
HAL Id: lirmm-00153368
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00153368v1

Submitted on 10 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPA Resistant Elliptic Curve Cryptosystem using
Addition Chains

Andrew Byrne, Nicolas Méloni, Francis Crowe, William P. Marnane, Arnaud
Tisserand, Emanuel Popovici

To cite this version:
Andrew Byrne, Nicolas Méloni, Francis Crowe, William P. Marnane, Arnaud Tisserand, et al..
SPA Resistant Elliptic Curve Cryptosystem using Addition Chains. ITNG’07: 4th Interna-
tional Conference on Information Technology, Apr 2007, Las Vegas, Nevada, U.S.A., pp.995-1000,
�10.1109/ITNG.2007.185�. �lirmm-00153368�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00153368v1
https://hal.archives-ouvertes.fr

SPA resistant Elliptic Curve Cryptosystem using
Addition Chains

A. Byrne∗, N. Meloni†, F. Crowe∗, W.P.Marnane∗, A. Tisserand† and E.M.Popovici‡
∗Dept. of Electrical and Electronic Engineering, University College Cork

Email: {andrewb,liam,francisc}@rennes.ucc.ie
†LIRMM, CNRS - Univ. Montpellier 2

Email: {nicolas.meloni,arnaud.tisserand}@lirmm.fr
‡Dept. of Microelectronic Engineering, University College Cork

Email: {e.popovici}@ucc.ie

Abstract— There has been a lot of interest in recent years in
the problems faced by cryptosystems due to side channel attacks.
Algorithms for elliptic curve point scalar multiplication such
as the double and add method are prone to such attacks. By
making use of special addition chains, it is possible to implement
a Simple Power Analysis(SPA) resistant cryptosystem. In this
paper a reconfigurable architecture for a cryptographic processor
is presented. A SPA resistant algorithm for point multiplication
is implemented and is shown to be faster than the double-and-add
method. Post place and route results for the processor are given.

Keywords - Cryptography, elliptic curves, reconfigurable
architecture, addition chains, side-channel attacks

I. INTRODUCTION

Elliptic curve cryptography was proposed by Miller[1] and
Koblitz[2] in 1985. It provides a means for two hosts to
generate a secret key for communication across an insecure
channel. The strength of cryptography lies in the difficulty
of an encryption schemes inverse operation. Elliptic curve
cryptography provides relatively better security per bit than
other cryptographic standards such as RSA.

Therefore elliptic curve cryptosystems (ECC) consume less
memory and hardware resources to implement. The main
operation of ECC is scalar point multiplication given an elliptic
curve E and a point P on E the point [k]P = P+P+. . . P for
some given integer k. The basis for the strength of the ECC is
the elliptic curve discrete logarithm problem (ECDLP). Given
two points Q and P on an elliptic curve E, find the integer k
such that Q = kP . This is the operation required to retrieve
a secret key from an ECC. For a large enough key size, a
brute force attack would require too much computing power
and time to be feasible[3].

Recently, more effort has been carried out to secure EC
point multiplication against side channel attacks[4]. SPA at-
tacks monitor the power consumption of an execution of a
cryptographic algorithm. Algorithms such as the double-and-
add method are prone to these types of attacks. Euclid’s
addition chains can provide both a secure and efficient scheme
of exponentiation when combined with elliptic curves[5].

The remainder of the paper is structured as follows: Section
II provides some background information on elliptic curves.
Section III briefly introduces Side Channels Attacks. Section
IV presents addition chain theory. Section V describes the

versatile processor and all it’s components. Implementation
results are given.

II. ELLIPTIC CURVES

An elliptic curve E(GF (q)) over GF(q) is the set of points
P = (x, y), x, y ∈ GF (q) such that

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ GF (q) (1)

along with a special point at infinity ∂.
Elliptic curves over large prime fields are described using

the Weierstrass equation

y2 = x3 + a4x + a6 (2)

where x, y, a4 and a6 ∈ GF (q) and 4a3
4 + 27a2

6 �= 0.
The number of points on the curve is p + 1 − t, where

t is the trace of Frobenius(Tr). Given a point P = (x, y)
and a positive integer n, the order of P is the smallest
positive integer n such that [n]P = ∂. The curve Q where
t is a multiple of p is supersingular, otherwise it is non-
supersingular. The choice of curve determines the group
law and defines the equations for point doubling and point
addition.

Points on the elliptic curve can be represented in Jacobian
coordinates which avoids the need for an expensive inversion
operation[6]. Converting from affine to projective coordinates
is a simple operation, (x, y, 1) → (X,Y,Z). Conversion back
however requires a number of modular multiplications and
inversions, (x, y) ← (X

Z2 , Y
Z3). In Jacobian coordinates, the

curve in Equation 2 is given by Y 2 = X3 + a4XZ4 + a6z
6

A. EC Multiplication

Given an elliptic curve E and a point P on the curve, the
point Q is calculated by point scalar multiplication where the
point P is added to itself k times to get the point [k]P .

Algorithms such as the double and add algorithm, given
in Algorithm 1 are used to calculate point multiplication
efficiently. The double and add algorithm requires nk point
doubling operations (nk is the bit length of the key) and w(k)
point additions (w(k) is the binary weight of the key).

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

Algorithm 1: Double and Add Point Scalar Multiplication

input : P ∈ E(GF (q)), k =
∑nk−1

i=0 ki2i

output: Q = [k]P ∈ E(GF (q))
Initialise: Q=P;
for i← nk − 2 to 0 do

Q = 2Q //Point Doubling;
if ki = 1then

Q = Q + P //Point Addition;
end

end

B. EC Point Addition and Doubling

Consider two separate points on an elliptic curve, P =
(xp, yp) and Q = (qt, qt). A line l is drawn through the
points P and Q. The line l intersects the curve at a third point,
Q′ = (xq′ , yq′) is the inverse of that point, where Q′ = P +Q.
The point addition formulae for the curve defined in Equation
2 using Jacobian coordinates are given in Algorithm 2. The
computational cost of a point addition is 15 multiplications
and 7 add/subs.

Algorithm 2: Point Addition in Jacobian Coordinates

input : P (X1, Y1, Z1), Q(X2, Y2, Z2) ∈ GF (q)
output: P + Q(X3, Y3, Z3) ∈ E(GF (q))
A = X1Z

2
2 , B = X2Z

2
1 , C = Y1Z

3
2 , D = Y2Z

3
1 ;

E = B − A, F = D − C;
X3 = −E3 − 2AE2 + F ;
Y3 = −CE3 + F (AE2 − X3), Z3 = Z1Z2E

If T = P then this is point doubling and a tangent to the
point is used. The tangent intersects with the curve at a second
point, T ′ = 2(T) is the inverse of this point. Algorithm 3 gives
the formulae for point doubling for the curve in Equation 2.The
computational cost for point doubling is 10 multiplications and
8 add/subs.
Algorithm 3: Point Doubling in Jacobian Coordinates

input : P (X1, Y1, Z1) ∈ GF (q)
output: [2]P (X3, Y3, Z3) ∈ E(GF (q))
A = 4X1Y

2
1 , B = 3X2

1 + a4Z
4
1 ;

X3 = −2A + B2;
Y3 = −8Y 4

1 + B(A − X3), Z3 = 2Y1Z1

III. SIDE CHANNEL ATTACKS

In recent years, cryptosystems have come under attack from
various forms of side channel attack. Kocher et al.[4] dis-
covered that cryptosystem implementations leak information
which can help an attackers recover secret data. One such
technique for retrieving secret information is SPA.

SPA involves monitoring the power consumption of a single
execution of a cryptographic algorithm. Every instruction has
a different power consumption, therefore it is possible to
retrieve the sequence of instructions during the algorithm
execution. For example, the double and add algorithm has
two primary operations, point addition and point doubling.
Each of these operations produce a different power trace when
executed because of the different number of multiplications

and additions in each algorithm. Since, the execution of a
point addition in the double and add is directly related to
the secret key, it is possible to retrieve the secret key by
monitoring the power consumption of a single execution of
a scalar multiplication. The first successful power analysis
attack against an FPGA was done by Ors et al.[7] in which
they attacked an elliptic curve processor and retrived the secret
key.

SPA attacks work well on algorithms where the the power
consumption can be directly related to the instruction being
executed. In order to resist SPA attacks, the instructions
executed in a cryptographic algorithm must not be directly
related to the secret data. In the double and add method,
the branch instruction based on ki leaks information about
the secret key. A simple solution would be to execute a
point doubling for every bit of k but this vastly increases the
execution time of the algorithm. In this paper, we make use
of special Addition Chains to perform a point multiplication
using only point additions. In this way, SPA cannot be used
to determine the secret key.

IV. EUCLID’S ADDITION CHAINS

An addition chain is a finite sequence of integers
(v0, . . . , vs) satisfying ∀k ≤ s, vk = vi + vj for some
i, j < k. An Euclid’s addition chains is an addition chain
which satisfies v1 = 1, v2 = 2, v3 = v2 + v1 and ∀ 3 ≤
i ≤ s − 1, if vi = vi−1 + vj for some j < i − 1 , then
vi+1 = vi + vi−1(case 1) or vi+1 = vi + vj(case2).

Case 1 is called the Fibonacci step (it corresponds to one
step of the Fibonacci sequence) and case 2 is called a small
step (we add the smallest of the two possible numbers to vi).

As an example, (1, 2, 3, 4, 7, 11, 15, 19, 34) is an Euclid’s
addition chain computing 34, for instance in step 4 we have
computed 4=3+1, thus in step 5 we must add 3 or 1 to 4,
in other words from step 4 we can only compute 5=4+1 or
7=4+3. In this example we have chosen to compute 7=4+3 so
that at step 6 we can now compute 10=7+3 or 11=7+4 etc.

Finding such chains is quite simple, it suffices to choose an
integer k′ coprime with k and apply the subtractive form of
Euclid’s algorithm. Let k = 34 and k′ = 19 and apply the
subtractive form of Euclid’s algorithm:

34− 19 = 15 (Fibonacci step)

19− 15 = 4 (small step)

15− 4 = 11 (small step)

11− 4 = 7 (Fibonacci step)

7− 4 = 3 (Fibonacci step)

4− 3 = 1 (small step)

3− 1 = 2
2− 1 = 1
1− 1 = 0

The main advantage of these chains[5] is that they’re only
made of additions (no doublings) which makes them resistant
against simple channel analysis. In order to adapt those chains

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

to the elliptic curve point multiplication, we have introduced
new addition point formulae (in the case of elliptic curve over
prime field) taking advantage of the particular structure of the
chains. Their computational cost is 5 field multiplications and
2 field squares as shown in Section IV-A.

Up to now Euclid’s chain was mainly used with curves
in Montgomery form (on which the addition of two points
P and Q can be performed in only 4 multiplications and 2
squarings if the difference P-Q is known), however not every
curve can be transformed into Montgomery form (moreover
those curves are not of prime order and do not satisfy the
NIST recommendations). On the other hand, Brier and Joye
proposed Montgomery like formulae working with any curve
but in this case the addition cost is 9 multiplications and 2
squarings presenting a gain of 37%.

The drawback of Euclid’s chains is the fact that it is not
easy to find small ones. Several methods have been proposed
to speed up the computation of small chains but in the end it
still remains a ”clever” exhaustive search. The following table
summarizes the number of attempts to find an Euclid’s chain
of a given length:

chain length 320 300 280 260

on average 29 121 2353 7,795,840
worst case 521 3,454 44,254 79,402,210

TABLE I

NUMBER OF ITERATIONS NEEDED TO FIND A EUCLID’S ADDITION CHAIN

COMPUTING A 160 BITS INTEGER

A. New Elliptic Curve Formulae

Given a point P on the elliptic curve E, an integer k and
v = (v3, ..., vs), a special addition chain computing k and s
the addition chain length. In order to simplify the algorithm,
we will use the following notation : if v = (1, 2, 3, v3, . . . , vs)
is an EAC then we only consider the chain from v3 and we
replace all the vi’s by 0 if it has been computed using a
Fibonacci step and by 1 for a small step.

Now it is easy to deduce the point scalar multiplication
algorithm in Algorithm 4.

Algorithm 4: Point Scalar Multiplication using Addition
Chains

input : P ∈ E(GF (q)), k = (v3, ..., vs)
output: Q = [k]P ∈ E(GF (q))
Initialise: U1, U2, U3 ← (P, [2]P, [3]P);
for i← 3 to s do

if wi = 0 then
U1 = U2;

end
U2 = U3;
U3 = U1 + U2;

end

From Algorithm 4 we need to perform one initial point
doubling followed by s− 1 point additions.

If P and Q share the same Z-coordinate we can reduce the
point addition and doubling formulae. The new point addition

formulae are given in Algorithm 5. Using this formulae, the
computational cost is greatly reduced to 7 multiplications
and 7 add/subs. One can verify that the output point P ′ is
equivalent to P in jacobian coordinates, so that a common
Z-coordinate can be maintained between the added points all
along the algorithm.

Algorithm 5: Point Addition, P and Q sharing same Z
coordinate

input : P (X1, Y1, Z), Q(X2, Y2, Z) ∈ GF (q)
output: P + Q(X3, Y3, Z3), P ′(X ′

1, Y
′
1 , Z3) ∈ E(GF (q))

A = (X2−X1)2, X ′
1 = X1A, B = X2A, D = (Y2−Y1)2;

Y ′
1 = Y1(B − X ′

1);
X3 = D − X ′

1 − B;
Y3 = (Y2 − Y1)(X ′

1 − X3) − Y ′
1 , Z3 = Z(X2 − X1)

V. ELLIPTIC CURVE PROCESSOR

A generic architecture was designed for cryptographic op-
erations which incorporates RAM, a ROM controller and a
number of arithmetic units for a given field. The processor can
also be configured to perform pairing operations. Software was
developed using C++ to generate the VHDL for a customized
processor for any characteristic p and extension field m.
Everything from the size of the RAM block to configuring
the arithmetic units and generating the ROM instruction set
for a given algorithm is controlled by the program.

For prime characteristic fields there is a choice of arithmetic
units to chose from for the architecture. Through manipulation
of the ROM instructions alone, the processor can be configured
for various algorithms including the double-and-add algorithm
or exponentiation using addition chains. In this way, we can
quickly compare these and other cryptographic algorithms. In
the next section we will look at the arithmetic units used in
the processor.

A. Arithmetic Units

The point addition and doubling algorithms described in
Sections II-B and IV-A require modular additions, subtrac-
tions and multiplications. While addition and subtraction are
relatively easy to implement, modular multiplication is much
more complex. An in depth review of modular arithmetic and
architectures can be found in [8]

The processor architecture in Figure 1 is capable of control-
ling a number a arithmetic units. There are two architecture
types available for the processor. The first is a configurable
arithmetic logic unit (ALU) that can be set to perform modular
addition, subtraction or multiplication. Taking under consid-
eration the speed/area constraints of the target technology
and the application of the design, the number of ALUs can
be changed to give optimum results. Alternatively, we can
use dedicated units for each of addition, subtraction and
multiplication. Since addition and subtraction only take 4
clock cycles to complete, two of which are RAM read/writes,
these operations are best performed in series and do not gain
from an increased number of arithmetic units. Therefore by
using dedicated units, we can increase the number of modular
multipliers only and save area.

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

8
Controller

addr

ROM

dout A
dout B

sel(1) sel(2)

.............

data_out
sel(0)

data_in din

sel(L)sel(3)

din

RAM

we
2

8
addr

8

1
UNIT

2
UNIT

L
UNIT

3
UNIT

2m 2m

8

2m

ctrl3

load3

Decoder
Address

Decoder
Addresssel3

Fig. 1. General Elliptic Curve Processor

1) Multiplication: In 1985 Montgomery[9] proposed an
efficient method for performing modular multiplication using
a series of additions and right shifts. This method avoids the
need for costly trial division of the modulus. The Montgomery
modular product is defined in Equation 3.

Res = Mont(A,B, p) = AB2−pb+2 (mod p) (3)

The output of a Montgomery multiplication is a factor
2−pb+2 times smaller than the desired result, pb is the field
size in bits. In order to correct the result, the output must
be Montgomery multiplied by (22pb+2 mod p). When a large
number of multiplications are required it becomes inefficient to
correct every result. A better solution is to initially convert the
numbers to the Montgomery domain. To do this, the number
is Montgomery multiplied by (22pb+2 mod p). To convert a
number back, it is Montgomery multiplied by 1.

The algorithm for the Montgomery multiplication is given
in Algorithm 6. The number of iterations performed is pb + 2
in order to the bound the output in the range [0, 2p − 1] for
multiplicands up to twice the modulus. This allows it to be
used as an input to further multiplications without the need
for conditional subtraction.

Algorithm 6: Montgomery Multiplication

input : A =
∑pb

i=0 ai2i, B =
∑pb

i=0 bi2i,;
M =

∑pb

i=0 pi2i

output: R = AB2−pb+2 (mod p)
Initialise: R← 0; bpb+1 ← 0;
for i← 0 to pb + 1 do

qi = Ri−1 + biA (mod2);
Ri = (Ri−1 + qiM + biA)/2;

end

A hardware implementation of the Montgomery multiplier
can be seen in Figure 2(a). Multiplication is performed ac-

cording to Algorithm 6. The inputs to the first adder are biA
and the previous result Ri−1. qip is added to the sum of the
first adder if the LSB of the sum (qi) is equal to 1. A shift
register scans each bit of B for biA and the final result is right
shift divided by 2.

b
p + 3

Shift B

0

0
i

LSB = q

i−1
R

pBA

b

p + 3
b

p + 3
b

p + 3

b
p + 3

i
R

b
p + 3

b
p + 3

b
p + 3

(a) Multiplier

0 1

0

1

A B

R

p

p + 1
b

p + 1
b

p + 1
b

p + 1
b

p
b

p
b

(b) Adder

Fig. 2. Modular Adder and Multiplier

2) Modular Addition and Subtraction: The modular addi-
tion operation adds A and B in the first adder and subtracts
the modulus p from the sum. To subtract the modulus from
the intermediate result, the modulus is bitwise inverted and
added to (A + B) with the carry-in set to 1, thus performing
a two’s complement subtraction. The carry-out of the second
adder controls which intermediate result is the correct result. If
(A + B) is in the correct range, the result of the first adder is
the correct result. Otherwise, the result from the second adder
is correct. The architecture for the adder/subtractor in Figure
2(b) is configured for modular addition.

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

Modular subtraction is performed similarly. In this case
however, B is bitwise inverted and added to A with the carry
in set to 1. If the carry-out of this adder is low, the modulus
must be added to give an output in the correct range.

3) Configurable ALU: Figure 3 shows the architecture for
the configurable ALU. The modular addition, subtraction and
multiplication operations are controlled with a 2-bit mode
signal set to 00,01 and 10 for these operations respectively.
A 2-bit load signal is used also to load the operands.

Table II gives the speed and area performance of the
arithmetic units used for the processor. All results are based
an 192-bit prime modulus.

Configurable ALU Multiplier Adder/Subtractor
Slices 746 503 394
min. period (ns) 22.437 18.686 27.808
Clock Freq. 44.569Mhz 53.516Mhz 35.961Mhz

TABLE II

POST PLACE AND ROUTE RESULTS FOR XILINX XC2VP125

The dedicated multiplier, adder and subtractor give better
area results than the configurable ALU. This is due to the
extra control logic surrounding the ALU for selecting the mode
thus reducing the minimum area. The Multiplier also performs
considerably faster that the configurable ALU.

mode
1

p

mode

R
i−1

load

mode
0

LSB = q
i

xx
00

0
1

mode

mode

1

B

Shift B

A

mode

1

10

0 1

0100 10

00 01

p + 3

0 1

0 1 1 0

b
p + 3
b

p + 3
b

R
i

0100 10

Fig. 3. Configurable ALU

B. ROM Instruction Set

When deciding the control for the processor there are two
options. The first is a finite state machine which can be set
up to perform specific operations such as elliptic curve point
scalar multiplication or Tate pairings. This does not allow for

much flexibility in the design however. Instead, the use of
microcode stored in Xilinx BlockROM was implemented. A
similar approach was taken by Leong et al.[10] which helped
reduce the development time of the processor and increased
the flexibility of the design. A major advantage of this is that
the instruction set can be updated to perform any number of
operations without the need to recompile the entire processor.

When generating the ROM instruction set several con-
sideration need to be taken into account such as, are the
points on the elliptic curve being represented by projective
or affine coordinates; what algorithm is being implemented;
how many arithmetic units are available and what are their
timing constraints.

For the field p, p large prime, configurable and dedicated
ALUs for modular addition, subtraction and multiplication
based on [11] were implemented. In this section we will
look only at the architecture implementing configurable ALUs.
For the architecture to accommodate this type of unit, mode
bits were needed to set the operation of the ALUs. The
instruction set for a reconfigurable ALU based processor over
GF(p) using projective coordinates is shown in Table III. After
initially loading the elliptic curve parameters and Montgomery
constants into RAM, the controller performs operations for the
selected cryptographic algorithm.

Instruction Set
ctrl mode load sel we addr A & B
00 00000000 000 000 00 00001 00010
01 00100000 011 000 00 00000 00000
00 00000000 000 011 01 00000 00011

TABLE III

INSTRUCTION SET USING RECONFIGURABLE ALUS

Here we are using projective coordinates to represent the
points on the elliptic curve to remove the need for inversions
which are time consuming. The 12 LSBs control read and
write access to the dual port RAM. Bits 12 → 14 control the
tri-states connected to the outputs of the ALUs. Only one of
these is set high when writing data to RAM. To reduce the
impact of a large number of arithmetic units in the design on
the size of ROM, a 3-to-8 address decoder is used to make full
use of all combinations of the 3 select bits. Bits 15 → 17 are
the load bits which are used to load new vectors to a specific
ALU. Bits 18 → 25 control the mode signal for each ALU.
In this example there are 4 ALUs in the design, 2 mode bits
per ALU. The two MSBs are extra control bits for the state
machine controlling the processor.

Some operations such as addition & subtraction execute
in a single clock and have no extra timing requirements
associated with them. Multiplication however takes pb + 3
clocks. The controller for the ROM is a simple counter that
goes through each address sequentially on each rising clock
edge. To account for the operational time between loading
the operands and getting the result a state machine is needed
to handle these exceptions. By monitoring bit 26 of the
instruction, the state machine can halt normal execution of the
instructions for a set number of clock cycles while a series of
multiplications are performed.

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

C. Hardware Generator

The versatile processor is presented in Figure 1. VHDL for
the processor is generated by software developed in C++. This
allows for the system to be completely reconfigurable for any
characteristic and extension field. The generation of the ROM
is explained in Section V-B. The architecture presented makes
use of dual-port RAM(though it can be configured for single-
port RAM) so both operands of an arithmetic unit can be
loaded in parallel.

The processor in Figure 1 can be configured for a number
of different algorithms over GF(p) using the arithmetic units
described in Section V-A. It can also be configured for GF(2m)
and GF(3m) where dedicated units are used for multiplication,
addition, subtraction, inversion and division[12]. For GF(p) the
number of configurable ALUs implemented can be modified
using the software developed and is restricted by the FPGA
resources and the point where additional units no longer
give a substantial improvement in the design. Likewise, using
dedicated units, the number of multipliers, adders and sub-
tractors can be configured within the constraints of the target
device and performance gain. All changes to the processor are
handled by the software.

There is a trade off between speed and area that is affected
by the number of ALUs implemented in the processor. More
ALUs will reduce execution time but will increase the area
consumption of the device. Schedules for each algorithm were
generated for a varying number of ALUs and it was found that
for the double and add algorithm, the best speed/area trade off
was 4 ALUs. Given the reduced algorithm for point addition,
there are only ever at most two multiplications executing in
parallel. Therefore, there is no advantage gained in having
extra ALUs. Using Algorithm 5 for point addition, the best
schedule for a speed/area tradeoff implemented 2 ALUs. This
processor gives a slight improvement in the maximum clock
frequency but the total area of the device is half that of the
double and add processor implementing 4 ALUs.

The architecture presented in Section V was evaluated on
Xilinx xc2vp125. The post place and route results for point
multiplication using the double and add and addition chain
methods are listed in Table IV. Each design consumes approx-
imately 5% of the Block RAMs available. The largest designs
using 4 ALUs only need 28 bits for the ROM instruction set
leaving room to extend the instruction for future applications.
The results are based on a 160-bit key size. For the addition
chains, a chain of length 260 was used.

Double-and-Add Addition Chains
ALUs 4 2
Slices 3,693 (6%) 1,879 (3%)
min. period (ns) 24.681 22.437
Clock Freq. 40.52Mhz 44.57Mhz
PA Algorithm 2 5 2 5
Time (ms) 6.94 5.75 9.05 4.7

TABLE IV

POST PLACE AND ROUTE RESULTS FOR XILINX XC2VP125

As described in Section V-A.1, multiplication is executed
in pb + 2 clock cycles. Additions and subtractions take 2

clock cycles. For a field size of 160 and performing all
multiplications and add/subs in series, point addition described
by Algorithm 2 is executed in 2,444 cycles while a point
doubling is executed in 1,636 cycles. Using the improved
formulae from Algorithm 5 a point addition can be executed
in 1,150 clock cycles, half that of the previous algorithm for
point addition.

From the results in Table IV it can be seen that the new
algorithm for point addition gives a slight improvement in
execution time for the double and add method. Since, the
addition chain method does not depend on point doubling, the
effect of the new point addition algorithm is much greater.
With the improved point addition using addition chains we
get the best results over execution time and area.

Using addition chains, the dedicated modular adder, sub-
tractor and Montgomery multiplier were also implemented in
the processor. With a configuration of 1 adder, 1 subtractor
and 2 Montgomery multipliers, the processor consumes 2,282
Slices (4% of the target device) and operates at 71.628Mhz.
Although there is a slight increase in area consumption, the
faster clock frequency means a point scalar multiplication for
a 192-bit field size executes in 2.959ms.

VI. CONCLUSIONS

In this paper, a reconfigurable cryptographic processor has
been used to efficiently compare two algorithms for elliptic
curve point multiplication. Using addition chains we have
found that not only can the cryptosystem resist SPA attacks but
can also outperform a double-and-add approach. An improve-
ment in execution time was also found when implementing
dedicated units instead of the configurable ALU. This is at
the expensive of a slight increase in overall area.

REFERENCES

[1] V. Miller, “Use of Elliptic Curves in Cryptography,” CRYPTO ’85,
Lecture Notes in Computer Science, pp. 417–426, 1986.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Math. Computat., vol. 48,
pp. 203–209, 1987.

[3] N. Koblitz, A. Menezes, and S. Vanstone, “The State of Elliptic Curve
Cryptography,” Design Codes and Cryptography, vol. 19, pp. 173–193,
2000.

[4] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Lecture
Notes in Computer Science, vol. 1666, pp. 388–397, 1999.

[5] M. Nicolas, “Fast and secure elliptic curve scalar multiplication over
prime fields using special addition chains.” Cryptology ePrint Archive,
Report 2006/216, 2006. http://eprint.iacr.org/.

[6] A.Daly, W. Marnane, and E. Popovici, “Fast Modular Inversion in the
Montgomery Domain on Reconfigurable Logic,” ISSC, vol. 19, pp. 363–
367, 2003.

[7] S.B.Ors, E.Oswald, and B.Preneel, “Power-analysis attacks on an fpga -
first experimental results,” Lecture Notes in Computer Science, vol. 2279,
pp. 35–50, 2003.

[8] A. Daly, W. Marnane, T. Kerins, and E. Popovici, “An FPGA Im-
plementation of a GF(p) ALU for Encryption Processors,” Elsevier
Journal on Microprocessors and Microsystems (Special Issue on FP-
GAs:Applications and Designs), vol. 28, no. 5-6, pp. 253–260, 2005.

[9] P.L.Montgomery, “Modular multiplication without trial division,” Math-
ematics of Computations, vol. 44, pp. 519–521, 1985.

[10] P. Leong and I. Leung, “A Microcoded Elliptic Curve Processor Using
FPGA Technology,” IEEE Trans. on VLSI Systems, vol. 10, no. 5,
pp. 550–559, 2002.

[11] F. Crowe, A. Daly, and W. Marnane, “A Scalable Dual Mode Arithmetic
Unit for Public Key Cryptosystems,” ITCC, vol. 1, pp. 568 – 573, 2005.

[12] A. Byrne and W.P.Marnane, “Versatile Processor For GF(pm) Arithmetic
for use in Cryptographic Applications,” to appear in 24th IEEE Norchip
Conference, 2006.

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

