
A Parameterized Cost Model to Order Classes
for Class-based Testing of C++ Applications

Brian A. Malloy Peter J. Clarke Errol L. Lloyd
Computer Science Department School of Computer Science Computer & Information Sciences

Clemson University Florida International University University of Delaware
Clemson, SC 29634, USA Miami, FL 33199, USA Newark, DE 19716, USA
malloy@cs.clemson.edu clarkep@cs.fiu.edu elloyd@udel.edu

Abstract

In this paper we present the design and implementa-
tion of a Class Ordering System that is driven by a pa-
rameterized cost model. The parameters to the model
assign weights to the edge types that describe the rela-
tionships between the classes in the graphical represen-
tation of the program. The nodes in the graph are classes
and the edges express relationships between the classes.
Previous research has included three or four edge types
in the graph. However, to accommodate the full comple-
ment of C++ language constructs, which include template
classes and functions and nested classes, we extend the
graph to include six edge types. The parameters to the
cost model can be tuned to remove certain types of edges
in an attempt to reduce the cost of the testing effort or
to reduce the cost of breaking cycles in the graph. Our
case study indicates that inclusion of inheritance edges
in cycle breaking considerations may reduce the number
of edge removals by a factor of two or more.

1. Introduction

As software developers shift their priorities to the
construction of complex, large scale systems that are
easy to extend, modify, and maintain, the object-
oriented approach becomes more attractive than tradi-
tional methodologies. The cost of system nonperfor-
mance and failure is expensive, with sometimes catas-
trophic impact [20]. Therefore, the trend in the develop-
ment of these large systems has shifted toward testable,
robust models, whose focus is on preventing errors. One
process that supports the construction of robust software
is testing. An advantage of software testing is the rela-
tive ease with which some of the testing activities can be
performed, such as executing the program using a given
set of inputs, or test cases, and then comparing the gen-

erated output to the expected output.

However, testing a complete object-oriented system
presents some imposing problems. For example, the en-
tire system must be available before the test can begin
and this may be very late in the life cycle. During the test
of a complete system there are risks of complex interac-
tions among the errors and of mutual destabilization of
the corrected classes or components. Thus, many devel-
opers prefer a progressive approach where the first stage
consists of testing individual classes. However, classes
interact with other classes so that a fundamental issue in
testing object-oriented systems is to determine an inte-
gration order for the classes. The goal is to find the best
order to test classes to avoid or reduce the construction
of stubs for untested classes.

To determine an order for class-based testing, previ-
ous approaches have constructed an object relation dia-
gram, ORD, whose nodes are classes and whose edges
are relationships between the classes [14]. If there are
no cycles in the ORD, then a reverse topological order-
ing of the nodes will yield a test order that obviates the
construction of stubs.

However, in the presence of cycles in the ORD, one
or more edges must be removed and, to test a client class
that uses an untested supplier class, stubs must be con-
structed to simulate the correct behavior of the untested
supplier class. The problem of removing a minimum
number of edges to eliminate cycles in an ORD is equiv-
alent to the feedback arc set, which has been shown to
be NP-complete [10, 13]. Thus, previous research has
focused on the development of heuristics that attempt to
balance the cost of breaking cycles with the cost of con-
structing stubs to enable testing of client classes that use
untested supplier classes [7, 14, 25].

In this paper we present the design and implementa-

Proceedings of International Symposium on Software Reliability Engineering (ISSRE’03)
Denver Colorado, November 17-20, 2003

Figure 1. Overview of our Class Ordering System.

tion of a Class Ordering System that is driven by a pa-
rameterized cost model. The parameters to the model as-
sign weights to the edge types that describe the relation-
ships between the classes in the ORD. Previous research
has included three [14, 25] or four [6, 15] edge types
in the ORD. However, to accommodate the full comple-
ment of C++ language constructs, which include template
classes and functions and nested classes, we have ex-
tended the ORD to include six edge types. The param-
eters to the cost model can be tuned to remove certain
types of edges in an attempt to reduce the cost of the
testing effort (i.e., the number of stubs that are required
to test the program) or to reduce the cost of breaking cy-
cles in the ORD.

Our results indicate that ORDs for C++ applications
contain few cycles but that the cycles can include hun-
dreds of classes and thousands of edges. Our results
suggest further that increasing the efficiency of the cy-
cle breaking computation may also increase the number
of stubs that a tester might be required to construct. A
better strategy entails the use of parameters to the cost
model that might increase the cost breaking computa-
tion, but will decrease the number of required stubs and
thereby increase the efficiency of the testing effort.

In the next section, we provide an overview of our
approach and in Section 3 we motivate and describe the
complexity of stub construction. In Section 4 we de-
scribe our ORD and in Section 5 we present our Class
Ordering System for computation of an order for class-
based testing. In Section 6 we describe the results of
our case study and in Section 7 we review research that
relates to our work. Finally, in Section 8 we draw con-
clusions.

2. Overview

In this paper we present a Class Ordering System that
is driven by a cost model that estimates the cost of the
testing effort. Our goal is to tune the parameters to the
model to measure the tradeoff between achieving effi-
ciency in the cycle breaking computation as compared
to achieving efficiency in the testing effort. In this sec-
tion we provide an overview of the system.

Figure 1 provides an overview of our Class Ordering
System. Inputs to the system are the parameters to the
cost model and a C++ application for class-based testing.
We compute an ordering of classes for testing in four
steps. The first step entails the construction of an ORD
for the application using six edge type designations that
describe the relationships between the classes in the ap-
plication.

If there are cycles in the ORD, in the second step
we partition the ORD into strongly connected compo-
nents. In the third step, we use the parameterized cost
model to compute the weights of each edge in the strong
components, based on the type designation of the edge;
edges with the same source and destination class are
then merged. In the third step, edges with the smallest
weights are removed from the strong components until
there are no cycles. Finally in the fourth step, a reverse
topological sort of the nodes in the ORD yields an inte-
gration test order.

To build an ORD for the C++ application under test, the
source code for the application must be parsed, and vari-
able and type information extracted from the application.
To parse our application we use keystone, an ISO con-
formant parser and front-end [17] for the C++ language
[12, 24]. Keystone includes the Clouseau Application
Programmer’s Interface, API, which provides the neces-

2

Figure 2. Motivation for stub construction.
The UML class diagram in this figure illus-
trates a cycle of dependencies between a
supplier class and two client classes. We
use this example to motivate the construc-
tion of stubs.

sary information required to build an ORD for the appli-
cation.

3. Stubs

The construction of stubs for classes is a complicated
aspect of class-based testing [7, 14, 15, 25, 26]. Stubs are
used in testing to facilitate decoupling of system mod-
ules and to enable development of cooperating modules
before all modules are complete [18]. For our work, we
define two kinds of stubs: member function stub and
class stub. A member function stub is a dummy func-
tion that simulates some or all of the functionality of a
real function in a class. A class stub is a dummy class
consisting of member function stubs for some or all of
the member functions in a real class.

In the next section we motivate the construction of
stubs with a simple example. In Section 3.2 we discuss
the complexity of stub construction in the presence of
inheritance.

3.1. Motivation for stubs

Stubs must be constructed for an untested supplier
class to enable testing of a client class that uses the sup-
plier class. Consider the classes illustrated in Figure 2
with cycles of dependencies between classes Client1 and
Supplier and Client2 and Supplier. Assume further that
we break the cycles by removing the edges from Client1
to Supplier and from Client2 to Supplier; thus, Client1
and Client2 become leaf classes in a reverse topological
sort of the graph and they should be tested before Sup-
plier. However, to test class Client1 we must construct
member function stubs for fun1, fun2, and fun3 and a
class stub for Supplier, since they are used by Client1.

Figure 3. Stub for an abstract base class.
The UML class diagram in this figure il-
lustrates an abstract base class and two
derived classes that override some of the
functions in the base class. We use this
example to describe the difficulty of stub
construction for abstract base classes.

The efficiency of our edge removal strategy is in-
creased if we can reuse the stubs for Supplier to test
Client2. However, stubs must be simple so that they
themselves are not error prone [3]. In fact, stubs should
only contain sequential control flow to reduce the testing
effort of stubs [7]. Therefore, the member function stub
for fun1 may be inadequate for reuse in testing Client2
so that a new member function stub may be required for
fun1 and a new class stub for Supplier. Thus, any de-
pendency edge that is removed is likely to require stub
construction for the corresponding supplier class and the
number of stubs for a supplier class is usually propor-
tional to the number of clients of that supplier [7].

3.2. Stubs in the presence of inheritance

Figure 3 illustrates an inheritance hierarchy with an
abstract base class, X, and derived classes Y and Z. There
is a cycle among classes X and Z. If we break the cycle
by removing the inheritance edge from Z to X, then stubs
must be constructed for X so that Z can be tested. Execu-
tion based testing of classes requires construction of an
instance of the class; however, programming language
semantics usually preclude the instantiation of abstract
classes such as X. Several approaches to solving this
problem have been suggested in the literature including
the construction of a concrete subclass of X solely for
the purpose of testing X [4, 26].

The problem of constructing stubs for an abstract base
class can be avoided by removing an edge that is not in-
volved in an inheritance relationship. Kung et al. rec-
ommend removing an association edge from an ORD to

3

break cycles since, in C++, there is guaranteed to be an as-
sociation edge in every cycle [14]. Unfortunately, this is
not valid for programs that include template classes. In
fact, the curiously recurring template pattern consists of
a cycle of dependencies where the cycle does not include
an association edge [27]. However, Kung et al. did not
include template classes in their ORD construction.

Briand et al. use a genetic algorithm and coupling
metric in an attempt to break cycles by removing edges
that will reduce the complexity of stub construction [6].
They conclude that composition and inheritance rela-
tionships should never be removed since, according to
their heuristic, removal of these edges would likely lead
to complex stubs. The complexity of stub construction
for parent classes is induced by the likely construction
of stubs for most of the inherited member functions [7];
moreover, inherited member functions must be tested in
the new context of the derived class rather than the con-
text of the parent class [11, 26].

Figure 3 illustrates the complexity of testing base
class member functions. Class X has a virtual func-
tion, fun2, which uses virtual function fun3. However,
when fun2 is applied to an instance of Z it is applied to
Z::fun3, rather than X::fun3. Therefore, a test of fun2
on an instance of X does not guarantee that fun2 is cor-
rect for an instance of Z [11, 26].

As a final illustration of the difficulty of testing a base
class, consider class Y in Figure 3, which inherits fun1
and fun3. A test of fun1 and fun3 in Y might serve to
also test fun1 and fun3 in X. However, to simplify test
management it is preferable to test all member functions
in a single class that redefines none of them, if such a
class exists; otherwise a class stub should be constructed
for this purpose [26]. Since class Y does not test fun3, to
satisfy the “test all member functions in the same class”
dictum, a class stub for X is required.

4. Graph Representation

In this section we describe the program representa-
tion that we use to find a class ordering for class-based
testing. We use a variant of an Object Relation Diagram,
ORD, used in previous research [14, 15, 25]. Our ORD
is extracted by reverse engineering the source code of a
C++ application using the Clouseau API [19]. An ORD1

is a directed graph whose nodes are classes and whose
edges represent the relationships between the classes.

1The use of the term ORD is a bit of a misnomer, since the nodes
are classes, not objects; however, since the term is used in previous
research, we continue its use in this paper.

4.1. Edge type designations

The ORD described in references [14, 25] uses three
types of edges, and reference [15] extends the ORD to
include a fourth type of edge. However, the focus of our
work is the analysis of existing C++ applications, includ-
ing template functions and classes and nested classes;
thus we require six edges in our ORD including the ad-
dition of ownedElement and composition edges. We use
the UML specification for these edges [5].

The edges in our ORD capture relationships between
the classes in the program under test and are specified by
the syntax and semantics of the data attributes of classes
and the parameters or local variables of member func-
tions. The six types of edges in our ORD are associa-
tion, composition, dependency, inheritance, ownedEle-
ment and polymorphic edge. The first five types of edges
are used in UML class diagrams and we base our use of
these edges on the UML specification, version 1.5 [21].
The polymorphic edge is presented in reference [15] as a
dynamic edge.

The meaning of inheritance, ownedElement and poly-
morphic edges are fairly straightforward and are de-
scribed in the example of Section 4.2. However, there
is some disagreement about the meaning of the other
edges. In our ORD for C++ applications we use a com-
position edge for a class data attribute whose lifetime is
bound to the lifetime of the containing object. We use an
association edge for a class data attribute that is a refer-
ence or pointer to another class. Reference [22, page 2-
33] states that a dependency is “a term of convenience for
a relationship other than association and generalization”
and “the client requires the presence of the supplier”. We
use a dependency edge for a parameter or local variable
of a member function. Therefore, both association edges
and dependency edges may generate polymorphic edges.

The most controversial distinction among edges is be-
tween aggregation and association [8, page 85]. Refer-
ences [21, page 2-9] and [22] both state that aggregation
is association and that “the distinction between aggrega-
tion and association is often a matter of taste” [22, page
148]. Thus, we choose to use the more general relation-
ship, association, and we do not use an aggregation edge
in our ORD.

4.2. A sample ORD

Figure 4 contains a C++ program and Figure 5 illus-
trates a corresponding ORD for the program. A template
class, W, is illustrated on lines 1 through 7 of Figure 4.
There is no direct representation of a template class in
our ORD since a template class represents a partial spec-
ification of a class whose arguments are usually other

4

(1) template � class T �
(2) class W �
(3) public:
(4) void fun(T t) ���
(5) private:
(6) T data;
(7) � ;
(8) template

� �
(9) class W

�
char ���

(10) char* a;
(11) � ;
(12) class P;
(13) class X �
(14) W

�
P* � w;

(15) � ;
(16) class P �
(17) public:
(18) void fun(X x) ���
(19) private:
(20) W

� char � wp;
(21) � ;
(22) class R;
(23) class Q : public P �
(24) private:
(25) R* r;
(26) � ;
(27) class R : public P ��� ;
(28) class S : public R ��� ;
(29) class Y : public X ��� ;
(30) class Z : public X �
(31) class Inner ��� ;
(32) � ;

Figure 4. Sample C++ program.

classes. A template class is not directly executable and,
thus, not directly testable. A template class becomes a
class when it is instantiated with actual arguments sup-
plied for the formal template parameters. An instance of
template class W is listed on lines 8 through 11 of Fig-
ure 4 and illustrated in the upper right corner of Figure
5. Class W � char � is a template specialization with the
template formal argument specified as char.

Line 12 of Figure 4 lists a forward declaration of class
P and lines 13 through 15 list class X containing data at-
tribute w, an instance of template class W with actual
parameter P*. We illustrate class W � P* � with a box
in the middle of Figure 5. Class W � P* � has a data at-
tribute, data, that is a pointer to P since the template
class is instantiated with P*; we illustrate this relation-
ship between W � P* � and P by the association edge
connecting the two classes. The association relation-
ship indicates that W � P* � has a relationship with a
data object; however, this relationship can be severed
before destruction of the W � P* � object or transferred
through pointer assignment. The association relationship
is therefore not as strong as the composition relationship,

Figure 5. ORD for sample C++ program.
This figure illustrates an ORD for the pro-
gram listed in Figure 4, and the edges that
capture relationships between classes in
the program. The four dashed lines in
the graph are polymorphic edges, and the
other edges are labeled appropriately.

which cannot be severed until the object that owns the
data is destroyed. Data attribute w in class X, line 14
of Figure 4, illustrates a composition relationship repre-
sented by the arrow from X to W � P* � on the middle
left of Figure 5. The ownership of w by class X cannot
be severed until class X is destroyed.

Since class W � P* � contains data, a pointer to P,
variable data can polymorphically refer to P or any of
its derived classes and an invocation to a virtual function
in P will be resolved dynamically. Thus, the association
edge connecting W � P* � to P generates polymorphic
edges from W � P* � to each of the classes derived from
P, illustrated as dashed lines from W � P* � to Q, R and
S. Polymorphic edges are illustrated as unlabeled dashed
lines in our ORD and were described in reference [15],
where they were referred to as dynamic edges; however,
since these edges can be determined statically, we refer
to them as polymorphic edges.

Lines 16 through 21 of Figure 4 list class P contain-
ing member function fun and data attribute wp. Formal
parameters and local variables of functions form depen-
dency relationships between classes; thus, there is a de-
pendency edge from class P to class X induced by pa-
rameter x of function fun, line 18 in Figure 4. This pa-
rameter is passed by value and therefore does not gen-
erate polymorphic edges from class P to the classes de-
rived from class X; if the transmission mode were refer-

5

ence or if parameter x was a pointer to X, then polymor-
phic edges would be generated from class P to classes
Y and Z. Also class P has lifetime ownership of data
attribute wp, expressed as the composition edge to the
template specialization W � char � in the upper right of
Figure 5.

Lines 23 through 26, of Figure 4, list class Q, derived
publicly from class P. This inheritance relationship is il-
lustrated in Figure 5 by the edge from Q to P labeled
inheritance. Since class Q has an association with class
R, generated by the pointer variable on line 25 of Figure
4, there is an association edge from Q to R and a poly-
morphic edge generated from class Q to class S, derived
from class R. There are similar inheritance edges in Fig-
ure 5 for the derived classes listed on lines 27 through 32
of Figure 4.

Finally, class Inner, listed on line 31 of Figure 4 is
contained in class Z, generating an ownedElement edge
from Z to Inner, illustrated on the lower left of Figure 5.

4.3. The parameterized cost model

The usual approach to the computation of an integra-
tion order for classes in the presence of a cycle of depen-
dencies among the classes, is to construct an ORD and
remove edges from the ORD until all cycles are broken.
One approach might entail the removal of arbitrary edges
from the ORD until all cycles are eliminated. However,
our approach is to use our Cost Ordering System, a flex-
ible framework that is driven by a cost model that as-
signs weights to the edges of an ORD. The parameters
to the model provide flexibility in guiding the edge re-
moval process so that the model can be tuned in an at-
tempt to minimize the number of edges that are removed
or to minimize the number of stubs that are required for
untested supplier classes.

Our ORD is a multigraph G � (V, E), where V is
a set of vertices representing classes, and E is a set of
edges representing the relationships between the classes.
A multigraph may contain multiple edges between any
particular pair of vertices

Our cost model,
� � �������	��
������������� �� � , is a 3-

tuple consisting of � , a set of weight assignments and
functions �	��
� and ��������� ��� defined as follows:

� ��� ������ ����� !����#"$��� %$��� &�' (1)

�)(+*-, � (2)

�/.1032547698:
<;>=?��@>A�BC�D� ��� � ��� ��=E��@F�#A�*G' (3)

����� ��� � � � H
I�J�KMLON P �	��
� (4)

Equation (1) is a set of weight assignments for the
six edge type designations for inheritance, association,
composition, dependence, polymorphic and ownedEle-
ment edges. Equation (2) defines a total function � as a
mapping from the set of edges, E, to the set of weights
� , so that for edge
 , �	��
� is the weight assignment for
that edge. Equation (3) defines a merged edge �Q��� � as
a set of edges represented as ordered pairs ��=E��@F� , where
each edge in the set has the same source class and the
same destination class. Equation (4) defines �R���Q��� ��� , a
function � that computes the weight of a merged edge
����� � as the sum of the weights of the individual edges
in the set � ��� � .
5. The Class Ordering System

In this section, we describe our algorithm to order the
classes for class-based testing. In Section 5.3 we de-
scribe the design of our system.

5.1. The algorithm

Figure 6 summarizes the algorithm used by our Class
Ordering System to order the classes in a C++ application
for class-based testing. In Step 1 we build an ORD using
variable and type information garnered from the Clou-
seau API in the keystone parser and front-end [17]. In
item (1) of Step 1 we assign weights to each edge in the
ORD using function � of our cost model, equation (1) in
Section 4.3. In item (2) of Step 1 we merge edges using
�R����� , equation (4) in Section 4.3. Assume classes X and
Y with directed edges ��= � ��@ � � and ��= � ��@ � � connecting
X and Y respectively. We merge the two directed edges
��= � ��@ � � and ��= � ��@ � � , label the merged edge as merged,
and assign a weight to the new edge that is the sum of the
weights of ��= � ��@ � � and ��= � ��@ � � . To complete the merge
process of item (3) we merge all such edges.

In Step 2 we partition the nodes of the ORD into
strongly connected components, SCC, using depth first
search as described in reference [2].

In Step 3 we use our cost model to break the cycles
in SCCs constructed in Step 2. We begin with item (1)
of Step 3 in Figure 6 where we first choose a SCC, c,
that has more than one node. Strongly connected com-
ponents with a single node X either have association or
dependency edges starting and ending with X or no edges
at all. Such classes will require no stub construction dur-
ing the testing cycle. Finding the best edge to remove
is equivalent to finding a solution to the feedback arc set
problem [10, p. 192] so we use the cost model to guide
our decisions about edge choices. In item (2) of Step 3
we remove the edge and in item (3) we use Step 2 to find

6

Step 1: Build ORD, G, using info from Clouseau
(1) Use function

�
, equation (2) in Section 4.3,

to assign a weight to each edge in the ORD
(2) merge the edges in G; use �������	�
�� , equation (4)

Step 2: Partition G into SCCs
Step 3: Use the cost model to break all of the cycles

in each SCC as follows:
(1) Choose a SCC, c, with more than 1 node
(2) Remove an edge in c with smallest weight
(3) Use Step 2 to find SCCs in the reduced SCC
(4) Repeat Step 3 until all SCCs contain 1 node

Step 4: Find a class ordering for testing as follows:
(1) For each edge e removed in Step 3, remove e

from G; let resulting graph be G’
(2) Order the classes in G’ in reverse topological

order

Figure 6. Algorithm summary. This figure
summarizes the steps required to build an
ORD for a program, break the cycles in the
ORD and find a class order for class-based
testing.

the strongly connected components in the reduced SCC.
We repeat Step 3 until all SCCs contain a single node.

In item (4) of Step 3 we remove the edge with small-
est weight, and use Step 2 to find the cycles in c. We
continue with steps 3 and then 2 until there are no more
cycles, saving the removed edges in a list for process-
ing in Step 4. In Step 4 we remove the edges from G
that were removed in Step 3 and then find a class order
using a reverse topological ordering of the nodes in the
reduced graph G’.

5.2. Running time of the algorithm

The running time of the algorithm used by our Class
Ordering System is G�
�� ��;��
1��� , where ; and
 are, re-
spectively, the numbers of nodes and edges in the ORD.
Specifically, the construction of the ORD (Step 1), find-
ing the initial strongly connected components (Step 2),
and producing the class ordering (Step 4), each require
G��;��
1� time. Step 3 has at most
 iterations, with find-
ing the resultant strongly connected components being
the dominating step. Since finding those SCCs requires
time G��;��
� in the worst case, the total time for Step 3
(and for the algorithm as a whole) is G��
��3��;��
��� .
5.3. Design of the system

Figure 7 is a UML class diagram that summarizes the
important classes and relationships in our Class Order-

ing System; other classes and relationships in the system
have been elided from the diagram for readability. The
three classes at the top of the figure, Graph, Node and
Cluster, are a variation of the Composite design pattern
and are used to form the nodes and clusters in our ORD.
The class at the middle left of the figure, GraphMan-
ager, is a version of the Singleton design pattern and
choreographs the steps of the algorithm in Figure 6. The
inheritance hierarchy at the bottom of the figure consist-
ing of the five classes, Command, BuildGraphCom-
mand, CountLinksCommand, BuildStrongCompo-
nentsCommand, and BreakCyclesCommand, are a
version of the Command design pattern and encapsu-
late the functionality of the steps of the algorithm. The
Clouseau API is shown in the lower left of the figure
and the class that summarizes our cost model, Cost-
Model, is shown in the lower right of the figure. Both
the CostModel class and Graph hierarchy use class Ed-
geTypes, shown in the middle right of Figure 7; Ed-
geTypes encapsulates the types of edges in our ORD,
described in Section 4.

The three classes at the top of Figure 7, Graph, Node
and Cluster, form a variation of the Composite design
pattern [9]. The Graph base class has two purely virtual
functions, insert and addEdge, which all derived clas-
ses must implement. The Node derived class, shown
in the upper left of Figure 7, has four data attributes:
name, the name of the class that corresponds to this
node, theType, the type of edge that is drawn to this
class, visited, used in depth first search, and dfsNum-
ber, also used in depth first search in Step 2 of the algo-
rithm in Figure 6.

Class Cluster, also derived from Graph, has a single
data attribute, adjList, an adjacency list of nodes. We
fully exploit the standard C++ library for list, sort, find and
other functionality in our Class Ordering System, so our
adjacency list is a ��6���� ����6���� ���Q.��7
 � � . Class Clus-
ter includes member functions, insert, to add a node to
the list, addEdge, to add an edge to the list, getAdgList,
to get the list, removeLightestWeight, to remove the
edge with the smallest weight, setAllWeights, which
uses the cost model to set the weights of the edges in
the list, and mergeEdges, which merges the edges as
described in Section 4.

The GraphManager class in the middle left of Fig-
ure 7, is a singleton, providing global access to a single
instance of the class. The Singleton obviates the need to
pass the data in the system to instances of Command.
The figure illustrates two of the data attributes of Graph-
Manager, graph, the ORD built by an instance of Build-
GraphCommand, and cycles, a list of clusters, some of

7

Figure 7. Class Ordering System. This figure illustrates a UML class diagram summarizing the
important classes and relationships in our system. The CostModel class in the middle right of
the figure encapsulates our parameterized cost model. There is a cycle in the class diagram that
includes classes Graph, Node and Cluster.

which contain cycles larger than a single node. We have
also listed four of the member functions of GraphMan-
ager including Instance, which provides global access
to the GraphManager object, and buildGraph, findCy-
cles and printCycles, which use instances of the com-
mand pattern.

The two classes in the lower right of the fig-
ure, BuildStrongComponentsCommand and Break-
CyclesCommand, encapsulate the functionality of Step
2 and Step 3 respectively of Figure 6. The depen-
dence edge from BreakCyclesCommand to Build-
StrongComponentsCommand indicates the use of an
instance of BuildStrongComponentsCommand de-
scribed in item (4) of Step 3.

6. Case study

In this section we describe results of our implemen-
tation of the Class Ordering System, COS, executed
on a

�
 � ���+0
��O6 � 6 .1;���� 530 workstation with 	$; �
	� c

�
<.1;���� 1.7 GHz processor equipped with 512 MB of
RDRAM, running the Red Hat Linux 8.0 operating sys-
tem. The COS consists of 38 classes and 1,304 lines of
C++ code [24], compiled with GNU gcc version 3.2.

In the next section we describe the test suite for our
study. In Section 6.2 we provide results about the num-
ber of nodes and edges in the strongly connected compo-
nents, SCCs, and in Section 6.3 we provide results about
number of classes and edges in the largest SCC. Finally,
in Section 6.4 we provides results about the number of

8

template orTest case LOC classes
nested classes

Adol-C 699 16 0
Class Ordering
System (COS)

1304 38 11

ep matrix 4,944 50 0
vkey 8,588 46 0

IV Edraw 832 44 0
IV Graphdraw 4,354 151 1
IV Drawserv 5,687 236 1

Figure 8. Test suite for our study. A test
case in our study is a program that is used
as input to our Class Ordering System,
COS. We use the COS to build an ORD
for the test case and then investigate is-
sues about the ORD such as the number
of strongly connected components (SCCs)
in the ORD and number of edges that must
be removed to eliminate cycles.

edges that must be removed to break cycles in the SCCs
using different weights for inheritance edges.

6.1. The test suite

The table in Figure 8 summarizes our suite of seven
test cases, listed in the rows of the table as Adol-C,
Class Ordering System (COS), ep matrix, vkey, IV
Edraw, IV Graphdraw and IV Drawserv. In our study,
a test case is a program that we use as input to COS to in-
vestigate issues such as the number of cycles in the ORD
and the number of edges removed to eliminate cycles in
the ORD for the test case. The test cases were chosen
for their range and variety of application. The test cases
are mostly listed in sorted order by number of classes,
except that the GUI applications are grouped together at
the bottom of the list.

Test case Adol-C is a package for automatic differen-
tiation of algorithms [1] and COS is our Class Ordering
System described in this paper. The ep matrix test case is
an extended precision matrix application that uses NTL,
a high performance portable C++ number theory library
[23]. vkey is a GUI application that uses the V GUI
library [29], a multi-platform C++ graph framework for
GUI applications. The final three test cases are GUI ap-
plications: IV Edraw, IV Graphdraw and IV Drawserv
were generated from the IV Tools drawing application
[28], a suite of free XWindows drawing editors for Post-
script, TeX and web graphics production.

The first column of data in Figure 8 lists the lines
of code, LOC, not counting blank lines or comments.
The second column lists the number of classes in the test
case and the third column lists the number of template
or nested classes. The test case for our Class Order-
ing System, COS, contains 11 template classes from the
standard C++ library [12] and there was a nested class in
each of the IV Graphdraw and IV Drawserv test cases.

6.2. Cycles in the ORDs

Figure 9 lists summary information about the ORDs
and the cycles in the ORDs for the test cases in our study.
The first two columns of data list information about the
respective ORD and the final four columns list infor-
mation about the strong components, SCCs, constructed
during Step 2 of the algorithm of Figure 6.

The first column of data in Figure 9 lists the num-
ber of classes and the second column lists the number of
edges in the ORD for the respective test case. The third
column lists the number of SCCs that contain a single
class and the fourth column lists the number of SCCs
that contain more than one class. We use the cost mo-
del, in Step 3 of our approach, to remove edges until all
SCCs consist of a single class. The fifth column lists the
number of classes and the final column lists the number
of edges in the largest SCC.

To illustrate the significance of the data in Figure 9,
the second row of data lists information about COS, our
Class Ordering System, whose ORD consists of 38 clas-
ses and 128 edges. The ORD for the COS contains a
cycle of three nodes consisting of classes Graph, Node
and Cluster, illustrated in Figure 7. Cycles are an un-
desirable feature of an ORD or class diagram [26] and
we were dismayed to discover this cycle. We intend to
refactor the cycle out of our COS; however, some de-
sign patterns, such as the Visitor pattern [9], are cyclic
by nature. There are 11 edges in the SCC of the COS
with a cycle, as illustrated in row two, the sixth and final
column of data in Figure 9.

The final row of Figure 9 lists information for the IV
Drawserv test case. The fifth and sixth columns of the
final row show that the ORD for IV Drawserv contains
110 classes and 4,722 edges. This is the largest SCC
with a cycle in any of the test cases in our suite.

6.3. Edge types in cycles

Figure 10 lists the number of classes and the num-
ber of each type of edge in the largest SCC for test cases
COS, IV Edraw and IV Drawserv. We use this informa-
tion to explain some of our results about breaking cycles

9

Total SCCs: SCCs: Classes in Edges inTest case Classes
edges 1 class � 1 class largest SCC largest SCC

Adol-C 16 111 7 2 5 63
Class Ordering System 38 128 35 1 3 11

ep matrix 50 164 50 0 1 4
vkey 46 226 27 1 19 143

IV Edraw 44 252 30 2 12 117
IV Graphdraw 151 1340 106 3 39 673
IV Drawserv 236 6460 118 3 110 4722

Figure 9. SCCs with cycles. This table shows information about the number of SCCs with a single
class, the number of SCCs with a cycle, and the number of nodes and edges in the largest SCC.

IV IVNumber of: COS
Edraw Drawserv

Classes 3 12 110
Inheritance edges 2 10 100
Association edges 0 2 51
Composition edges 0 0 0
Dependence edges 7 31 490
Polymorphic edges 2 74 4081
Owned Element edges 0 0 0

No. of Total edges 11 117 4722

Figure 10. Nodes & edge types in largest
cycle. This table shows the number of
nodes (classes) and the types of edges in
the largest cycle for three test programs.

in the next section. To illustrate the data in the figure,
consider column one, which lists 3 classes and 2 inheri-
tance edges in the SCC with a cycle in COS, our Class
Ordering System. This information can be verified by in-
spection of classes Graph, Node and Cluster at the top
of Figure 7 in Section 5.3. In addition, the COS SCC
with a cycle contained no association edges, no com-
position edges, 7 dependence edges and 2 polymorphic
edges.

The third column of Figure 10 lists 4,081 polymor-
phic edges in IV Drawserv. This is almost forty times
the number of classes in this test case. To see how the
number of polymorphic edges can proliferate in an ap-
plication with a preponderance of inheritance relation-
ships, consider three classes in the IV Drawserv test
case: base class OverlayCatalog, class FrameCatalog
derived from OverlayCatalog, and class DrawCatalog
derived from FrameCatalog. Class OverlayCatalog
contains an association edge to itself, which generates
4 polymorphic edges from each of the base classes to

each of the derived classes.

6.4. Breaking cycles in the ORD

Figure 11 lists results for the six test cases that con-
tain a cycle larger than a single class. Each of the two
columns of data in Figure 11 list the number of edges
that were removed to break the cycles in the respective
ORDs for two different cost models that varied by a sin-
gle value. The cost model is described in Section 4.3.
In the first column, we use a model that assigns weights
of ��� ���F�����F���F�����F�����$� to inheritance, association, com-
position, dependence, polymorphic and ownedElement
edges respectively. These weight assignments are based
on our estimation of the cost of stub construction for
untested classes. The same weight assignments are used
in the second column except that inheritance edges are
assigned a weight of 100. We chose these weights based
on an estimation of the cost of stub construction for
untested classes (see Section 3). The bar graph in Fig-
ure 11 dramatizes the difference in the number of edges
removed, especially for the IV Drawserv test case. The
vertical axis of the bar graph lists the test cases and the
horizontal axis shows the number of edges removed for
each of the cost models.

Inheritance edges are considered poor choices for
breaking cycles since they are likely to increase the com-
plexity of stub construction [6, 7, 26]. Nevertheless, we
chose to assign a low weight to the inheritance edge in
the first model and a high weight to inheritance in the
second model to investigate the impact on efficiency in
breaking cycles. The low weight of � increases the prob-
ability that our heuristic will choose to remove an inher-
itance edge and the high weight of ����� makes it unlikely
that an inheritance edge will be chosen to break a cycle.

Our results in Figure 11 indicate that including in-
heritance edges in edge removal considerations is more
efficient for breaking cycles. For example, for Adol-C,

10

#edges removed #edges removedTest case
(2,2,20,5,20,20) (100,2,20,5,20,20)

Adol-C 13 26
COS 2 6
vkey 20 44

IV Edraw 35 37
IV graphdraw 69 185
IV drawserv 498 1191

Figure 11. Number of edges removed. The
table lists the number of edges removed
to break cycles using two cost models that
differ by the weight assigned to inheritance
edges. The bar graph highlights the differ-
ence in the two models.

listed in the first row of the table, 13 edges were removed
to break cycles for a low weight for inheritance and 26
edges were removed to break cycles for a high weight for
inheritance. In fact, if inheritance edges are not removed,
twice as many edge removals were required to break cy-
cles in the SCCs for the test cases, with the exception
of the IV Edraw test case where 35 and 37 edges were
removed with and without inheritance edge removal re-
spectively. The IV Edraw test case contains only 10 in-
heritance edges in its largest SCC, as shown on column
two, row two of Figure 10. To break all of the cycles in
the IV Edraw test case, 35 edge removals were required.
With only 10 inheritance edges, the COS algorithm ex-
hausted the supply of inheritance edges to remove before
all cycles were broken; thus, the impact of the weight
of the inheritance edge was mitigated by the scarcity of
such edges in the IV Edraw test case.

The difference in the number of edge removals re-
quired for low and high weights for inheritance edges
was more than double for the IV Drawserv test case,
where 498 edges were removed to break cycles for the
low inheritance weight and 1,191 edges were removed
to break cycles for high inheritance weight. The dif-
ference in time to break cycles for the low weight was

20 seconds as compared to 98 seconds for the high in-
heritance weight. Considering the significant effort re-
quired to build stubs, the difference between 20 seconds
and 98 seconds is not an imposing amount of time. On
the other hand, the removal of 1,191 edges may require
stubs for each of the respective supplier classes involved
in the edge relationship. It has been conjectured that the
number of stubs is proportional to the number of client
classes that use the supplier classes, rather than the num-
ber of supplier classes [7]. Thus, an investigation into
the complexity and number of stubs required for various
types of removed edges is an important feature of our
ongoing work.

7. Related Work

The focus of our work is a Class Ordering System,
COS, that includes a parameterized cost model that per-
mits flexibility in the types of edges chosen to break cy-
cles in an ORD for a program under test. Our COS can
accomodate C++ programs that contain template classes
and functions and nested classes. In our survey of the lit-
erature we found no references that describe techniques
to accomodate template classes or functions, or nested
classes. Moreover, all references in the literature pro-
pose to break cycles using association edges, except for
[16] where arbitrary edge types are removed. None of
the references investigate the effect of choosing an alter-
native edge type to association to break cycles.

We reviewed references [6] and [14] in Section 3. We
now review several other important works that relate to
our paper.

Tai and Daniels use an ORD to generate a class test-
ing order based on the number of incoming and outgo-
ing edges [25]. To break cycles, edges are weighted by
summing the number of incoming edges of the source
node and the number of outgoing edges of the destina-
tion node. The edges with the higher weights are re-
moved.

Briand et al. [7] propose a strategy for ordering clas-
ses for testing that combines two other approaches. A
weight is computed by multiplying the number of incom-
ing and outgoing edges for the vertices involved in each
association edge in a strong component. Briand et al.
conjecture that by selecting association edges that break
the largest number of cycles, the number of stubs is min-
imized.

8. Conclusions

We have described our Class Ordering System that
generates an order for the classes in a C++ application for

11

class-based testing. Our results indicate that ORDs for
C++ applications can contain cycles that include hundreds
of classes and thousands of edges. We have shown that
removing inheritance edges can increase the efficiency
of the cycle breaking process.

However, previous research has conjectured that in-
heritance edge removal is likely to increase the complex-
ity of stub construction [6, 7, 26]. Nevertheless, by re-
fusing to remove inheritance edges, the cycle breaking
algorithm may require more than twice as many edge re-
movals, which will require stubs for the respective sup-
plier classes. It has also been conjectured that the num-
ber of required stubs is proportional to the number of
client classes that use the supplier classes rather than the
number of supplier classes [7]. Thus, further investiga-
tion into the complexity and number of stubs that are re-
quired for various types of edge removals is an important
feature of our ongoing work.

References
[1] A. Griewank and O. Vogel. http://www.math.tu-

dresden.de/wir/project/adolc/, April 2003.
[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design

and Analysis of Computer Algorithms. Addison-Wesley,
second edition, 1974.

[3] B. Beizer. Software Testing Techniques. Van Nostrand
Reinhold, second edition, 1990.

[4] R. V. Binder. Testing Object-Oriented Systems: Models,
Patterns, and Tools. Addison-Wesley, 2000.

[5] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language User Guide. Object Technology Se-
ries. Addison-Wesley, 1999.

[6] L. Briand, J. Feng, and Y. Labiche. Using genetic algo-
rithms and coupling measures to devise optimal integra-
tion test orders. In Proceedings of the 14th International
Conference on Software Engineering and Knowledge En-
gineering, pages 43–50, Ischia, Italy, July 2002. IEEE
Computer Society Press.

[7] L. Briand, Y. Labiche, and Y. Wang. Revisiting strategies
for ordering class integration testing in the presence of de-
pendency cycles. In Proceedings of the 12th International
Symposium on Reliability Engineering (ISSRE ’01), pages
287–297. IEEE Computer Society Press, Nov. 2001.

[8] M. Fowler and K. Scott. UML Distilled. Addison-Wesley,
second edition, 1999.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

[10] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
Freeman and Company, first edition, 1979.

[11] M. J. Harrold, J. D. McGregor, and K. J. Fitzpatrick.
Incremental testing of object-oriented class structures.
ICSE, 1992.

[12] ISO/IEC JTC 1. International Standard: Programming
Languages - C++. Number 14882:1998(E) in ASC X3.
ANSI, first edition, September 1998.

[13] R. M. Karp. Reducibility among combinatorial problems.
In R. E. Miller and J. W. Thatcher, editors, Complexity of
Computer Computations. Plenum Press, 1979.

[14] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen. A
test strategy for object-oriented programs. In Proceedings
of the 19th International Computer Software and Applica-
tions Conference (COMPSAC’95), pages 239–244. IEEE
Computer Society Press, august 1995.

[15] Y. Labiche, P. Thevenod-Fosse, H. Waeselynck, and
M. H. Durand. Testing levels for object-oriented software.
In ICSE, pages 136–145, New York, June 2000.

[16] Y. Le Traon, T. Jeron, J.-M. Jezequel, and P. Morel. Ef-
ficient object-oriented integration and regression testing.
IEEE Transactions on Reliability, 49(1):12–25, March
2000.

[17] B. A. Malloy, T. H. Gibbs, and J. F. Power. Decorating to-
kens to facilitate recognition of ambiguous language con-
structs. Software, Practice & Experience, 33(1):19–39,
2003.

[18] R. C. Martin. Agile Software Development. Prentice Hall,
2003. 0-13-597444-5.

[19] S. Matzko, P. Clarke, T. H. Gibbs, B. A. Malloy, and J. F.
Power. Reveal: A tool to reverse engineer class diagrams.
In Proceedings of the International Conference on the
Technology of Object-Oriented Languages and Systems,
Sydney, Australia, Feb 2002.

[20] NIST. The economic impacts of inadequate infrastruc-
ture for software testing. Technical Report, May 2002.

[21] OMG Unified Modeling Language Specification.
http://www.omg.org/cgi-bin/doc?formal/03-03-01.pdf,
March 2003.

[22] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Object Technol-
ogy Series. Addison-Wesley, 1999.

[23] V. Shoup. Number theory library.
http://www.shoup.net/ntl/, March 2002.

[24] B. Stroustrup. The C++ Programming Language.
Addison-Wesley, third edition, 1997.

[25] K.-C. Tai and F. J. Daniels. Test order for inter-class in-
tegration testing of object-oriented software. In 21st In-
ternational Computer Software and Applications Confer-
ence, COMPSAC’97, pages 602–607. IEEE, 1997.

[26] N. N. Thuy. Testability and unit tests in large object ori-
ented software systems. In Fifth International Software
Quality Week, San Francisco, CA, May 1992.

[27] D. Vandevoorde and N. M. Josuttis. C++ Templates: The
Complete Guide. Addison-Wesley, 2003.

[28] J. M. Vlissides and M. A. Linton. IV tools.
http://www.vectaport.com/ivtools/, March 2002.

[29] B. Wampler. The V C++ GUI framework.
http://www.objectcentral.com, October 2001.

12

