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Abstract

Generally, the classic iterative learning control (ILC) methods focus on finding design conditions

for repetitive systems to achieve the perfect tracking of any specified trajectory, whereas they ignore a

fundamental problem of ILC: whether the specified trajectory is trackable, or equivalently, whether there

exist some inputs for the repetitive systems under consideration to generate the specified trajectory? The

current paper contributes to dealing with this problem. Not only is a concept of trackability introduced

formally for any specified trajectory in ILC, but also some related trackability criteria are established.

Further, the relation between the trackability and the perfect tracking tasks for ILC is bridged, based

on which a new convergence analysis approach is developed for ILC by leveraging properties of a

functional Cauchy sequence (FCS). Simulation examples are given to verify the effectiveness of the

presented trackability criteria and FCS-induced convergence analysis method for ILC.

Index Terms

Iterative learning control, trackability, functional Cauchy sequence, convergence.

I. INTRODUCTION

Iterative learning control (ILC) is proposed for the class of robots executing repetitive tasks,

which aims at bettering the execution performances of robots for the current operation (trial or

iteration) by taking advantage of the saved information from the past operations [1]. Because of

its ability of achieving high-precision tracking tasks, ILC has been well developed for the past

three decades and successfully applied in many fields, such as flexible structures [2], railway

traffic systems [3], batch processes [4], and network systems [5]. For more explanations of ILC,

the readers are referred to the surveys of, e.g., [6]–[8]. It is worth highlighting that due to the

salient two-dimensional (2-D) operating rules with respect to the independent time and iteration

axes, classic ILC methods require limited information of the controlled system, employ simple

(mostly, the PID-type) controller structures, and are easy-to-implement by resorting to distinct

convergence analysis strategies from typical feedback-based control methods (generally, via the

contraction mapping and fixed point theorems instead of the Lyapunov theories).
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In the classic ILC framework, ILC is generally implemented for the controlled system to track

any specified (or desired) trajectory perfectly on a finite time interval through the following

typical steps (see also [6]–[8]):

S1) making necessary assumptions on the controlled system, especially those on its dynamics

repetitiveness, identical initial alignment condition, and system relative degree;

S2) choosing which type of ILC updating laws is employed, or mostly, deciding what kind of

PID-type ILC updating laws needs to be adopted;

S3) finding ILC design conditions to ensure the convergence of the resulting iterative process,

especially by constructing contraction mapping conditions for the ILC process.

Although many remarkable results have been established in the ILC framework developed by

the steps S1)–S3), a fundamental trackability problem of ILC remains beyond this framework:

P1) whether the specified trajectory is trackable in ILC, or in other words, are there any ILC

updating laws driving the controlled system to generate the specified trajectory?

Regarding the fundamental problem P1), seldom ILC results have been reported to answer it.

Instead it is common in classic ILC to directly assume that the specified trajectory is realizable

(namely, there exists a unique input for the controlled system to generate the specified trajectory)

[1], [9], [10]. By contrast, trackability is obviously a more available property for ILC than

realizability by avoiding imposing the uniqueness requirement. Of particular note is that not

only can the realizability-induced ILC results be not utilized to address the fundamental problem

P1), but also the need of the realizability assumption may limit the application range of ILC

significantly. It has been disclosed recently in [11] that there exists a large class of ILC problems,

where the specified trajectories are trackable but not realizable. In such ILC problems, those ILC

analysis methods and results established with the realizability assumption naturally does not work

any longer. Conversely, the realizability can be addressed as a special case of the trackability for

ILC [11]. Consequently, the solving of the fundamental problem P1) not only is crucial for ILC

but also may bring novel insights into its development. This observation has been verified for the

case of discrete-time ILC in [11], where trackability provides exactly the necessary and sufficient

guarantee for the ILC perfect tracking tasks and, moreover, makes it possible to connect ILC

with controllability of discrete systems. Unfortunately, the results presented in [11] are thanks to

the lifting technique induced by the discrete-time characteristic of the ILC system, which thus

can not be applied to continuous-time ILC. In fact, the fundamental problem P1) has not been

considered for ILC in the presence of continuous-time systems to the best of our knowledge.

Another benefit of the realizability assumption is to induce a class of convergence analysis

methods for ILC, which is called the indirect method, since it does not directly contribute

to the accomplishment of the tracking task. Thanks to the assumption on the existence and

uniqueness of the input for the controlled system to output the specified trajectory, the indirect

method is possible and convenient to first obtain the convergence analysis of the resulting input

sequence along the iteration axis, through which the primary tracking task can then be indirectly
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achieved for ILC by taking full advantage of the time-domain dynamics of the controlled system

(see also [1], [9], [10]). In comparison with the indirect method, there exists a class of direct

methods for the convergence analysis of ILC, which is directly devoted to realizing the tracking

task without imposing the realizability assumption (see, e.g., [12]–[14]). However, the direct

method of ILC generally does not devote much attention to the iterative evolution process of the

input, where it is unclear how the ILC updating law of input works in ensuring the controlled

system to accomplish the tracking task. Moreover, even contradictory assumptions upon the

controlled system and conditions for the ILC design are produced when applying the direct

and indirect methods to the same ILC problem for multi-input multi-output (MIMO) systems.

It is actually because of the limitation of the existing analysis methods in ILC, where the

direct and indirect methods are implemented from the dual perspectives of output and input of

the controlled systems, respectively. To the best of our knowledge, the following fundamental

problem concerned with the convergence analysis methods of ILC is unaddressed:

P2) whether and how can new convergence analysis methods for continuous-time ILC be

established to avoid resulting in contradictory assumptions or conditions when dealing

with ILC convergence even from the perspectives of both output and input of the MIMO

controlled systems?

In this paper, we are devoted to coping with the fundamental ILC problems P1) and P2)

with a focus on MIMO, continuous-time linear systems. Because they are distinct problems

of ILC owing to the 2-D dynamics process of ILC, the well-developed analysis and design

results for feedback-based control methods do not work any more, which is particularly true

when it comes to ILC for continuous-time systems due to the resulting hybrid 2-D discrete and

continuous dynamics [15]. Despite this issue, we leverage the properties of polynomial matrix

and functional Cauchy sequence (FCS) to establish a new framework for ILC, in which we can

successfully hanlde the fundamental problems P1) and P2). In comparison with the existing ILC

literature, the main contributions for our paper are summarized as follows.

1) We formally introduce a definition of trackability for any specified trajectory in ILC by

resorting to the frequency-domain algebraic equations. Furthermore, we explore the track-

ability criteria for ILC systems by taking advantage of the polynomial matrix properties.

It is also shown that both the system relative degree and the initial alignment condition

have great influences on whether the specified trajectory is trackable in ILC. In addition,

this provides a strong explanation about why the system relative degree and the initial

alignment condition are the fundamentally required assumptions in classic ILC from the

trackability viewpoint of the specified trajectory.

2) We propose a general feedback-based design method for ILC updating laws in the pres-

ence of any tracking tasks. Under the trackability premise of the specified trajectory, our

proposed method closely connects the design of ILC updating laws with a class of state

feedbacks constructed in the iteration domain. This is thanks to generalizing the design
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idea of [11] with the frequency-domain methods, which also narrows the gap between

the design of classic continuous-time ILC and that of feedback-based control methods. In

particular, our design method collapses into providing PID-type ILC updating laws with

appropriate selections of the gain function matrix.

3) We develop an FCS-induced method for the convergence analysis of ILC, through which

we can leverage a unified design condition to achieve the ILC convergence for the MIMO

controlled systems from the perspectives of both output and input. Particularly, it is shown

that the steady-state input obtained after an ILC process depends heavily on the initial input.

Moreover, we bridge the relationship between the trackability of a trajectory specified for

ILC and the accomplishment of the resulting perfect tracking objective. More specifically,

we reveal that regardless of whether the MIMO controlled systems are over-actuated or

under-actuated, the perfect tracking objectives for ILC can be accomplished under certain

ILC updating laws if and only if the specified trajectories are trackable in ILC.

In addition, our developed results can contribute to bettering the typical steps S1)–S3) of

classic ILC. We verify the validity of them through two simulation examples considered for

over-actuated and under-actuated systems, respectively.

The rest of this paper is organized as follows. In Section II, the trackability problem for

continuous-time ILC is introduced. The trackability criteria and the FCS-induced tracking anal-

ysis of ILC are established in Sections III and IV, respectively. Two simulation examples are

provided in Section V, and finally, the conclusions are made in Section VI.

Notations: For any T > 0, let Cn[0,T ] (respectively, C1
n [0,T ]) be the space of n-dimensional

real-valued vector functions that are continuous (respectively, continuously differentiable) on an

interval [0,T ], {t ∈ R|0 ≤ t ≤ T}. Given f (t) ∈ R
n, ∀t ∈ [0,T ], let ‖ f (t)‖ be any vector norm

of it (see, e.g., [16, p. 265] for l∞ norm and lp, p ≥ 1 norm), based on which its λ -norm (λ > 0)

is defined as ‖ f (t)‖λ = supt∈[0,T ]

(
‖ f (t)‖e−λ t

)
. The Laplace transform of f (t) is denoted as

F(s) = L [ f (t)], for which the inverse Laplace transformation writes as f (t) = L −1 [F(s)]. In

addition, let RPq×p(s) be the set of q× p polynomial matrices (i.e., those q× p matrices whose

elements are polynomials in s with the real coefficients) [17], and particularly for q = 1 and

p = 1, let it be denoted as RP(s). With this fact, let RF
q×p(s) be the set of q× p rational

fraction matrices, i.e.,

RF
q×p(s),

{
G(s) =

[
gi j(s)

]∣∣gi j(s) =
ni j(s)

di j(s)
,

with ni j(s),di j(s) ∈ RP(s),di j(s) 6≡ 0,

∀i = 1,2, · · · ,q, j = 1,2, · · · , p

}
.

For any G(s) ∈ RF
q×p(s) satisfying lims→∞ G(s) = D for some constant matrix D ∈ R

q×p, if

D 6= 0 (respectively, D = 0), then it is said to be proper (respectively, strictly proper) [17],
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where it is alternatively called a proper (respectively, strictly proper) transfer function matrix for

convenience. Let δ (t) be the unit impulse function [17], [18], namely, we have L [δ (t)] = 1.

Denote Z , {1,2,3, · · ·} and Z+ , {0,1,2, · · ·} as the sets of the positive and nonnegative

integers, respectively. For j ∈ Z+, let f ( j)(t) be the jth-order derivative of any function f (t),

i.e., f ( j)(t), d j f (t)/dt j. If f ( j)(t) exists for any j ∈ Z+, then f (t) is called a smooth function.

For any sequence
{

ξ j : j ∈ Z+

}
, we denote ∑−1

j=0 ξ j = 0 and define a forward difference operator

such that ∆ : ξ j → ∆ξ j = ξ j+1 −ξ j, ∀ j ∈ Z+.

II. PROBLEM STATEMENT

Consider a continuous-time MIMO ILC system running on a finite-time interval, denoted by

t ∈ [0,T ], and along an iteration axis, denoted by k ∈ Z+. If the output and control input for

this system are, respectively, denoted by yk(t) ∈ R
q and uk(t) ∈ R

p, then the objective of ILC

is generally realized in the sense that the input uk(t) with some updating laws can be designed

along the iteration axis k ∈Z+ to make the output yk(t) able to arrive at the perfect tracking of a

desired output trajectory yd(t) ∈R
q specified over [0,T ] from the beginning to the end, namely,

lim
k→∞

yk(t) = yd(t), ∀t ∈ [0,T ]. (1)

For this perfect tracking task of ILC, the fundamental problem P1) naturally arises: whether yd(t)

is trackable, or equivalently, whether there exists some desired input, denoted as ud(t) ∈ R
p,

to correspondingly generate yd(t)? However, it is subject to the lack of consideration for the

fundamental trackability problem P1) in ILC [11], where there even do not exist any trackability-

related concepts, properties, methods, or results that have been introduced formally and clearly

in the presence of continuous-time ILC systems to our knowledge.

To clearly explore the fundamental trackability problem P1), let Yk(s) =L [yk(t)] and Uk(s) =

L [uk(t)], and then we focus specifically on the linear system given in the frequency-domain

form of

Yk(s) = G1(s)Uk(s)+G2(s)D(s) (2)

where D(s) , L [d(t)] with d(t) ∈ R
m to represent the possible additional inputs, such as the

disturbance (noise) and the initial (output or state) condition, and G1(s)∈RF
q×p(s) and G2(s)∈

RF
q×m(s) are two transfer function matrices. For any specified trajectory yd(t) of the system (2),

we consider the general case that its Laplace transform exists, and then let Yd(s) = L [yd(t)].

We now present a formal concept of trackability in ILC from the perspective of solving

algebraic equations by incorporating the advantage of the Laplace transformation.

Definition 1: For the system (2), a specified output trajectory yd(t) ∈ R
q is called trackable

in ILC if there exists some input ud(t)∈R
p such that Ud(s) =L [ud(t)] satisfies the frequency-

domain algebraic equation:

G1(s)Ud(s) = Yd(s)−G2(s)D(s). (3)
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Particularly, if the algebraic equation (3) has a unique solution, then yd(t) is called realizable

in ILC.

For Definition 1, the solving of the algebraic equation (3) is crucial, where the theory of poly-

nomial matrices [17] is useful. In classic ILC, the realizability is a usually adopted assumption

for the accomplishment of the tracking tasks (see, e.g., [1], [9], [10]). However, Definition 1

suggests that the realizability may not be required by ILC tracking tasks, whereas the trackability

is necessarily needed. This is owing to avoiding the uniqueness requirement in the trackability,

for which the realizability can actually be included as a trivial case of the trackability for ILC. We

thus aim at dealing with the more fundamental trackability-related ILC problems, as presented

below.

Problem statement. For the system (2), the ILC problem that we address is to first determine

whether the specified trajectory yd(t) is trackable and then design updating laws to accomplish

the tracking task (1) in the presence of any trackable yd(t). To proceed, we further address how

to get all inputs that generate the trackable yd(t) for the system (2). Of our additional interest

is the robustness problem of our trackability-based ILC results with respect to iteration-varying

uncertainties.

We also introduce a new FCS-induced analysis approach to address the aforementioned

trackability-related ILC problems. By directly focusing on the sequence of inputs generated

from the proposed ILC updating law, we aim at exploring properties of the FCS to implement

the ILC convergence analysis. Thanks to the implementation of FCS-based ILC analyses, we

not only aim to avoid imposing some restrictive assumptions commonly needed in ILC, such

as realizability and repetitiveness, but also arrive at unified design conditions to realize the

convergence of ILC from the perspectives of both output and input, regardless of over-actuated

or under-actuated MIMO controlled systems. This contributes to dealing with the fundamental

problem P2) of the ILC convergence analysis.

Before proceeding further with exploring the given problem, we introduce a definition for an

FCS, together with preliminary lemmas for (strictly) proper transfer function matrices.

Definition 2: For any function fk(t)∈R
n, ∀t ∈ [0,T ], ∀k ∈Z+, the resulting functional sequence

{ fk(t) : k ∈Z+} is called an FCS if, for any ε > 0, there exists some N(ε)∈Z (i.e., N(ε) depends

on ε) such that
∥∥ fi(t)− f j(t)

∥∥
λ
≤ ε , ∀i, j ≥ N(ε).

By Definition 2, an FCS refers to a functional sequence that satisfies the Cauchy criterion for

the uniform convergence (see also [17, Chapter 1, Theorem 5.3]). In view of this observation,

we propose a lemma to provide a guarantee for how to make a functional sequence generated

by any proper transfer function matrix be an FCS.

Lemma 1: For any function fk(t)∈R
n, ∀t ∈ [0,T ], ∀k ∈Z+, let Fk(s),L [ fk(t)] be such that,

for some GF(s) ∈ RF
n×n(s),

Fk+2(s)−Fk+1(s) = GF(s) [Fk+1(s)−Fk(s)] , ∀k ∈ Z+.
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Then the following three statements are equivalent:

1) the sequence { fk(t) : k ∈ Z+} is an FCS;

2) the functional sequence { fk(t) : k ∈ Z+} converges uniformly to some function f∞(t)∈R
n

on [0,T ];

3) GF(s) is proper such that

ρ
(

lim
s→∞

GF(s)
)
< 1.

Further, if fk(t) ∈Cn[0,T ], ∀k ∈ Z+, then f∞(t) ∈Cn[0,T ].

In addition to Lemma 1, the following one develops a closed property for the space of

continuous functions under the action of proper transfer function matrices.

Lemma 2: If G(s) ∈ RF
m×n(s) is proper, then for any f (t) ∈Cn[0,T ], f (t) ∈Cm[0,T ] holds,

where f (t), L −1
[
G(s)F(s)

]
with F(s) , L [ f (t)]. Moreover, if G(s) is strictly proper, then

for any v ∈ R
n, L −1

[
G(s)v

]
∈Cm[0,T ] holds.

For the proofs of Lemmas 1 and 2, see the Appendix.

III. TRACKABILITY CRITERIA

To develop the basic trackability criteria in ILC, we consider two practical and challenging

problems for the system (2) such that it is subject to:

1) nonzero system relative degree;

2) nonzero initial output condition.

To this end, we notice the physical realization of the system (2) and without loss of generality

present the following conditions:

C1) G1(s) and G2(s) are strictly proper;

C2) D(s) = d0 + D̂(s) holds for some nonzero vector d0 ∈ R
m and some strictly proper vector

D̂(s) ∈ RF
m×1(s).

If we denote Φ1(t) =L −1 [G1(s)] and Φ2(t) =L −1 [G2(s)], then we can arrive at that Φ1(t)

and Φ2(t) are smooth, namely, Φ
( j)
1 (t) and Φ

( j)
2 (t) exist for all j ∈ Z+ from the condition C1).

In the condition C2), d0 is closely related with the initial output condition, and we can actually

gain d(t) = d0δ (t)+ d̂(t), where d̂(t),L −1
[
D̂(s)

]
. Then we can present the following lemma

by resorting to the properties of Laplace transform, especially the initial-value theorem [18].

Lemma 3: For the system (2) with yk(t) ∈ R
q and uk(t) ∈ R

p, two properties hold under the

conditions C1) and C2) below.

1) In the series form, G1(s) and G2(s) can be written as

G1(s) =
∞

∑
j=0

Φ
( j)
1 (0)s−( j+1),G2(s) =

∞

∑
j=0

Φ
( j)
2 (0)s−( j+1). (4)
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2) In the time domain, the system (2) can be described as

yk(t) =

∫ t

0
Φ1(t − τ)uk(τ)dτ

+

∫ t

0
Φ2(t − τ)d̂(τ)dτ +Φ2(t)d0, ∀k ∈ Z+.

(5)

From Lemma 3, it is clear that the system relative degree of (2) is not less than one, and the

initial output satisfies yk(0) = Φ2(0)d0, ∀k ∈ Z+. Similarly to Lemma 3, we can also develop a

time-domain trackability result for ILC with Definition 1.

Lemma 4: Consider the system (2) under the conditions C1) and C2). Then any specified

output trajectory yd(t) is trackable (respectively, realizable) in ILC if and only if there exists

some (respectively, a unique) input ud(t) ∈ R
p such that

∫ t

0
Φ1(t − τ)ud(τ)dτ = yd(t)−Φ2(t)d0

−
∫ t

0
Φ2(t − τ)d̂(τ)dτ, ∀t ∈ [0,T ].

(6)

From Lemma 4, we note that the trackability of the specified output trajectory in ILC requires

the integral equation (6) to be satisfied not only at some instant but also over the whole time

interval [0,T ]. Of particular note is that the trackable trajectory yd(t) should satisfy yd(0) =

Φ2(0)d0 for the system (2). Thus, we can conclude from Lemmas 3 and 4 that for any trackable

trajectory yd(t), the following initial condition needs to hold:

yd(0) = yk(0), ∀k ∈ Z+. (7)

This represents exactly the class of identical initial conditions, and Lemma 4 also provides

explanations on why it is required in realizing the perfect tracking tasks of ILC. Otherwise, if

(7) does not hold, then yd(t) is not trackable by Lemma 4. Hence, it is obvious from (5) and

(6) that the perfect tracking task (1) does not hold for any input sequence {uk(t) : k ∈ Z+},

except for the case that the initial shifts can be fully overcome through certain additional control

mechanisms (see, e.g., [19] for ILC with impulsive actions).

A. Specific Criteria

As is well known, the system relative degree condition plays a fundamentally important role

in accomplishing tracking tasks of ILC [7]. In fact, it indicates that the fundamental trackability

of ILC has an essential relation with the system relative degree condition. To disclose this fact,

we focus on the case of relative degree one for controlled systems, which is the relative degree

condition most considered for ILC. Specifically, for the system (2), it has a relative degree of

one if and only if (see also [20])

C3) G1(s) has a relative degree of one.
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By following the discussions of, e.g., [9], [20], we know that the relative degree condition

C3) is characterized by some full rank matrix. This, together with (4), yields the property shown

in the following lemma.

Lemma 5: Under the condition C1), the condition C3) holds if and only if Φ1(0) has full

rank. Namely, Φ1(0) has full-row rank when (2) is over-actuated (that is, q ≤ p); and otherwise,

Φ1(0) has full-column rank when (2) is under-actuated (that is, q ≥ p).

For the case q ≥ p, we explore Lemma 5 to develop a further property of G1(s) with the

properties of polynomial matrices.

Lemma 6: Let q ≥ p and the conditions C1) and C3) hold. Then GT
1 (s)G1(s) ∈ RF

p×p(s) is

nonsingular.

Based on Lemma 6, we establish a trackability result of ILC for the system (2) in the under-

actuated case with q ≥ p.

Theorem 1: For the system (2) with q≥ p, let the conditions C1)–C3) hold. Then any specified

trajectory yd(t) ∈ C1
q [0,T ] is trackable in ILC if and only if it can satisfy the initial condition

(7) and the following frequency-domain algebraic equation:
{

I −G1(s)
[
GT

1 (s)G1(s)
]−1

GT
1 (s)

}
[Yd(s)−G2(s)D(s)] = 0. (8)

Further, for any trackable output trajectory yd(t), the algebraic equation (3) has a unique solution

in the form of

Ud(s) =
[
GT

1 (s)G1(s)
]−1

GT
1 (s) [Yd(s)−G2(s)D(s)] (9)

which can fulfill ud(t) = L −1 [Ud(s)] ∈Cp[0,T ].

Remark 1: Because the number of the output variables to be controlled is not less than that of

the input variables, Theorem 1 indicates that the trackable output trajectories for the system (2)

are given exactly by the solutions for the algebraic equation (8), where they need to particularly

satisfy the initial condition (7). Nevertheless, not any output trajectory yd(t) satisfying the initial

condition (7) corresponds to the solution of the algebraic equation (8). Besides, the trackability

results of Theorem 1 can be validated through the frequency-domain methods especially thanks

to leveraging properties of polynomial matrices, which however has not been introduced for ILC

to our knowledge. A fact worth highlighting for Theorem 1 is that for any trackable trajectory

yd(t)∈C1
q [0,T ], the corresponding input ud(t) needs to be continuous such that ud(t)∈Cp[0,T ].

For the case q ≤ p, we note Lemma 5 and denote

Φ1(t) =
[
Φ1,1(t) Φ1,2(t)

]
with





Φ1,1(t) ∈ R
q×q

Φ1,2(t) ∈ R
q×(p−q)

(10)

and then, without loss of generality, we give a further condition of the condition C3) as follows:

C4) when q ≤ p, let Φ1(t) be given in the block form of (10) such that Φ1,1(0) ∈ R
q×q is

nonsingular.
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Otherwise, this can be realized with elementary transformation in column of Φ1(0), which has

no influences on our following analyses and results except for the notations. Correspondingly,

by (10), we can write G1(s) ∈ RF
q×p(s) as

G1(s) =
[
G11(s) G12(s)

]
with





G11(s) ∈ RF
q×q(s)

G12(s) ∈ RF
q×(p−q)(s).

(11)

For (11), we present a nonsingularity property of G11(s) based on the properties of polynomial

matrices.

Lemma 7: Let q ≤ p and the conditions C1), C3), and C4) hold. Then G11(s) is nonsingular.

With Lemma 7, we propose a trackability result of ILC for the system (2) in the over-actuated

case with q ≤ p.

Theorem 2: For the system (2) with q≤ p, let the conditions C1)–C4) hold. Then any specified

trajectory yd(t)∈C1
q [0,T ] is trackable in ILC if and only if it can satisfy the initial condition (7).

Moreover, the set of the solutions to the algebraic equation (3), i.e., that of the desired inputs

for the system (2) to generate the trackable trajectory yd(t), is given by

Ud =
{

Ud(s)
∣∣G1Ud(s) =Yd(s)−G2(s)D(s)

}

=

{
Ud(s) =

[
G−1

11 (s) [Yd(s)−G2(s)D(s)]

0

]

+

[
−G−1

11 (s)G12(s)

I

]
Ud,2(s)

∣∣∣ud,2(t) ∈ R
p−q

}
.

(12)

In particular, ud(t) ∈Cp[0,T ] if and only if ud,2(t) ∈Cp−q[0,T ].

Remark 2: In comparison to Theorem 1, Theorem 2 presents a quite different trackability result

for ILC though they employ the same system relative degree condition. Because the number of

the output variables to be controlled is not more than that of the input variables, Theorem 2

states that any specified output trajectory fulfilling the initial condition (7) is trackable for the

system (2). Namely, any specified output trajectory is trackable in ILC for the initial time t = 0

if and only if it is trackable in ILC within any time interval t ∈ [0,T ]. In accordance with this

property, there generally exist multiple inputs that can generate the trackable output trajectory

for the system (2). Furthermore, it indicates by (12) that since q ≤ p, there are q input variables

essentially required to achieve the tracking task for any output with q variables, whereas the

other p−q input variables can be freely chosen. This actually provides inspiration for the design

and analysis of ILC in the presence of over-actuated systems, where how to find input variables

that essentially work for the output tracking tasks is crucial.

Based on Theorems 1 and 2, we can also explore the relation between trackability and

realizability in ILC as a direct result.

Corollary 1: Consider the system (2), and let the conditions C1)–C3) hold. Then for any

specified output trajectory yd(t) ∈C1
q [0,T ] that fulfills the initial condition (7),
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1) when q ≥ p, yd(t) is realizable in ILC if and only if it is trackable in ILC;

2) when q < p, yd(t) is trackable in ILC, but not realizable in ILC.

Remark 3: From Corollary 1, it follows that trackability and realizability are equivalent in ILC

of the under-actuated system (2) under the conditions C1)–C3). However, when the system (2)

is over-actuated, realizability no longer makes sense owing to the existence of multiple inputs

that can yield any trackable output trajectory. These observations indicate that trackability plays

a more fundamental role than realizability in performing the ILC analysis.

B. State-Space Case Studies

For the system (2) under the conditions C1)–C3), we assume a time-domain realization in the

form of 



ẋk(t) = Axk(t)+Buk(t)+w(t)

yk(t) =Cxk(t)
, ∀t ∈ [0,T ],∀k ∈ Z+ (13)

where xk(t) ∈ R
n is the system state with xk(0) , x0, ∀k ∈ Z+, w(t) ∈ R

n is the external

disturbance, and A ∈ R
n×n, B ∈ R

n×p, and C ∈ R
q×n are the system matrices. By the relation

between (2) and (13), we know that if let m = 2n, then

D(s) =
[
xT

0 W T(s)
]T

∈ RF
2n×1(s)

G1(s) =C (sI −A)−1
B ∈ RF

q×p(s)

G2(s) =
[
C (sI −A)−1

C (sI −A)−1
]
∈ RF

q×2n(s).

(14)

where W (s), L [w(t)]. We can also obtain from (14) that

Φ1(t) =CeAtB, Φ2(t) =
[
CeAt CeAt

]
.

Of note is that (13) is one of the commonly considered systems in continuous-time ILC (for

more details, see the survey [7]).

Thanks to (14), we have for the system (13) that

i) C1) naturally holds;

ii) C2) holds if and only if we set d0 =
[
xT

0 0
]T

and D̂(s) =
[
0 W T(s)

]T
;

iii) C3) holds if and only if CB has full rank.

In addition, for q ≤ p, if we denote B = [B1 B2] with B1 ∈ R
n×q and B2 ∈ R

n×(p−q), then

iv) C4) holds if and only if CB1 is nonsingular.

With the properties i) and ii), we know from Lemma 4 that for the system (13), any specified

output trajectory yd(t) ∈C1
q [0,T ] is trackable in ILC if and only if there exists some ud(t) such

that, for all t ∈ [0,T ],
∫ t

0
CeA(t−τ)Bud(τ)dτ = yd(t)−CeAtx0

−

∫ t

0
CeA(t−τ)w(τ)dτ.

(15)
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Clearly, the initial condition (7) becomes yd(0) = yk(0) = Cx0, ∀k ∈ Z+, which also coincides

with the facts of (13) and (15). In addition, we can directly establish the following trackability

result of ILC as a consequence of Theorems 1 and 2.

Corollary 2: For the system (13), the following results hold for any specified output trajectory

yd(t) ∈C1
q [0,T ].

1) When q ≥ p, let CB be of full-column rank. Then yd(t) is trackable in ILC if and only if

yd(0)=Cx0 holds and its Laplace transform Yd(s)=L [yd(t)] fulfills the algebraic equation

(8), where D(s), G1(s) and G2(s) are defined by (14). Further, there exists a unique input

correspondingly generate any trackable output trajectory.

2) When q ≤ p, let CB be of full-row rank. Then there exist multiple inputs such that yd(t)

is trackable in ILC if and only if it satisfies yd(0) =Cx0.

In Corollary 2, we reveal that the trackability is tied closely with the full rank of CB for

continuous-time linear ILC in the presence of the relative degree one. It actually provides a

basic guarantee for the existing ILC design results (for more details, see technical overview of

ILC in [7]), and a clear explanation on why they work effectively in realizing the tracking tasks.

C. Technical Proofs

Next, we give detailed proofs of Lemmas 3–7 and Theorems 1 and 2, especially by resorting

to a frequency-domain analysis method with properties of polynomial matrices.

Proof of Lemma 3: By the condition C1), we can denote G1(s) and G2(s) in the series

form of

G1(s) =
∞

∑
j=0

g1, js
−( j+1), G2(s) =

∞

∑
j=0

g2, js
−( j+1)

for some matrices g1, j ∈R
q×p and g2, j ∈R

q×m, ∀ j ∈Z+. Thus, taking the Laplace transformation

leads to

Φ1(t) =
∞

∑
j=0

g1, j
t j

j!
, Φ2(t) =

∞

∑
j=0

g2, j
t j

j!

from which we can easily validate

g1, j = Φ
( j)
1 (0), g2, j = Φ

( j)
2 (0), ∀ j ∈ Z+

and consequently it is immediate to gain (4). By the conditions C1) and C2), (5) can be

equivalently developed from (2) thanks to taking the inverse Laplace transformation.

Proof of Lemma 4: A direct result of Definition 1.

Proof of Lemma 5: Due to (4) in Lemma 3, this lemma is a consequence of the condition

C3) according to the definition of the system relative degree (see also [9], [20]).

Proof of Lemma 6: Under the condition C1), we consider a realization of G1(s), which

without any loss of generality is denoted by (A ∈ R
n×n,B ∈ R

n×p,C ∈ R
q×n). Namely, we have
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G1(s) = C (sI −A)−1
B, with which we can validate Φ

( j)
1 (0) = CA jB, ∀ j ∈ Z+. Thus, a conse-

quence of (4) is such that

siG1(s) =
i−1

∑
j=0

CA jBsi−1− j

+C(sI−A)−1AiB, ∀i = 0,1, · · · ,n.

(16)

Let the characteristic polynomial of A be α(s) = det(sI −A),∑n
i=0 αis

i for some αi ∈R, ∀i = 0,

1, · · · , n− 1 and αn = 1, and then with the Cayley-Hamilton theorem, we have ∑n
i=0 αiA

i = 0

which, together with (16), leads to

n

∑
i=0

αis
iG1(s) =

n

∑
i=0

αi

i−1

∑
j=0

CA jBsi−1− j +
n

∑
i=0

αiC(sI −A)−1AiB

=
n

∑
i=0

αi

i−1

∑
j=0

Φ
( j)
1 (0)si−1− j

, Q(s)

(17)

where Q(s) ∈ RP
q×p(s) (see [17, p. 524]) satisfies

Q(s) =
n

∑
i=0

αi

i−1

∑
j=0

Φ
( j)
1 (0)si−1− j

= αnΦ1(0)s
n−1+αn

n−1

∑
j=1

Φ
( j)
1 (0)sn−1− j

+
n−1

∑
i=0

αi

i−1

∑
j=0

Φ
( j)
1 (0)si−1− j

= αnΦ1(0)s
n−1+

n−2

∑
i=0

[
n

∑
j=i+1

α jΦ
( j−i−1)
1 (0)

]
si

= Φ1(0)s
n−1 +

n−2

∑
i=0

[
n

∑
j=i+1

α jΦ
( j−i−1)
1 (0)

]
si.

(18)

Clearly, Φ1(0) is the highest column degree coefficient matrix of Q(s) (see [17, p. 526]). Owing

to q≥ p, we can obtain from Lemma 5 that Φ1(0) has full-column rank under the condition C3),

and hence Q(s) is column reduced or column proper (see [17, p. 527]). Then by (18), QT(s)Q(s)

is nonsingular because we can use the result (2.4) of [17, p. 527] to arrive at

det
(
QT(s)Q(s)

)
= det

(
ΦT

1 (0)Φ1(0)
)

s(2n−2)p

+ lower degree terms

6≡ 0.
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This immediately leads to that GT
1 (s)G1(s) is nonsingular since the use of (17) results in

GT
1 (s)G1(s) =

(
n

∑
i=0

αis
i

)−2

QT(s)Q(s).

That is, the proof of Lemma 6 is completed.

Proof of Lemma 7: Let Q(s), [Q1(s) Q2(s)] for Q1(s)∈RP
q×q(s) and Q2(s)∈RP

q×(p−q)(s).

Then from (11) and (17), we have

Qh(s) =
n

∑
i=0

αis
iG1h(s)

=
n

∑
i=0

αi

i−1

∑
j=0

Φ
( j)
1,h(0)s

i−1− j, ∀h ∈ {1,2}

(19)

with which we follow the same lines as (18) to further get

Qh(s) = Φ1,h(0)s
n−1

+
n−2

∑
i=0

(
n

∑
j=i+1

α jΦ
( j−i−1)
1,h (0)

)
si, ∀h ∈ {1,2}.

(20)

Thanks to considering the result (2.4) of [17, p. 527] for Q1(s), we can leverage (20) and adopt

the condition C4) to arrive at

det(Q1(s)) = det(Φ1,1(0))s(n−1)q + lower degree terms

6≡ 0

which ensures that Q1(s) is nonsingular. Note also that the use of (19) leads to

G1h(s) =

(
n

∑
i=0

αis
i

)−1

Qh(s), ∀h ∈ {1,2}. (21)

As a direct consequence of (21), G11(s) is nonsingular.

Proof of Theorem 1: We first prove the equivalent relation between the trackability of a

specified output trajectory yd(t) ∈C1
q [0,T ] and the satisfactions of the initial condition (7) and

the frequency-domain algebraic equation (8) by Yd(s) = L [yd(t)].

Necessity: With Definition 1, the trackability of the specified trajectory yd(t) implies that

there exists some input ud(t) ∈ R
p for the system (2) to guarantee the satisfaction of the

algebraic equation (3) by Ud(s) = L [ud(t)]. Then thanks to Lemma 6, we can multiply I −

G1(s)
[
GT

1 (s)G1(s)
]−1

GT
1 (s) on both sides of (3) such that

{
I −G1(s)

[
GT

1 (s)G1(s)
]−1

GT
1 (s)

}
[Yd(s)−G2(s)D(s)]

=
{

I −G1(s)
[
GT

1 (s)G1(s)
]−1

GT
1 (s)

}
G1(s)Ud(s)

= 0
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i.e., the algebraic equation (8) is satisfied by Yd(s) = L [yd(t)]. In addition, by (6) in Lemma 4,

yd(0) = Φ2(0)d0 is immediate, and due to (5) in Lemma 3, we have yk(0) = Φ2(0)d0, ∀k ∈ Z+.

This ensures that yd(t) fulfills the initial condition (7).

Sufficiency: From Lemma 6, it is feasible that for the system (2) under the conditions C1)–C3),

Yd(s) = L [yd(t)] fulfills the algebraic equation (8) for the specified trajectory yd(t). Hence, we

use (8) to equivalently arrive at

G1(s)
[
GT

1 (s)G1(s)
]−1

GT
1 (s) [Yd(s)−G2(s)D(s)]

= Yd(s)−G2(s)D(s)

from which taking Ud(s) in (9) immediately leads to

G1(s)Ud(s) = G1(s)(G
T
1 (s)G1(s))

−1GT
1 (s) [Yd(s)−G2(s)D(s)]

= Yd(s)−G2(s)D(s).

That is, Ud(s) is a solution for the algebraic equation (3). From (5) in Lemma 3, we can gain

yk(0)=Φ2(0)d0, ∀k ∈Z+, which together with the initial condition (7) leads to yd(0) =Φ2(0)d0.

We can consequently obtain

sYd(s) = L [ẏd(t)]+ yd(0) = L [ẏd(t)]+Φ2(0)d0. (22)

Since we can rewrite Ud(s) in (9) as

Ud(s) = s−1
[
GT

1 (s)G1(s)
]−1

GT
1 (s) [sYd(s)]

−
[
GT

1 (s)G1(s)
]−1

GT
1 (s)G2(s)D(s)

then under the condition C2) and with (22), we can deduce

Ud(s) = s−1
[
GT

1 (s)G1(s)
]−1

GT
1 (s)L [ẏd(t)]

−
[
GT

1 (s)G1(s)
]−1

GT
1 (s)G2(s)D̂(s)

+ s−1
[
GT

1 (s)G1(s)
]−1

GT
1 (s) [Φ2(0)− sG2(s)]d0.

(23)

When q ≥ p, we can obtain from Lemma 5 that ΦT
1 (0)Φ1(0) is nonsingular under the conditions

C1) and C3). Then by noting (17) and (18), we can verify

lim
s→∞

s−1
[
GT

1 (s)G1(s)
]−1

GT
1 (s)

= lim
s→∞

{
[sG1(s)]

T [sG1(s)]
}−1 [

sGT
1 (s)

]

=
[
ΦT

1 (0)Φ1(0)
]−1

ΦT
1 (0).

(24)

This, together with the conditions C1) and C2), leads to

lim
s→∞

[
GT

1 (s)G1(s)
]−1

GT
1 (s)G2(s)D̂(s)

= lim
s→∞

{
s−1
[
GT

1 (s)G1(s)
]−1

GT
1 (s)

}
lim
s→∞

[sG2(s)] lim
s→∞

D̂(s)

= 0

(25)



16

where lims→∞ [sG2(s)] = Φ2(0) due to (4) and lims→∞ D̂(s) = 0 are incorporated. In a similar

way as (25), we can derive

lim
s→∞

s−1
[
GT

1 (s)G1(s)
]−1

GT
1 (s) [Φ2(0)− sG2(s)] = 0. (26)

By incorporating (24)–(26) into (23), we can employ the result of Lemma 2 to get ud(t) =

L −1 [Ud(s)]∈Cp[0,T ]. Thus, Ud(s) in (9) not only fulfills (3) but also yields ud(t)=L−1 [Ud(s)]∈

R
p. Then in view of Definition 1, the specified trajectory yd(t) is trackable in ILC for the system

(2).

Next, we adopt a proof by contradiction to show that if yd(t) is trackable, then the solution

for the algebraic equation (3) is unique. Hence, in addition to ud(t) obtained by (9), we assume

an input ûd(t)∈R
p different from ud(t) (that is, ûd(t) 6= ud(t)) such that Ûd(s) =L [ûd(t)] also

satisfies (3), namely,

Yd(s)−G2(s)D(s) = G1(s)Ûd(s). (27)

Then the use of (3) and (27) yields

GT
1 (s)G1(s)Ud(s) = GT

1 (s)[Yd(s)−G2(s)D(s)]

= GT
1 (s)G1(s)Ûd(s).

Since GT
1 (s)G1(s) is nonsingular, we can deduce Ud(s) = Ûd(s) which contradicts the made

hypothesis ûd(t) 6= ud(t). Thus, we can conversely conclude that the algebraic equation (3) has

a unique solution given by (9).

Proof of Theorem 2: Necessity: With the conditions C1)–C4), if yd(t) is a trackable

trajectory in ILC, then from Lemma 4, yd(0) = Φ2(0)d0 holds as a consequence of (6). Because

(5) yields yk(0)=Φ2(0)d0, ∀k ∈Z+ by Lemma 3, we immediately know that the initial condition

(7) holds.

Sufficiency: If the initial condition (7) holds, then we employ (5), and can actually obtain

yd(0) = yk(0) = Φ2(0)d0, ∀k ∈ Z+. In view of this result, we will show that the algebraic

equation (3) is solvable. Due to q ≤ p and with (11), we correspondingly denote ud(t) as

ud(t) =
[
uT

d,1(t) uT
d,2(t)

]T

for ud,1(t) ∈ R
q and ud,2(t) ∈ R

p−q. Let us also denote Ud(s) =[
UT

d,1(s) UT
d,2(s)

]T

, where Ud,1(s), L
[
ud,1(t)

]
and Ud,2(s) = L

[
ud,2(t)

]
. Hence, by incorpo-

rating (11), we can equivalently derive from (3) that

G11(s)Ud,1(s) = Yd(s)−G2(s)D(s)−G12(s)Ud,2(s). (28)

Because G11(s) is nonsingular from Lemma 7, we can leverage (28) to arrive at

Ud,1(s) = G−1
11 (s)

[
Yd(s)−G2(s)D(s)−G12(s)Ud,2(s)

]
(29)

which straightforwardly results in

Ud(s) =

[
G−1

11 (s)[Yd(s)−G2(s)D(s)−G12(s)Ud,2(s)]

Ud,2(s)

]
.
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Consequently, yd(t) is trackable in ILC, and we can determine the solutions for the algebraic

equation (3) with (12) by taking any ud,2(t) ∈ R
p−q.

Next, we prove that ud(t) ∈Cp[0,T ] if ud,2(t)∈Cp−q[0,T ]. By inserting (22), we can rewrite

(29) as

Ud,1(s) = [sG11(s)]
−1 [sYd(s)]−G−1

11 (s)G2(s)D(s)

−G−1
11 (s)G12(s)Ud,2(s)

= [sG11(s)]
−1

L [ẏd(t)]−G−1
11 (s)G2(s)D̂(s)

+ [sG11(s)]
−1 [Φ2(0)− sG2(s)]d0

−G−1
11 (s)G12(s)Ud,2(s).

(30)

From (4) and (11), it is clear to see lims→∞ [sG11(s)] = Φ1,1(0), lims→∞ [sG12(s)] = Φ1,2(0) and

lims→∞ [sG2(s)] = Φ2(0). Then under the condition C4), we have

lim
s→∞

[sG11(s)]
−1 = Φ−1

1,1(0) (31)

which further leads to
lim
s→∞

[sG11(s)]
−1 [Φ2(0)− sG2(s)] = 0

lim
s→∞

G−1
11 (s)G12(s) = Φ−1

1,1(0)Φ1,2(0).
(32)

For the same reason as (32), we can employ the condition C2) to arrive at

lim
s→∞

G−1
11 (s)G2(s)D̂(s) = lim

s→∞
[sG11(s)]

−1
lim
s→∞

[sG2(s)] lim
s→∞

D̂(s)

= 0.
(33)

By incorporating (31)–(33) into (30), we benefit from Lemma 2 to obtain that ud,1(t)=L−1
[
Ud,1(s)

]
∈

Cq[0,T ] if ud,2(t)=L
−1
[
Ud,2(s)

]
∈Cp−q[0,T ]. As a consequence, it follows that ud(t)∈Cp[0,T ]

if and only if ud,2(t) ∈Cp−q[0,T ].

IV. TRACKABILITY-BASED ILC SYNTHESIS

In this section, we first introduce an ILC updating law with a feedback-based design method

and then explore the developed trackability results to implement the corresponding ILC design

and analysis. In particular, we utilize an FCS-induced approach to establish the ILC convergence

analysis from the viewpoints of both output and input through a unified condition, regardless of

under-actuated or over-actuated MIMO controlled systems.

A. Trackability-Based ILC Results

For the tracking task (1), let the tracking error be represented as ek(t) = yd(t)−yk(t). Then it

clearly becomes limk→∞ ek(t) = 0, ∀t ∈ [0,T ], which can actually be seen as a class of “k-state

stability” problems arising from the tracking tasks for ILC (see also [11] for similar discussions).
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Let Ek(s) = L [ek(t)], which obviously satisfies Ek(s) = Yd(s)−Yk(s), and consequently, the

iteration-domain dynamics of it can be described by

Ek+1(s) = Ek(s)−∆Yk(s), ∀k ∈ Z+.

If we consider the system (2), then we further have

Ek+1(s) = Ek(s)−G1(s)∆Uk(s), ∀k ∈ Z+

where ∆Uk(s) plays the rose as an input to stabilize the k-state Ek(s) from the viewpoint of

iteration-domain dynamics. Thus, we employ the feedback-based design theory and can propose

∆Uk(s) = Γ(s)Ek(s), ∀k ∈ Z+

which equivalently yields an ILC updating law in the form of

Uk+1(s) =Uk(s)+Γ(s)Ek(s), ∀k ∈ Z+ (34)

with Γ(s) ∈ RF
p×q(s) as a gain matrix operator to be designed.

Remark 4: In continuous-time linear ILC, we accomplish the design of updating laws by in-

corporating the general feedback-based design method. This bridges an explicit relation between

the design methods of ILC and classic feedback-based control. In particular, (34) involves classic

PID-type ILC updating laws as special cases. For example, taking Γ(s) = sϒ leads to the D-type

ILC updating law from (34), where ϒ ∈ R
p×q is constant.

To proceed, we consider applying the ILC updating law (34) to the system (2) and, conse-

quently, can arrive at some design conditions of the gain matrix operator Γ(s).

Lemma 8: For the system (2) under the conditions C1)–C3), let the ILC updating law (34) be

applied under any initial input U0(s) = L [u0(t)] for u0(t) ∈ Cp[0,T ] and any specified output

trajectory yd(t) ∈C1
q [0,T ]. Then the following three conditions are equivalent:

1) Γ(s) is such that Γ(s)G1(s) is proper;

2) Γ(s) is such that G1(s)Γ(s) is proper;

3) s−1Γ(s) is proper, that is, s−1Γ(s) = Γ0 + Γ̂(s) holds for some nonzero matrix Γ0 ∈ R
p×q

and some strictly proper matrix Γ̂(s) ∈ RF
p×q(s), where

lim
s→∞

s−1Γ(s) = Γ0. (35)

Further, if any of the abovementioned conditions 1)–3) holds, then in the time domain, (34)

reads as

uk+1(t) = uk(t)+Γ0ėk(t)+

∫ t

0
Φ

Γ̂
(t − τ)ėk(τ)dτ

+Φ
Γ̂
(t)ek(0)+Γ0ek(0)δ (t), ∀k ∈ Z+, t ∈ [0,T ]

(36)

where Φ
Γ̂
(t), L −1

[
Γ̂(s)

]
and, in particular, it follows that

uk(t) ∈Cp[0,T ], ∀k ∈ Z+ ⇔ Γ0ek(0) = 0, ∀k ∈ Z+. (37)
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Remark 5: In Lemma 8, it discloses that under certain design condition, the time-domain

realization of the ILC updating law (34) may involve an impulsive mechanism, as revealed by

(36). Even though it may help to overcome the initial shift problems for ILC (see, e.g., [19]),

the use of the impulsive mechanism is not admissible in practice, as noted in [21], where it may

yield uk(0) 6∈ R
p that is not consistent with the condition ud(t) ∈ R

p needed by the trackable

yd(t)∈R
q in Definition 1. Fortunately, the impulsive mechanism resulted in (36) is related only

to the initial tracking error that disappears under the initial condition (7). By Theorems 1 and

2, it follows that any trackable output trajectory yd(t) for the system (2) satisfies the initial

condition (7). This, together with Lemma 8, indicates that a sequence of continuous inputs for

ILC can thus be generated to accomplish the tracking tasks under the ILC updating law (34),

as revealed by the equivalent relation (37).

Next, we benefit from Lemma 8 to further gain convergence analysis results of ILC with the

established trackability criteria. From the perspective of input, applying the ILC updating law

(34) to the system (2) leads to

Uk+1(s) = [I −Γ(s)G1(s)]Uk(s)

+Γ(s) [Yd(s)−G2(s)D(s)] , ∀k ∈ Z+

(38)

but, by contrast, from the perspective of output (or equivalently the tracking error), it results in

Ek+1(s) = [I −G1(s)Γ(s)]Ek(s), ∀k ∈ Z+. (39)

By the comparison between (38) and (39), different conditions are actually required for the

convergence analysis of ILC if it is established from the different perspectives of input and

output. In particular, when q 6= p, convergence conditions required for the input of (38) and the

tracking error of (39) even contradict with each other. Despite this issue, we try to leverage an

FCS-induced approach of ILC to arrive at a unified design condition for Γ(s) such that we can

accomplish the convergence for both input and tracking error, regardless of under-actuated or

over-actuated MIMO systems.

Let us revisit (38), and then we can arrive at

Uk+2(s)−Uk+1(s) = [I −Γ(s)G1(s)]

× [Uk+1(s)−Uk(s)] , ∀k ∈ Z+.
(40)

By this development of the input sequence {uk(t) : k ∈ Z+} and based on Lemma 1, we can

leverage an FCS-induced approach to present an ILC convergence result in the under-actuated

case of the system (2) with q ≥ p by employing the ILC trackability result of Theorem 1, as

well as the design result of Lemma 8.

Theorem 3: For the system (2) with q ≥ p, let the conditions C1)–C3) be satisfied, and the

ILC updating law (34) be applied with any initial input U0(s) = L [u0(t)] for u0(t) ∈ Cp[0,T ]

and any specified output trajectory yd(t) ∈C1
q [0,T ] that satisfies the initial condition (7). Then
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uk(t) ∈ Cp[0,T ], ∀k ∈ Z+ is such that limk→∞ uk(t) = u∞(t) holds for some u∞(t) ∈ Cp[0,T ],

together with giving limk→∞ yk(t) = y∞(t) for some y∞(t) ∈C1
q [0,T ] as

y∞(t) =

∫ t

0
Φ1(t − τ)u∞(τ)dτ +

∫ t

0
Φ2(t − τ)d̂(τ)dτ +Φ2(t)d0

if and only if Γ(s)G1(s) is proper such that

ρ
(

I − lim
s→∞

Γ(s)G1(s)
)
< 1 (41)

where particularly, Γ(s)G1(s) is nonsingular such that U∞(s) = L [u∞(t)] fulfills

U∞(s) = [Γ(s)G1(s)]
−1 Γ(s) [Yd(s)−G2(s)D(s)] . (42)

Furthermore, the tracking objective (1) can be achieved if and only if yd(t)∈C1
q [0,T ] is trackable,

where U∞(s)=Ud(s) holds for Ud(s) given by (9); and otherwise, limk→∞ ek(t)= e∞(t) 6= 0 holds,

where E∞(s) = L [e∞(t)] satisfies

E∞(s) =
{

I −G1(s) [Γ(s)G1(s)]
−1 Γ(s)

}
[Yd(s)−G2(s)D(s)] . (43)

Remark 6: From Theorem 3, we can find that the trackability of a specified trajectory is

a necessary and sufficient condition for achieving the associated tracking objective in ILC of

under-actuated systems. It particularly reveals that a continuous input sequence is generated

by the ILC updating law (34) in the case of any trackable trajectory. This coincides with the

trackability criterion established in Theorem 1.

For the system (2) in the over-actuated case (i.e., q ≤ p), the results established in Theorem 3

may no longer be applicable. Because of q ≤ p, the convergence condition (41) for ILC may not

hold although Γ(s)G1(s) is proper, where a straightforward consequence of the matrix theory

[16] leads to

ρ
(

I − lim
s→∞

Γ(s)G1(s)
)
≥ 1, ∀q < p.

It clearly contradicts with (41). Despite this issue, it is possible for us to design Γ(s) such that

ρ
(

I − lim
s→∞

G1(s)Γ(s)
)
< 1. (44)

By noting this condition for (39) and (40) and with Theorem 2, we employ an FCS-induced

approach to develop the following theorem for the system (2) in the case q≤ p, which establishes

a quite different ILC convergence result from Theorem 3.

Theorem 4: For the system (2) with q ≤ p, let the conditions C1)–C4) be satisfied, and the

ILC updating law (34) be applied with any initial input U0(s) = L [u0(t)] for u0(t) ∈ Cp[0,T ]

and any specified output trajectory yd(t) ∈C1
q [0,T ] that satisfies the initial condition (7). Then

uk(t) ∈ Cp[0,T ], ∀k ∈ Z+ is such that limk→∞ uk(t) = u∞(t) holds for some u∞(t) ∈ Cp[0,T ],

together with the tracking objective (1) being accomplished, if and only if G1(s)Γ(s) is proper
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and fulfills (44). Furthermore, G1(s)Γ(s) is nonsingular such that U∞(s) =L [u∞(t)] is dependent

on the initial input U0(s) and forms a set given by

UILC =
{

U∞(s) = Γ(s) [G1(s)Γ(s)]
−1 [Yd(s)−G2(s)D(s)]

+ Γ̃(s)U0(s)
∣∣u0(t) ∈ R

p
} (45)

where Γ(s) =
[
ΓT

1 (s) ΓT
2 (s)

]T
is denoted for Γ1(s) ∈ RF

q×q(s) and Γ2(s) ∈ RF
(p−q)×q(s) such

that Γ̃(s) is given by

Γ̃(s) =

[
Γ̃11(s) Γ̃12(s)

Γ̃21(s) Γ̃22(s)

]
with





Γ̃11(s) = G−1
11 (s)G12(s)Γ2(s) [G1(s)Γ(s)]

−1
G11(s)

Γ̃12(s) =−G−1
11 (s)G12(s)

{
I −Γ2(s) [G1(s)Γ(s)]

−1
G12(s)

}

Γ̃21(s) =−Γ2(s) [G1(s)Γ(s)]
−1

G11(s)

Γ̃22(s) = I −Γ2(s) [G1(s)Γ(s)]
−1

G12(s).

In particular, UILC = Ud holds.

Remark 7: With Theorem 4, we reveal that for any specified trajectory, the ILC updating law

(34) can be designed to realize the perfect tracking objective in the presence of over-actuated

systems. It particularly indicates that by the selection of initial inputs, all inputs capable of

generating the specified trajectory can be determined. This ILC tracking result is consistent with

the trackability criterion developed in Theorem 2. In addition, the input induced from the ILC

updating law (34) is continuous for every iteration if and only if the initial input is continuous

since the specified output trajectory is trackable in ILC under the initial condition (7).

Remark 8: In Theorems 3 and 4, a unified condition is given to realize the convergence of

ILC from the perspectives of both input and output, regardless of under-actuated or over-actuated

systems. It ensures that for the ILC updating law (34) obtained with a feedback-based design

method, the learned input U∞(s) always exists and, particularly, is the same as the desired input

for generating the trackable output trajectory in ILC. However, it is worth emphasizing that

we make no assumption about the desired input in executing the ILC convergence analysis

thanks to our introduced FCS-induced approach of ILC. This is quite different from classic

convergence analysis approaches of ILC (see, e.g., [1], [9], [10], [21]). Furthermore, our FCS-

induced approach actually establishes the class of uniform convergence results for ILC by

benefiting from Lemma 1.

Remark 9: If the initial condition (7) does not hold, and thus yd(t) is not trackable in ILC

based on Theorems 1 and 2, then by following the same way as the development of Theorems 3

and 4, we can still establish the ILC convergence of both input and output, in spite of q ≥ p or

q≤ p. It is worth emphasizing, however, that by (36), uk(t)∈R
p may not be ensured. Further, the
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tracking objective (1) can still be realized in the case q ≤ p, whereas it can not be accomplished

in the case q ≥ p. Namely, the use of the impulsive mechanism may be no longer effective in

helping to achieve the perfect tracking objective for ILC in the presence of the initial shifts,

which is different from [19].

B. Further Discussions

By [6], [7], one of the practically important problems for the ILC systems is the robustness

with respect to iteration-varying uncertainties. We thus proceed to develop the robustness of our

trackability-based ILC results by reconsidering the system (2) in an uncertain form of

Yk(s) = G1(s)Uk(s)+G2(s)Dk(s) (46)

where, in comparison with (2), Dk(s) = D(s)+Θk(s) holds and Θk(s) represents the iteration-

varying uncertainty satisfying:

C5) Θk(s) = θk + Θ̂k(s) holds for some θk ∈ R
m and Θ̂k(s) ∈ RF

m×1 such that ‖θk‖ ≤ βθ ,

∀k ∈ Z+ and

∥∥∥θ̂k(t)
∥∥∥≤ β

θ̂
, ∀t ∈ [0,T ], ∀k ∈ Z+, where θ̂k(t), L −1

[
Θ̂k(s)

]
and βθ and

β
θ̂

are some finite bounds.

Then for Theorems 3 and 4, we can show that they have certain robustness against iteration-

varying uncertainties, as below.

Corollary 3: Consider the system (46) under the conditions C1), C2), C3) and C5). If the ILC

updating law (34) is applied with any initial input U0(s) =L [u0(t)] for u0(t)∈Cp[0,T ] and any

specified output trajectory yd(t) ∈C1
q [0,T ] that is trackable in ILC for the system (2), then the

robust ILC tracking results can be established as follows.

1) For q ≥ p, let Γ(s)G1(s) be proper such that (41) holds. Then for u∞(t) determined by

(42),

limsup
k→∞

sup
0≤t≤T

‖ek(t)‖ ≤ βe

limsup
k→∞

sup
0<t≤T

‖uk(t)−u∞(t)‖ ≤ βu

(47)

can be accomplished, where βe ≥ 0 and βu ≥ 0 are small bounds depending continuously

on βθ and β
θ̂

. In particular, when iteration-varying uncertainties disappear, i.e., βθ → 0

and β
θ̂
→ 0, the same ILC convergence results as Theorem 3 hold.

2) For q ≤ p, let the condition C4) hold, and G1(s)Γ(s) be proper such that (44) holds. Then

the robust ILC tracking objective (47) can be achieved for some u∞(t) defined by (45),

and when iteration-varying uncertainties disappear, that is, βθ → 0 and β
θ̂
→ 0, the same

ILC convergence results as Theorem 4 can be developed.

By Corollary 3, it indicates that like classic continuous-time ILC in, e.g., [13], [21], the

trackability-based ILC convergence results can be further extended to work robustly and effec-

tively in the presence of iteration-varying uncertainties. This class of robust ILC convergence
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results may also be generalized to deal with iteration-varying uncertainties arising from plant

models. Of special note is that the trackability-based ILC analysis gives a basic guarantee for

the implementation of the ILC design and the robust convergence analysis.

Since most ILC results employ the time-domain descriptions [7], next we revisit the time-

domain system (13) (i.e., the state-space realization of the system (2)), for which we particularly

consider a commonly employed D-type ILC updating law as

uk+1(t) = uk(t)+ϒėk(t), ∀t ∈ [0,T ],∀k ∈ Z+ (48)

where ϒ ∈ R
p×q is a constant gain matrix. Then with Theorems 3 and 4, we can induce the

following ILC convergence results.

Corollary 4: For the system (13), let the ILC updating law (48) be applied under any ini-

tial input u0(t) ∈ Cp[0,T ] and any specified trajectory yd(t) ∈ C1
q [0,T ]. When q ≥ p (respec-

tively, q ≤ p), if ρ(I−ϒCB)< 1 (respectively, ρ(I −CBϒ)< 1), then limk→∞ uk(t) = u∞(t) and

limk→∞ yk(t) = y∞(t) can be achieved for some u∞(t) ∈ R
p and y∞(t) ∈ R

q. Furthermore, the

tracking objective (1) can be accomplished, together with giving uk(t) ∈ Cp[0,T ], ∀k ∈ Z+, if

and only if yd(t) ∈C1
q [0,T ] is trackable.

With Corollary 4, we can see that the trackability-based ILC convergence results are particu-

larly applicable for the classical D-type ILC. But, differently, Corollary 4 reveals that a unified

condition can be obtained to ensure the ILC convergence from the perspectives of both input

and output, regardless of under-actuated or over-actuated systems. This can not be gained with

typical ILC analysis methods (see, e.g., [1], [13], [19]–[22]).

C. FCS-Induced Convergence Analysis

Next, we give the proofs of Lemma 8 and Theorems 3 and 4 by applying Lemmas 1 and 2

and using the frequency-domain analysis method.

Proof of Lemma 8: For Γ(s)∈RF
p×q(s), let γ(s) be the monic least common denominator

of all its nonzero entries. We without any loss of generality represent γ(s) as γ(s) = ∑m
i=0 γis

i

for some m ∈ Z+, some γi ∈R, ∀i = 0, 1, · · · , m−1, and γm = 1. Then we can write Γ(s) in the

form of

Γ(s) = γ−1(s)Ξ(s) (49)

where Ξ(s) ∈ RP
p×q(s) is a polynomial matrix. Then let Ξ(s) be of the form (see, e.g., [17,

(2.6), p. 528])

Ξ(s) = Γ0sl +Γ1sl−1 + · · ·+Γl−1s+Γl

, Γ0sl + lower degree terms.
(50)

where l ∈ Z+ and Γi ∈ R
p×q, ∀i = 0, 1, · · · , l with Γ0 6= 0. The preliminary results of (49) and

(50) help us to deduce that any of the conditions 1)–3) holds if and only if l = m+1. Inspired

by this fact, we next consider the conditions 1)–3) separately.
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With (17), (18), (49), and (50), we can write Γ(s)G1(s) as

Γ(s)G1(s) = [γ(s)α(s)]−1 Ξ(s)Q(s)

=
(
sn+m + lower degree terms

)−1

×
[
Γ0Φ1(0)s

n+l−1+ lower degree terms
]
.

(51)

With (51), it follows straightforwardly that Γ(s)G1(s) is proper if and only if l = m+ 1, and

consequently, lims→∞ Γ(s)G1(s) = Γ0Φ1(0). For the same reason as (51), we can also arrive at

G1(s)Γ(s) = [α(s)γ(s)]−1
Q(s)Ξ(s)

=
(
sn+m + lower degree terms

)−1

×
[
Φ1(0)Γ0sn+l−1 + lower degree terms

]
(52)

from which G1(s)Γ(s) is proper if and only if l =m+1. Hence, the use of (52) gives lims→∞ G1(s)Γ(s)=

Φ1(0)Γ0. In addition, we can leverage (49) and (50) to obtain

s−1Γ(s) = [sγ(s)]−1 Ξ(s)

=
(
sm+1 + lower degree terms

)−1

×
(

Γ0sl + lower degree terms
)

(53)

which obviously guarantees that s−1Γ(s) is proper if and only if l =m+1. Then as a consequence

of (53), (35) is immediate.

To proceed, we note yd(t) ∈ C1
q [0,T ], and thus have sEk(s) = L [ėk(t)]+ ek(0). Then we

incorporate the condition 3) to get

Uk+1(s) =Uk(s)+
[
s−1Γ(s)

]
[sEk(s)]

=Uk(s)+Γ0L [ėk(t)]+ Γ̂(s)L [ėk(t)]

+ Γ̂(s)ek(0)+Γ0ek(0).

(54)

By taking the inverse Laplace transform on both sides of (54), we can directly derive (36). Then

in view of (5), we can clearly conclude from (36) that uk(t) ∈Cp[0,T ], ∀k ∈ Z+ if and only if

Γ0ek(0)δ (t) = 0, ∀k ∈ Z+, i.e., Γ0ek(0) = 0, ∀k ∈ Z+. Hence, (37) is obtained.

Proof of Theorem 3: Since the initial condition (7) holds, we have uk(t)∈Cp[0,T ], ∀k ∈Z+

from Lemma 8. Then owing to q ≥ p, we consider Lemma 1 for (40) and can arrive at that the

following three results are equivalent:

1) limk→∞ uk(t) = u∞(t)∈Cp[0,T ] holds with its limit being approached uniformly on [0,T ],

which together with (5) thus results in limk→∞ yk(t) = y∞(t) ∈C1
q [0,T ];

2) {uk(t) : k ∈ Z+} is an FCS;

3) Γ(s)G1(s) is proper such that (41) holds.

To proceed, we can easily leverage Lemmas 3 and 8 to validate that lims→∞ Γ(s)G1(s)= Γ0Φ1(0)

holds. Then as an immediate consequence of (41), Γ0Φ1(0) is nonsingular. In the same way as
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the proof of Lemma 6, we can further obtain that Γ(s)G1(s) is nonsingular. This, together with

(38), leads to (42) directly.

Next, we prove the equivalence between the tracking objective (1) and the trackability of

yd(t).

Necessity: If the tracking objective (1) is achieved, namely, limk→∞Yk(s) = Yd(s), then by

limk→∞Uk(s) =U∞(s), it follows immediately from (2) that

G1(s)U∞(s) = Y∞(s)−G2(s)D(s) = Yd(s)−G2(s)D(s)

where Y∞(s), limk→∞Yk(s). Namely, U∞(s) is a solution of the algebraic equation (3). Then by

Definition 1, yd(t) is trackable.

Sufficiency: If yd(t) is trackable, then according to Theorem 1, the algebraic equation (3) has

a unique solution Ud(s) shown by (9). This, together with (38), yields

Uk+1(s) = [I −Γ(s)G1(s)]Uk(s)+Γ(s)G1(s)Ud(s) (55)

by which the use of limk→∞Uk(s) =U∞(s) leads to

Γ(s)G1(s)U∞(s) = Γ(s)G1(s)Ud(s). (56)

Because Γ(s)G1(s) is nonsingular, we can apply (56) to arrive at U∞(s) = Ud(s). As a conse-

quence, we also have

Y∞(s) = G1(s)U∞(s)+G2(s)D(s)

= G1(s)Ud(s)+G2(s)D(s)

=Yd(s)

namely, the tracking objective (1) can be achieved.

Besides, the abovementioned necessary and sufficient results guarantee that when yd(t) is not

trackable, or equivalently, the tracking objective (1) does not hold, limk→∞ ek(t) = e∞(t) 6= 0 is

thus obvious, where the use of (42) results in

E∞(s) = lim
k→∞

Ek(s)

=Yd(s)−G1(s)U∞(s)−G2(s)D(s)

=
{

I −G1(s)[Γ(s)G1(s)]
−1Γ(s)

}
[Yd(s)−G2(s)D(s)]

6= 0

i.e., (43) holds.

Proof of Theorem 4: Thanks to the initial condition (7), it follows that uk(t) ∈ Cp[0,T ],

∀k ∈ Z+ holds based on Lemma 8, and that yd(t) ∈C1
q [0,T ] is trackable in ILC by Theorem 2.

Next, we show the necessity and sufficiency separately.

Necessity: Because the tracking objective (1) is realized, it is direct that limk→∞ ek(t) = 0,

∀t ∈ [0,T ]. By considering Lemma 1 for (39) and (40) and applying Lemma 3 for uk(t)∈Cp[0,T ],
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∀k ∈ Z+, we can develop that if limk→∞ uk(t) = u∞(t), together with the tracking objective (1)

being achieved, then G1(s)Γ(s) is proper such that (44) holds.

Sufficiency: If G1(s)Γ(s) is proper such that (44) holds, then by following the same lines as

adopted in the proof of Theorem 3, we can deduce that G1(s)Γ(s) is nonsingular, where we have

lims→∞ G1(s)Γ(s) = Φ1(0)Γ0 and Φ1(0)Γ0 is also nonsingular. With this fact and by Lemma 7,

we denote a structured matrix Ω(s) ∈ RF
p×p(s) in the form of

Ω(s) =

[
Ω11(s) Ω12(s)

Ω21(s) Ω22(s)

]

where four block matrices involved in Ω(s) are given by

Ω11(s) = s [G1(s)Γ(s)]
−1

G11(s)

Ω12(s) = s [G1(s)Γ(s)]
−1

G12(s)

Ω21(s) =−Γ2(s) [G1(s)Γ(s)]
−1

G11(s)

Ω22(s) = I −Γ2(s) [G1(s)Γ(s)]
−1

G12(s).

We can validate that Ω(s) is nonsingular, and proper due to

lim
s→∞

Ω(s)

=

[
[Φ1(0)Γ0]

−1 Φ1,1(0) [Φ1(0)Γ0]
−1 Φ1,2(0)

−Γ0,2 [Φ1(0)Γ0]
−1 Φ1,1(0) I −Γ0,2 [Φ1(0)Γ0]

−1 Φ1,2(0)

]

where Γ0,2 ∈ R
(p−q)×q, together with Γ0,1 ∈ R

q×q, is such that Γ0 =
[
ΓT

0,1 ΓT
0,2

]T

. Simultane-

ously, the inverse matrix Ψ(s), Ω−1(s) ∈ RF
p×p(s) satisfies

Ψ(s) =

[
Ψ11(s) Ψ12(s)

Ψ21(s) Ψ22(s)

]

where four block matrices taking the form of

Ψ11(s) = s−1Γ1(s), Ψ12(s) =−G−1
11 (s)G12(s)

Ψ21(s) = s−1Γ2(s), Ψ22(s) = I

are such that Ψ(s) is also proper thanks to

lim
s→∞

Ψ(s) =

[
Γ0,1 −Φ−1

1,1(0)Φ1,2(0)

Γ0,2 I

]
.

To proceed, we employ Ω(s) to propose a nonsingular linear transformation as

Ω(s)Uk(s) =U⋆
k (s),

[
U⋆

k,1(s)

U⋆
k,2(s)

]

where we correspondingly denote u⋆k(t) =L −1
[
U⋆

k (s)
]
∈R

p, u⋆k,1(t) =L −1
[
U⋆

k,1(s)
]
∈R

q, and

u⋆k,2(t) = L −1
[
U⋆

k,2(s)
]
∈ R

p−q. Due to that uk(t) ∈ Cp[0,T ], ∀k ∈ Z+ and Ω(s) is proper, it
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follows that for all k ∈ Z+, we have u⋆k(t) ∈Cp[0,T ], u⋆k,1(t) ∈Cq[0,T ], and u⋆k,2(t)∈Cp−q[0,T ].

Since we can easily verify

Ω(s)Γ(s) =

[
sI

0

]
, G1(s)Ψ(s) =

[
s−1G1(s)Γ(s) 0

]
(57)

we again consider (38) and can arrive at

U⋆
k+1(s) = Ω(s)Uk+1(s)

= {I − [Ω(s)Γ(s)][G1(s)Ψ(s)]}Ω(s)Uk(s)

+ [Ω(s)Γ(s)] [Yd(s)−G2(s)D(s)]

=

{
I −

[
G1(s)Γ(s) 0

0 0

]}
U⋆

k (s)

+

[
sI

0

]
[Yd(s)−G2(s)D(s)]

and, consequently, U⋆
k,1(s) and U⋆

k,2(s) are decoupled from each other such that
[

U⋆
k+1,1(s)

U⋆
k+1,2(s)

]
=

[
I −G1(s)Γ(s) 0

0 I

][
U⋆

k,1(s)

U⋆
k,2(s)

]

+

[
s [Yd(s)−G2(s)D(s)]

0

]
, ∀k ∈ Z+.

(58)

A direct consequence of (58) is that U⋆
k+1,2(s) =U⋆

k,2(s), ∀k ∈ Z+, namely, U⋆
k,2(s) is iteration-

independent such that

U⋆
k,2(s)≡U⋆

0,2(s) =
[
Ω21(s) Ω22(s)

]
U0(s), ∀k ∈ Z+. (59)

In addition, the use of (58) leads to

U⋆
k+1,1(s) = [I −G1(s)Γ(s)]U

⋆
k,1(s)

+ s [Yd(s)−G2(s)D(s)] , ∀k ∈ Z+

(60)

which immediately yields

U⋆
k+2,1(s)−U⋆

k+1,1(s) = [I −G1(s)Γ(s)]

×
[
U⋆

k+1,1(s)−U⋆
k,1(s)

]
, ∀k ∈ Z+.

(61)

Since G1(s)Γ(s) is proper and (44) holds,
{

u⋆k,1(t) : k ∈ Z+

}
is an FCS by applying Lemma 1

to (61). Thus, there exists some function u⋆∞,1(t) ∈Cq[0,T ] such that limk→∞ u⋆k,1(t) = u⋆∞,1(t) in

view of u⋆k,1(t)∈Cq[0,T ], ∀k ∈Z+. This, together with (60) and the nonsingularity of G1(s)Γ(s),

implies

U⋆
∞,1(s), lim

k→∞
U⋆

k,1(s)

= [G1(s)Γ(s)]
−1

s [Yd(s)−G2(s)D(s)] .
(62)
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From (59) and (62), it is immediate to derive

U⋆
∞(s), lim

k→∞
U⋆

k (s)

=

[
[G1(s)Γ(s)]

−1
s [Yd(s)−G2(s)D(s)][

Ω21(s) Ω22(s)
]

U0(s)

]
.

(63)

For (45), we can easily verify

Γ̃(s) =

[
Ψ12(s)

Ψ22(s)

][
Ω21(s) Ω22(s)

]

and then the use of (63), together with U⋆
k (s) = Ω(s)Uk(s) and Ω−1(s) = Ψ(s), leads to

U∞(s), lim
k→∞

Uk(s)

= Ψ(s)

[
[G1(s)Γ(s)]

−1
s [Yd(s)−G2(s)D(s)][

Ω21(s) Ω22(s)
]

U0(s)

]

=

[
Ψ11(s)

Ψ21(s)

]
[G1(s)Γ(s)]

−1
s [Yd(s)−G2(s)D(s)]

+

[
Ψ12(s)

Ψ22(s)

][
Ω21(s) Ω22(s)

]
U0(s)

= Γ(s) [G1(s)Γ(s)]
−1 [Yd(s)−G2(s)D(s)]+ Γ̃(s)U0(s)

(64)

namely, (45) holds. Furthermore, we incorporate (57) into (64), and can validate

G1(s)U∞(s) = G1(s)Ψ(s)

[
[G1(s)Γ(s)]

−1
s [Yd(s)−G2(s)D(s)][

Ω21(s) Ω22(s)
]

U0(s)

]

= Yd(s)−G2(s)D(s)

which ensures
lim
k→∞

Ek(s) = Yd(s)− lim
k→∞

Yk(s)

= Yd(s)− [G1(s)U∞(s)+G2(s)D(s)]

= 0

and, consequently, the tracking objective (1) can be realized.

With the above necessary and sufficient result, we next show UILC = Ud by adopting two

steps.

i): UILC ⊆ Ud . For any U∞(s) ∈ UILC, we take

Ud,2(s) =
[
Ω21(s) Ω22(s)

]
U0(s)

+Γ2(s) [G1(s)Γ(s)]
−1 [Yd(s)−G2(s)D(s)]
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which, together with (64), results in

U∞(s) = Ψ(s)

×

[
[G1(s)Γ(s)]

−1
s [Yd(s)−G2(s)D(s)]

Ud,2(s)−Γ2(s) [G1(s)Γ(s)]
−1 [Yd(s)−G2(s)D(s)]

]

=

[
G−1

11 (s)
[
Yd(s)−G2(s)D(s)−G12(s)Ud,2(s)

]

Ud,2(s)

]

namely, U∞(s) ∈ Ud . As a consequence, we have UILC ⊆ Ud .

ii): UILC ⊇ Ud . For any Ud(s) ∈ Ud , let us take

U0(s) =

[
−G−1

11 (s)G12(s)

I

]{
Ud,2(s)

−Γ2(s) [G1(s)Γ(s)]
−1 [Yd(s)−G2(s)D(s)]

}

and, consequently, we can use Ω21(s)Ψ12(s)+Ω22(s)Ψ22(s) = I to derive

Γ̃(s)U0(s) =

[
Ψ12(s)

Ψ22(s)

][
Ω21(s) Ω22(s)

]

×

[
−G−1

11 (s)G12(s)

I

]{
Ud,2(s)

−Γ2(s) [G1(s)Γ(s)]
−1 [Yd(s)−G2(s)D(s)]

}

=

[
−G−1

11 (s)G12(s)

I

]{
Ud,2(s)

−Γ2(s) [G1(s)Γ(s)]
−1 [Yd(s)−G2(s)D(s)]

}

which yields[
−G−1

11 (s)G12(s)

I

]
Ud,2(s) =

[
−G−1

11 (s)G12(s)

I

]
Γ2(s) [G1(s)Γ(s)]

−1 [Yd(s)−G2(s)D(s)]

+ Γ̃(s)U0(s).

This, together with (12), leads to

Ud(s) =

[
G−1

11 (s) [Yd(s)−G2(s)D(s)]

0

]

+

[
−G−1

11 (s)G12(s)

I

]
Γ2(s) [G1(s)Γ(s)]

−1

× [Yd(s)−G2(s)D(s)]+ Γ̃(s)U0(s)

= Γ(s) [G1(s)Γ(s)]
−1 [Yd(s)−G2(s)D(s)]+ Γ̃(s)U0(s)

which implies Ud(s) ∈ UILC. Thus, UILC ⊇ Ud is immediate.

With the steps i) and ii), we can arrive at UILC = Ud .
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Fig. 1. (Example 1). Tracking performances of ILC for q ≥ p. Upper: Case a). Middle: Case b). Lower: Case c).

V. SIMULATION EXAMPLES

Example 1: Consider the system (2), where

G1(s) =




12s−17

10(s2 +3s+2)

12s−17

10(s2+3s+2)
111s+82

100(s2+3s+2)

111s+82

100(s2+3s+2)
25s2 −133s−216

50(s3+6s2 +11s+6)

61s2 −25s−144

50(s3+6s2 +11s+6)




G2(s) =




1

s+1

1

s+1

s−39

10(s2+3s+2)
1

10(s+1)

1

10(s+1)

5s+3

5(s2+3s+2)
1

5(s+1)

5s+7

5(s2 +4s+3)

s2 −20s−29

5(s3 +6s2 +11s+6)




D(s) = 0.
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We clearly have q= 3 and p = 2, and can verify the conditions C1)–C3). In addition, we consider

three different cases for the specified output trajectory and the initial input as follows:

a) yd(t) =




57420

3809

[
cos(t)− exp

(
−

82

111
t

)]
−

1240

3809
sin(t)

10sin(t)

10sin(5π/t)




u0(t) = 0

b) yd(t) =




57420

3809

[
cos(t)− exp

(
−

82

111
t

)]
−

1240

3809
sin(t)

10sin(t)

10sin(5π/t)




u0(t) =
[
10 −10

]T

c) yd(t) =




57420

3809

[
cos(t)− exp

(
−

82

111
t

)]
−

2

5
sin(t)

10sin(t)

10sin(5π/t)




u0(t) = 0

where, for all cases, we have yd(t) ∈ C1
3 [0,T ], u0(t) ∈ C2[0,T ], and the initial condition (7).

Because of q > p, we know from Theorem 1 that yd(t) is trackable in ILC for the cases a) and

b) since Yd(s) =L [yd(t)] satisfies the algebraic equation (8) for both cases, but it is not for the

case c). To carry out simulations with the ILC updating law (34), we choose Γ(s) as

Γ(s) = s

[
0.6849 0.6335 −1.25

−0.2807 −0.2596 1.25

]

with which Γ(s)G1(s) is proper and satisfies (41).

Let T = 10, and we plot the simulation results for the Cases a)–c) in Fig. 1. It is obvious

from this figure that for the Cases a) and b), the tracking errors decrease to zero with increasing

iterations, where the outputs learned after 100 iterations track the specified trajectory perfectly.

With the comparison between the learned input trajectories for the Cases a) and b) in Fig. 1, they

are the same even though we adopt different initial inputs for both cases. This is consistent with

the uniqueness result of Theorems 1 and 3 for the input that can generate the trackable trajectory

in ILC. By contrast to the Cases a) and b), the Case c) considers a specified trajectory that is not

trackable in ILC. Correspondingly, as depicted in Fig. 1, the tracking error does not decrease to

zero with the increasing of iterations although the input still converges in the Case c), where,

in particular, the output learned after 100 iterations can no longer perfectly track the specified

trajectory. By these observations, we demonstrate the trackability criterion of Theorem 1 for

the case q ≥ p and the relevant trackability-based ILC tracking result of Theorem 3, together
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Fig. 2. (Example 2). Tracking performances of ILC for q ≤ p. Upper: Case d). Lower: Case e).

with revealing the relation between the trackability of the specified output trajectory and the

accomplishment of the perfect output tracking task in ILC.

Example 2: Let q = 2 and p = 3, and then we consider the system (2) with

G1(s) =




24s2 +155s+195

20(s3+6s2 +11s+6)

120s2+361s+273

100(s3+6s2 +11s+6)
111s2 +523s−348

100(s3+6s2 +11s+6)

111s2−53s−240

100(s3+6s2 +11s+6)
5s2 +42s+45

10(s3+6s2 +11s+6)

61s2 +156s+99

50(s3+6s2 +11s+6)




T

G2(s) =




1

s+1

1

10(s+1)
s+21

10(s2 +4s+3)

5s+6

5(s2 +4s+3)
2s2 +9s−9

2(s3+6s2 +11s+6)

10s2 −9s−27

10(s3+6s2 +11s+6)




T

D(s) = 0

for which the conditions C1)–C4) are satisfied. By taking T = 10, we are interested in the
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following two cases of the specified output trajectory and the initial input:

d) yd(t) =

[
10sin(t)

10sin(πt/5)

]
, u0(t) = 0

e) yd(t) =

[
10sin(t)

10sin(πt/5)

]
, u0(t) =

[
10 −10 5

]T

where yd(t) ∈ C1
2 [0,T ] and u0(t) ∈ C3[0,T ]. For both cases, we can also verify that the initial

condition (7) holds, and therefore yd(t) is trackable in ILC by Theorem 2. To implement the

ILC updating law (34), we select the gain matrix operator Γ(s) as

Γ(s) = s




0.6 0.1

0.1 0.1

−0.5 0.4




which makes G1(s)Γ(s) be proper such that (44) holds.

In Fig. 2, we depict the simulation results for both Cases d) and e), from which the zero

convergence of the output tracking error along the iteration axis can be observed. In particular,

for both cases, the outputs learned after 200 iterations are capable of tracking the specified

trajectory perfectly, despite which the input trajectories learned after 200 iterations are different

from each other since they correspond to different initial inputs. This validates not only the

trackability-based ILC result of Theorem 4, but also the heavy dependence of the input learned

with ILC on the initial input for the case q ≤ p.

Discussions: By Examples 1 and 2, we illustrate the validity of our trackability-based ILC

analysis for both under-actuated and over-actuated systems. It is clear that the trackability plays

a crucial role in realizing the perfect ILC tracking task. Further, Figs. 1 and 2 demonstrate that

it is feasible to employ a unified condition to implement the ILC convergence analysis from the

perspectives of both input and output.

VI. CONCLUSIONS

In this paper, we have discussed the fundamental trackability problems for continuous-time

ILC systems. We have explored the trackability criteria with the help of utilizing the frequency-

domain algebraic equations to determine whether the specified output trajectory is trackable in

ILC, despite under-actuated or over-actuated systems. In particular, we have investigated how to

arrive at all inputs that can generate the trackable trajectory. The (uniform) convergence analysis

has been implemented by newly developing an FCS-induced method of ILC. It has been disclosed

that the perfect output tracking task of ILC is closely connected to the trackability of the specified

output trajectory. Our proposed trackability-based ILC results have been verified through two

simulation examples.
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APPENDIX

Proof of Lemma 1: By Definition 2 and with [17, Chapter 1, Theorem 5.3], we directly

have the equivalence between 1) and 2). Next, we prove the equivalence between 1) and 3).

Sufficiency: Because GF(s) is proper, let us denote

DF = lim
s→∞

GF(s). (65)

Based on (65) and thanks to ρ (lims→∞ GF(s))< 1, there exists some induced matrix norm [16]

such that

‖DF‖ ≤ ρ1 (66)

where 0 ≤ ρ1 < 1. By (65), we write GF(s) in the form of

GF(s) = ĜF(s)+DF (67)

and thus ĜF(s)∈RF
n×n(s) is strictly proper such that ΦF(t),L

−1
[
ĜF(s)

]
∈R

n×n is smooth.

Let βF , maxt∈[0,T ] ‖ΦF(t)‖, and it is obvious that βF is finite. By incorporating (67), we can

get from Fk+2(s)−Fk+1(s) = GF(s) [Fk+1(s)−Fk(s)], ∀k ∈ Z+ that, for all t ∈ [0,T ] and for all

k ∈ Z+,

fk+2(t)− fk+1(t) =

∫ t

0
ΦF(t − τ) [ fk+1(τ)− fk(τ)]dτ

+DF [ fk+1(t)− fk(t)] .

(68)

Then by taking the norm on both sides of (68) and leveraging (66), we can arrive at

‖ fk+2(t)− fk+1(t)‖ ≤
∫ t

0
‖ΦF(t − τ)‖‖ fk+1(τ)− fk(τ)‖dτ

+‖DF‖‖ fk+1(t)− fk(t)‖

≤ βF

∫ t

0
‖ fk+1(τ)− fk(τ)‖dτ

+ρ1 ‖ fk+1(t)− fk(t)‖

(69)

for which we consider any λ > 0 and can verify
∫ t

0
‖ fk+1(τ)− fk(τ)‖dτ =

∫ t

0
eλτ
[
e−λτ‖ fk+1(τ)− fk(τ)‖

]
dτ

≤ ‖ fk+1(t)− fk(t)‖λ

∫ t

0
eλτ dτ

=
eλ t −1

λ
‖ fk+1(t)− fk(t)‖λ .

(70)
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To proceed with (69) and (70), we can further obtain

e−λ t‖ fk+2(t)− fk+1(t)‖ ≤ βFe−λ t
∫ t

0
‖ fk+1(τ)− fk(τ)‖dτ

+ρ1e−λ t‖ fk+1(t)− fk(t)‖

≤ βF
1− e−λ t

λ
‖ fk+1(t)− fk(t)‖λ

+ρ1e−λ t‖ fk+1(t)− fk(t)‖

≤
(
ρ1 +λ−1βF

)
‖ fk+1(t)− fk(t)‖λ

which implies that, for all k ∈ Z+,

‖ fk+2(t)− fk+1(t)‖λ ≤
(
ρ1 +λ−1βF

)
‖ fk+1(t)− fk(t)‖λ . (71)

Thanks to ρ1 ∈ [0,1), we choose λ > 0 such that ρ1+λ−1βF ≤ (ρ1 +1)/2, ρ . Clearly, ρ ∈ [0,1)

holds, and consequently, the use of (71) results in

‖ fk+2(t)− fk+1(t)‖λ ≤ ρ‖ fk+1(t)− fk(t)‖λ , ∀k ∈ Z+

by which we have

‖ fk+1(t)− fk(t)‖λ ≤ ρk‖ f1(t)− f0(t)‖λ , ∀k ∈ Z+. (72)

Then from (72), we know that for any ε > 0, there exists some integer N(ε)≥ max{0, ln(ε(1−

ρ)/‖ f1(t)− f0(t)‖λ)/ ln(ρ)} such that

‖ fi(t)− f j(t)‖λ ≤
i−1

∑
k= j

‖ fk+1(t)− fk(t)‖λ

≤
i−1

∑
k= j

ρk‖ f1(t)− f0(t)‖λ

≤
∞

∑
k=N(ε)

ρk‖ f1(t)− f0(t)‖λ

≤
ρN(ε)

1−ρ
‖ f1(t)− f0(t)‖λ

≤ ε, ∀i ≥ j ≥ N(ε).

Similarly, we can also get ‖ fi(t)− f j(t)‖λ ≤ ε , ∀ j ≥ i ≥ N(ε). Then from Definition 2, it follows

that the functional sequence { fk(t) : k ∈ Z+} is an FCS.

Necessity: If { fk(t) : k ∈Z+} is an FCS, then with Definition 2, limk→∞ ∆ fk(t) = 0, ∀t ∈ [0,T ]

holds. For any given t ∈ [0,T ], this is actually an asymptotic stability result of the system (68)

along the iteration axis since (68) essentially denotes a discrete linear system given by

∆ fk+1(t) = DF∆ fk(t)+
∫ t

0
ΦF(t − τ)∆ fk(τ)dτ, ∀k ∈ Z+.
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It basically requires ρ (DF) < 1, that is, ρ (lims→∞ GF(s))< 1. For the necessity of Lemma 1,

the readers can also be referred to that of [22, Lemma 1] because (68) can be described in the

form of the 2-D linear continuous-discrete system [22, (13)].

Furthermore, if fk(t)∈Cn[0,T ], ∀k ∈ Z+, then we can easily conclude from the completeness

of the space Cn[0,T ] that there exists some function f∞(t) ∈Cn[0,T ] such that limk→∞ ‖ fk(t)−

f∞(t)‖λ = 0, i.e., limk→∞ fk(t) = f∞(t) ∈Cn[0,T ].

Proof of Lemma 2: Let Φ(t) , L −1
[
G(s)

]
. Since G(s) is proper, Φ(t) satisfies Φ(t) =

Φsp(t)+DGδ (t), where Φsp(t) is smooth and DG ∈ R
m×n is such that lims→∞ G(s) = DG. By

noticing f (t) = L −1
[
G(s)F(s)

]
, we can validate

f (t) =

∫ t

0
Φsp(t − τ) f (τ)dτ +DG f (t), t ∈ [0,T ]

from which f (t) ∈ Cm[0,T ] is immediate due to f (t) ∈ Cn[0,T ]. Moreover, if G(s) is strictly

proper, then lims→∞ G(s) = 0 and, consequently, Φ(t)=L −1
[
G(s)

]
is smooth, which guarantees

L
−1
[
G(s)v

]
= Φ(t)v ∈Cm[0,T ] for any v ∈ R

n.
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