints.
Definition 5 (p, ¢)-transition free graph):Assume a directed grapfl = (V, E) with |V| = 2™ nodes. Leth be a bijection
betweeny and all binary words of length, i.e., {0, 1}". The word corresponding to a node= V is denoted by(v) € {0, 1}".
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Fig. 1. (10, 01)-transition free graphG(10,01,3): no (p, ¢)-violating words containing forbidden transition paits, 01 at the same bit positions, such as
101 and 010, are connected.

Any two nodesv, w € V are connected if and only if(v) andb(w) are (p, ¢)-transition free. Then, the gragh is said to be a
(p, q)-transition free graph.

By the definition, the(p, ¢)-transition free graph is uniquely determined @y ¢) andn, which is denote byG(p, ¢, n). As an
example, Figll presents tti¢0, 01)-transition free grapld:(10, 01, 3). It can be observed that r(p, ¢)-violating two words are
connected; every pair of adjacent nodes contain no forbididasition pairo1l «» 10.

IV. ASYMPTOTIC GROWTH RATE OFSUBDP NUMBER

In this section, we will discuss the asymptotic growth rateSabDP number that has a close relationship to the maximum
rate R(p, q,n).

A. Maximum rate and SubDP number

Assume that a grap&™ = (V*, E*) is the optimal subgraph af(p, ¢,n) that gives the SubDP number 6f(p, ¢, n). There
is a domatic partition ofz* producing disjoint subsets df*, D1, Da, ..., DsG(p,q.n)) Where any subseb; is a dominating
set of G*. From this partition, we can define a decoding functdrby D(b(x)) Siifae D; for z in V*. It is evident that,
for anyz € V* and for anyi € [1, S(G(p, q,n))], the neighbor set of (nodes adjacent to andz itself) includes at least one
node belonging taD;. According to the decoding function defined above, an emgpéinction is defined by (b(z), 1) 2 b(y)
for x € V* andi € [1,S(G(p,q,n))]. In this equation, the nodg € V* should be in the neighbor set af and belong to
D;. It is easy to see that the pair of these encoding and decddirgions satisfies the consistency conditibh (4). Si6te
is a subgraph ofZ(p, ¢,n), an output word sequence from this encoder becomgs @-transition free word sequence. In this
case, we havé/ = S(G(p,q,n)) and it leads to a lower bound on the maximum ratd;of;)-transition free word sequences:
R(p,q,n) = log, S(G(p,q,n))/n.

On the other hand, assume that we know a pair of encoding acatlitgy functions(€, D) achievingR(p, q,n). Let G’ =
(V', E’) be a subgraph of(p, ¢, n) satisfying the following conditions. The set of nodé§is the set of nodes satisfying

Yo € V', ¥im € (1,277, b1 (Em, b(v)) € V! @



and the edge seff’ is given by
E = {(s,b=1(E(m,b(s)))) | s € V,m € [1,2nRPam]}, (8)

Note that both(a, b) and (b, a) represents the identical undirected edge. The decodirgi@umgenerates a partition &' of size
2nE(ran) and it needs to be a domatic partition. This observationde¢adhe inequalitys(G(p, g, n)) > 2"%®4") Combining

two inequalities onR(p, ¢, n), we immediately have the equality on the maximum rate:

R(p,q,n) _ 10g2 S(G(pvq’n)) (9)

n

Therefore, studying asymptotic rate of the ¢)-transition free word sequences is equivalent to study #Hyenatotic behavior
of the SubDP number of th@, ¢)-transition free graph.

B. Bounds on asymptotic growth rate of SubDP number

The next theorem presents upper and lower bounds on the &syengrowth rate of the SubDP number for general graph
sequences.

Theorem 1:Assume that a sequence of undirected graphs= (V,,, E,)(n = 1,2,3,...) with 2"-nodes have a non-vanishing
limit of the asymptotic growth rate of the edge density:

1
af lim -~ log, €(G,,) > 0.

n—,oo M

The asymptotic growth rate of the SubDP numiSé€,,) of this graph sequence is bounded as

a < lim sup ! log, S(Gp) < Lt < (10)
n—oo T 2
(Proof of Theoreni]l) From the definition of the edge densigy,have
€(Gr) = [En|/|Va| = |Enl/2". (11)

By exploiting a graph pruning method presented[in [3], we eetrieve an induced subgragh C G,, satisfying
8(G) = e(Gn) = |Enl/2". (12)

The lemma due to Feige et 4l [2] guarantees the existencedofretic partition ofG' with the domatic number satisfying

D(G)

Y

(1—0(1)(6(G)+1)/InA(G) (13)
> (1=0(1))(e(Gn) +1)/InA(G). (14)

In the derivation of the last inequality, the inequalify](12as used. Due to this inequality, we can derive a lower bamthe
asymptotic growth rate oﬂ(é) in the following way:

lim sup 1 log, S(G) > limsup L logy D(G) (15)
n—oo N n—oo N
>  lim ! log, €(G,) = a. (16)

n—,oo M



We then consider the opposite direction. (&t = (V*, E*) be the subgraph aoff,, that gives the SubDP numbéi(G,,). For
any nodev € G*, the degree ob must satisfyd(v) > S(G,) — 1. By using this inequality onl(v), we have a sequence of

inequalities:
|Bal 2 |E*] = (1/2) ) d(v) (17)
veV*
=z (1/2)[V7(5(Gn) = 1) (18)

The last inequality is based on a simple fact tiat| > S(G,). In summary, the quantitg|V,,|e(G,,) can be lower bounded
by 2|V,.|e(Gr) = 2|E,| > S(G)(S(G,) —1). Taking limsup on the both sides of the above inequality, weediately obtain

lim ! log, 2|V, |e(Gr) > limsup ! log, S(Gn)(S(Gr) — 1) (20)
n

n—r00 n—oo N

that can be reduced to the upper bound
1+«

lim sup 1 log, S(Gr) <

n—oo N 2

(21)

in the claim of the theorem. O
Note that the bounds shown in TheorEin 1 are sharp. SupposéhéharaphG,, is the complete graph of siz&". In this

case, we have

1 27(2" — 1)
R T

=1 (22)

Substituting @ = 1 into the bounds, the lower bound coincides with the upper nbdeu and we obtain
limsup,, ,.(1/n)log, S(G,) = 1.
V. ASYMPTOTIC GROWTH RATE OF EDGE DENSITY

In this section, we will describe a method for evaluating tiuenber of edges of th@, ¢)-transition free graph that is required
for deriving the asymptotic growth rate of the edge densitip, ) 2 lim,,—, o (1/n) log, €(G(p, g, n)).

A. Size of edge set d¢f(p, g, n)

Let N(p, ¢, n) be the number of thép, ¢)-transition free word pairs; i.e.,
A n n .
N(p,q,n) = {(a,b) € {0,1}" x {0,1}" | a,b: (p, q)-tr. free}|. (23)

The numberN (p, ¢, n) can be used for counting the size of the edge set, denotdd(byy, n) of G(p, q,n):

N(paQ7n) —2"

E =
| (p1q7n)| 2

(24)

The term2™ in the numerator is included to exclude the pairs consistinthe same word. The denominator compensates over
counts on edgesy, b) and (b, a) represents an identical edge @{p, ¢, n).

B. Counting of(10, 01)-transition free word pairs

This subsection describes how to couvi{p, ¢,n). In order to simplify the discussion, we will focus on the piest case
(FTC) wherep = 10, ¢ = 01 in this subsection (general cases are to be discussed later)
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Fig. 2. State transition graph f@n0, 01)-transition free sequence pair: the label sequence of afly iwahis graph corresponds to (@0, 01)-transition free
sequence pair.

Suppose the situation where an infinite sequence(a;, b;), (a;+1,b:+1), ... follows the state transition graph depicted in
Fig.[2 where(a;, b;) € {0, 1} for i € Z. Since there are no state transitions betwgen) < (1,0) in the state transition graph,
the two sequences. ., a;,...) and(...,b;,...) are(10,01)-transition free. Furthermore, arfy0, 01)-transition free sequence
pair corresponds to an allowable walk in the state transigiaph. Thus, calculation a¥(10,01,n) can be done by counting
the number of allowable walks of lengthin the state transition graph. It is simply carried out byngsiatrix multiplication:

1 1 1 1 1
1 1 1 0 1
N(10,01,n) = (1111) A" L A2 , (25)
1 1 0 1 1
1 1 1 1 1
where A is an adjacent matrix of the state transition graph in Eiglt# largest eigenvalue of is
1
Amaz = 5 (34 v17)
and the corresponding eigenvector is
Prnaz = 1—1+1(3+\/ﬁ) —1+1(3+\/ﬁ) N (26)
3 4 ) 4 )

It is well known that, for any nonzero initial vectat, A"z approaches t@\}, ,.Pma Whenn goes to infinity where? is a
real constant. By using this fact, we immediately have

1 B 1
Jlim_—~log, N(10,01,m) = Az = (3 + \/ﬁ) . @27)
We are now ready to evaluatg10,01):
«(10,01) = lim —1og26 (G(10,01,n)) (28)
n—,oo N,
= lim —1og2 (' (10,01, n |) (29)
n—,oo M
= lim —1og2</\ £ 1+01)) (30)
n—,oo M
= logy (Amaz/2) (31)

= —2+log, (3 + \/ﬁ) ~ 0.8325. (32)



Substituting the value(10,01) into the upper and lower bounds in Theorgm 1, the followingpliary is obtained.

Corollary 1: The asymptotic raté?(10,01) for the (10, 01)-transition free word sequences is bounded as

—1+1 3 17
—2+log, (3 + \/ﬁ) < R(10,01) < °g22( +VIT). (33)

Note that the values in the bounds can be approximatéd8385 < R(10,01) < 0.9162.

It is shown in [9] that the asymptotic growth rate of the minim degree of th€10, 01)-transition free graphs is given by

14+/5
2

lim ! log, 6(G(10,01,n)) = log,

n—,oo N

) ~ 0.6942. (34)

This means that the asymptotic rate of coding schemes cmtetr directly from the domatic partition @f(10,01,7) cannot
exceed 0.6942 because the domatic number is less than drtedi&(10,01,7n)) + 1. On the other hand, Corollafy 1 gives a
guarantee of existence of coding schemes with the asyroptite beyond 0.8325. An apparent implication of this obesion

is that finding an appropriate subsetdiip, ¢, n) is crucial for achieving near optima rate whens sufficiently large. In other
words, considering SubDP problems 6fip, ¢,n) is indispensable to design efficient long codes for {hg;)-transition free
word sequences. Note that Victor and Keutzér [9] reported tte asymptotic rate of stateless coding for the, 01)-transition
free word sequences cannot exceed 0.6942.

C. Counting for general(p, g)-transition free sequence pairs

The key of successful calculation of the number of edge& (im0, 01,n) was to define an appropriate state transition graph
representing all thé10, 01)-transition free sequence pairs. The same technique caxtéeded to general cases. Assume that a
directed graplg with 22*=2 nodes is given and that each node is labeled with a bi2zvary2 tuple (i.e., there is a bijection between
the node set ando, 1}2%=2). If and only if, for any pair of(p, ¢)-transition free sequences= (...,a;,...),b = (...,b;,...)
and for any index € Z, an edge from the node with label

2%—2
(@ig1,big1, @iv2,bivo, .. aivk—1,biyr—1) € {0,1}

to the node with label

2%—2
(@iy2,biy2, aiy3,biy3, ..., aivk, bipr) € {0,1}

exists, then the grapé is said to be thép, q)-transition free pair graph Any (p, ¢)-transition free sequence pair corresponds
to a walk on the(p, ¢)-transition free pair graph. This means that count¥¢p, ¢,n) is equivalent to count the number of
possible walks of length in the (p, ¢)-transition free pair graph. As in the case of the previousseation, we can use the same
technique to evaluate the growth rate M{p, ¢,n). The largest eigenvalue of the adjacent matrix@fq)-transition free pair
graph dominates the asymptotic behavior of the number oketlge set ofG(p, ¢,n). For example, thép = 101,q = 010)-
transition free pair graplk = 3) consists of 16-nodes. Except for the two nodes correspgrtditthe forbidden transition pair,
every nodes in the graph has outbound degree 4. Precisedkispethe edges110 — 1001 and 1001 — 0110 are missing.
From the maximum eigenvalue of the adjacent matrix of thapbr we can immediately evaluate the asymptotic growthahte
the edge density as(101,010) ~ 0.9636.
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