
Mapping vegetation in urban areas using Sentinel-2 

Oladimeji Mudele, Paolo Gamba* 

Department of Electrical, Computer and Biomedical Engineering  

University of Pavia 

Pavia, Italy 

*Corresponding author: gamba@unipv.it 

 
Abstract— The rapid expansion of cities globally leads to 

new challenges related to quality of life and health. The 

presence and fractional distribution of vegetation within urban 

cities directly impact the life and health of urban dwellers. This 

paper presents an approach to map urban vegetation from 

Sentinel-2 data. The twin Sentinel-2 satellites offer a 5-day 

revisit time global coverage at unprecedented spatial and 

temporal resolution. The temporal resolution allows for 

seasonal aggregation of the input data, thus providing 

phenological information. By considering seasonally 

aggregated Normalized Difference Spectral Vector (NDSV), a 

classification was performed using Random Forest (RF) and 

compared with Classification and Regression Trees (CART) 

and Support Vector Machines (SVM). 
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I. INTRODUCTION  

Urban areas are characterized by relatively dense 
population, human activities and a complex intertwine of 
artificial and natural environments. Many of the world’s 
urban cities are becoming congested. Resulting from the 
rapid expansion and congestion of urban cities is the rise of 
unplanned areas with skewed ecological balance between 
artificial and natural landcovers, thus affecting the lives of 
urban dwellers. These factors, along with the recent increase 
in availability of Earth Observation data, caused an increased 
number of global studies of urban environments [1] [2].  

Urban green spaces impact the urban ecosystem from the 
standpoints of health and quality of life. Vegetation may vary 
in height, sizes, canopy, and species, with each of these 
variations resulting in a different environmental impact. 
Major parts of urban areas where vegetations are often found 
include parks, Government reserved areas, river banks, 
domestic gardens, and street trees. Their impacts include 
pollution removal, noise attenuation, wind storm control, 
temperature reduction, ground water replenishment, and 
recreation for citizens. It is therefore important to study the 
quality and presence of vegetation in urban areas. Urban 
vegetation maps are needed in various applications and 
studies to improve the lives of urban dwellers [3]. 

A major application of interest is in the field of 
Landscape Epidemiology. Here, urban vegetation maps 
obtained from Earth Observation data are combined with 
other environmental variables to model the spread of 
diseases in urban environments. A major specific application 
in this domain is in developing models for Mosquito borne 
diseases spread; Zika, Dengue, Chikungunya viruses etc. 
Previous studies have shown a relationship between local 
moisture supply, vegetation canopy structure and the 
abundance of mosquitoes. Fully developed tree canopies 
provide shades that reduce evaporation from containers of 
mosquito larvae and shield the vector habitat from wind. 
Vegetation condition also provide proxy to moisture and 
precipitation, vital variables for the survival of mosquito 
species [4] [5]. 

Recent studies about Zika, Dengue and similar disease 
spread models rely on remote sensing data such as MODIS 
Normalized difference vegetation index (NDVI) and 
Enhanced Vegetation Index (EVI) layers in the MOD13Q1 
NASA product. With a spatial resolution of 250 meters, 
these layers do not provide adequate details required to 
delineate the complexity of urban land covers [6]. Maps 
obtained using NDVI or EVI do not provide information 
about the size and structure of the vegetation, important 
factors for vector survival and subsequent environmental 
suitability for vector-borne diseases. Other features, such as 
the Tasseled cap brightness, greenness and wetness, have 
been used to generate proxies to vegetation quality using 
Landsat TM data. However, this approach too shows some of 
the drawbacks earlier stated [7]. The use of higher spatial 
resolution data including SPOT (Satellite Pour l’Observation 
de la Terre) dataset has alternatively been explored to obtain 
local scale urban vegetation maps to be included in disease 
spread models [5]. However, this dataset is not available for 
free, and thus not publicly suited for research studies. 

In this study, we present a procedure to extract urban 
vegetations from Sentinel-2 (S-2) multispectral data. S-2 data 
provide novel spectral capabilities with 13 spectral bands 
(e.g. 3 bands in red-edge and 2 bands in SWIR) at up to 10-
meter spatial resolution. The 5-day global revisit time (due to 
2 satellites 180° apart in orbit) provides enough temporal 
information to incorporate phenological information into the 
urban vegetation mapping procedure. In the following, we 
present results for urban vegetation mapping based on the 
Normalized Difference Spectral Vector (NDSV) input. For 
this purpose, a robust classifier - Random Forest (RF) -was 
applied and compared with Classification and Regression 
Trees (CART) and Support Vector Machines (SVM).   

II. THE PROCESSING CHAIN 

To mitigate errors in the data due to atmosphere and 
sensor acquisition parameters, there is the need for data 
calibration, co-registration of overlapping scenes, and cloud 
cover filtering to select images suitable for the procedure. 
These steps were already implemented in the cloud 
computing platform used in this work (Google Earth 
Engine). Scene combination (in case of using multiple 
overlapping data) and/or selection (in case of using single 
image input) was thus the only pre-processing step 
performed. 

To map vegetation within an urban area, it is important to 
define the urban boundary. The procedure implemented for 
this work includes an initial semi-automatic urban area 
extraction in the area of interest. Then, a buffer zone around 
the extracted urban extent is obtained and used as 
geographical bound for the urban vegetation mapping 
procedure. A full description of the processing chain is 
shown in fig. 1.  

A. Urban extent extraction 

A semi-supervised urban extent extraction procedure 



based on the normalized difference spectral vector [8] was 
used in this work. Our implementation of this procedure 
takes a single S-2 data as input (the least cloudy in the year 
of interest), applies the NDSV transformation as defined in 
[9], and selects training points automatically from the urban 
class of the GlobCover product, a coarser (300m spatial 
resolution) global landcover map. The output map is then 
spatially regularized using a morphological filter. 

 

Fig. 1. Proposed urban vegetation mapping processing chain 

 

Fig. 2. Semi-automatic urban mapping and buffer mask extraction 

procedure. Steps are as follow: 1- extraction of urban extents; 2- buffer 
application using a morphological dilation; 3- sub-area extraction; 4- final 

result.  

Since our interest is the boundary of the urban area plus 
its fringes, a buffer around the resulting map is obtained 
using a dilate morphological operation. The boundary of this 
buffer is vectorized to produce the final urban area plus 
fringes boundary. An example for the city of Cordoba 
(Argentina) is shown in fig. 2. 

B. Vegetation mapping  

Vegetation mapping is then performed inside the urban 
and peri-urban areas by means of  supervised classification. 
As with every supervised procedure, the final map quality 
depends on the selection of the representative samples used 
to train the classifier. These points have been mostly 
collected by field visit, but integrated by looking at high-

resolution aerial images. Constraints considered in selecting 
the classification legend include spatial scale of data, season 
of the year when points are collected and, more importantly, 
the goals of the work. Based on these constraints, the 
following classes were defined: Trees, Bushes, Grass, Water, 
Artificial surfaces, and Bare soil.  

To obtain a single image for classification input, 
multitemporal Sentinel-2 images overlapping over the same 
scene were combined by means of greenest pixel 
compositing, i.e. by selecting for each pixel the spectrum 
from the scene with the largest NDVI. This combination was 
done annually, seasonally and bi-monthly. There are two 
major motivations for considering seasonal/bi-monthly 
aggregation. First, vegetations behave dynamically across 
different times of the year. Seasonal and bi-monthly 
aggregation incorporates this phenological behavior/changes 
across all seasons in the spectra description of the 
vegetations. Second, annual greenest pixels could still 
contain cloudy pixels. However, it is most unlikely for the 
same pixel to be cloudy across all seasons of the year.  

In the seasonal and bi-monthly cases, the output seasonal 
greenest pixel mosaics are stacked to produce a single 
dataset. Then, to remove the errors due to differences in the 
acquisitions across the different images in the input 
collection, the composited data is converted to the above 
mentioned NDSV feature. In the cases of seasonal and bi-
monthly aggregation, the NDSV is computed for each of the 
output mosaics before aggregation. Results obtained with 
NDSV input are benchmarked against using only the original 
spectral features. 

As for the classifier, Random Forest (RF) was selected 
for this work, due to its robustness with respect to the quality 
of training samples, as well as its robustness against 
unbalanced data and overfitting [10] [11]. To justify this 
choice, RF was tested in comparison to other state-of-the-art 
classifiers: CART and SVM. 

III. EXPERIMENTAL RESULTS 

The proposed methodology was tested with data covering 
the city of Cordoba, Argentina, located at 31º24’30’’ S, 64 
º11’02’’ W. Cordoba covers an area of 576km2 with a 
population of nearly 1.5 million [12].  

Sentinel-2 dataset within one-year (Sept. 2017 to Aug. 
2018) were considered. After selecting images with less than 
10% cloud cover, 51 images were retained and combined. 10 
of the 13 bands in S-2 images, i.e. those giving information 
about land covers were selected for this work, discarding 
specifically the Aerosol, Cirrus and Water vapor bands. This 
resulted in a 10 spectral band single input image for the 
annual greenest pixel composite – 40 bands and 60 bands in 
the seasonal and bi-monthly aggregates respectively. For the 
NDSV feature, a 45-band feature was obtained from the 
annual greenest, 180 bands for seasonal aggregate and 270 
bands for bi-monthly aggregate. 

Field visits were made to select points representative of 
the Trees, Bushes, Grass, Water and Bare soil classes. Points 
for the artificial surfaces class were selected instead by visual 
inspection of Google EarthTM images. A total of 1,428 points 
covering all classes were collected. A major limitation of the 
points collected is their geographical distribution (see fig. 3). 
This occurred due to constraints including inaccessibility of 
many areas. Thus, the training of the classifier and validation 



of the resulting model was only done on points taken within 
the areas that could be accessed. 

 

Fig. 3. Landsat view of the city of Cordoba with the selected training and 

validation points overlaid. 

A. Vegetation maps 

The obtained vegetation maps were evaluated with 
respect to the Overall accuracy (O.A.), Kappa coefficient, 
Producer accuracy and User accuracy [13]. 20-fold cross-
validation was used to ensure unbiased accuracy values. 
From the performed experiments, the RF classifier 
demonstrates a larger robustness to limitations in the number 
of training samples, with only marginal improvement shown 
in classification accuracy by varying the proportion of 
sample points used for training. Model parameters were 
tuned to find the optimal values – “Number of trees” for RF 
(see fig. 4) and “type of kernel function” for SVM (see fig. 
5). The results show that RF (100 trees) produces better 
classification accuracy values than CART or SVM. The 
results for all these tests are reported in Table I. 

 

Fig. 4. Plot of overall accuracy of classification as a function of number of 

Random Forest trees. 

As shown in Table I, seasonal aggregations improve the 
accuracy of the classification map. This is specifically seen 
in the lower confusion between Bushes and Grass. Since it is 
difficult to find pure bush pixels at 10 m spatial resolution, 
the phenological information provided in seasonal 
aggregation improves the separability between the classes. 
Bi-monthly aggregations, instead, do not provide additional 
improvement with respect to seasonal to justify the resulting 
increase in computational complexity.  

TABLE I.  CLASSIFICATION RESULTS FOR SPECTRAL INPUT 

RF (100 trees) – Spectral annual greenest feature input 

 

 

Trees Bushes Grass Water Artificial Bare 

soil 

Prod 0.781 0.523 0.727 0.734 0.973 0.193 

User  0.690 0.805 0.681 0.783 0.931 0.708 

O.A 0.826 ± 0.019 

Kappa 0.746 ± 0.026 

 
RF (100 trees) – Spectral seasonal aggregated feature input 

 

 

Trees Bushes Grass Water Artificial Bare 

soil 

Prod 0.841 0.577 0.756 0.814 0.983 0.453 

User  0.746 0.878 0.759 0.862 0.935 0.821 

O.A 0.861 ± 0.020 

Kappa 0.800 ± 0.026 

RF (100 trees) – Spectral bi-monthly aggregated feature input 

 

 

Trees Bushes Grass Water Artificial Bare 

soil 

Prod 0.839 0.602 0.744 0.810 0.987 0.335 

User  0.764 0.864 0.785 0.815 0.928 0.913 

O.A 0.862 ± 0.020 

Kappa 0.800 ± 0.026 

CART – Spectral seasonal aggregated feature input 

 
 

Trees Bushes Grass Water Artificial Bare 
soil 

Prod 0.639 0.652 0.596 0.745 0.933 0.395 

User  0.665 0.564 0.618 0.720 0.946 0.348 

O.A 0.778 ± 0.016 

Kappa 0.685 ± 0.023 

 
SVM (Kernel: Polynomial order 5) – Spectral seasonal aggregated feature 
input 

 

 

Trees Bushes Grass Water Artificial Bare 

soil 

Prod 0.781 0.360 0.641 0.880 0.956 0.407 

User  0.671 0.534 0.734 0.708 0.957 0.606 

O.A 0.812 ± 0.020 

Kappa 0.730 ± 0.027 

 

 

Fig. 5. Classification accuracy results using different kernel functions in 

the SVM classifier (“Poly #” = Polynomial function of order #). 

TABLE II.  CLASSIFICATION EVALUATION RESULTS FOR 

NDSV SEASONAL AGGREGATED FEATURE INPUT 

 

 

Trees Bushes Grass Water Artificial Bare 

soil 

Prod 0.849 0.535 0.771 0.806 0.979 0.240 

User  0.732 0.870 0.755 0.856 0.929 0.779 

O.A 0.853 ± 0.019 

Kappa 0.786 ± 0.018 
 

 Even though the NDSV does not quantitatively show 
better classification result than spectral input (see Table II), 
the differences are not statistically relevant. As a matter of 
fact, a comparison of the maps obtained with Spectral and 
NDSV input shows otherwise. Indeed, they show that NDSV 
produces better results, especially with respect to mapping 
vegetation cover (see fig. 7). This disparity between 
quantitative and qualitative measure is a result of the 
limitation in geographical distribution of the training data. 
The classification map obtained using seasonally aggregated 
NDSV feature is shown in fig. 6. Fig. 7 highlights portions of 



the map showing better separation between Trees and Grass 
classes as obtained using seasonally aggregated NDSV input. 

 

Fig. 6. Classification result obtained with seasonally aggregated NDSV 

feature and RF classifier (100 trees). 

 

 

Fig. 7. Qualitative comparison between NDSV and Spectral feature input 

results for the “Trees” class in selected portions of the urban area. 

IV. CONCLUSIONS 

This study presents a methodology for mapping urban 
vegetation from Sentinel-2 data, exploiting their high 
temporal resolution to create seasonally aggregated inputs. 
Also, NDSV features were compared with spectral features, 
and the RF classifier with SVM and CART classification 
models. We found that seasonally aggregated inputs show 
better performance than annual aggregates for the task at 
hand, while NDSV improves the separation between Trees 
and Grass.  

A major limitation to the current approach is in the 

geographical distribution of the training and validation point 
samples. Moreover, more vegetation classes could have been 
defined. Further studies will be conducted to mitigate these 
limitations. 
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