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Bounds on Eigenvalues of a Spatial Correlation Matrix

Junil Choi and David J. Love

Abstract—It is critical to understand the properties of spatial The maximum and minimum eigenvalues of the spatial cor-
correlation matrices in massive multiple-input multlple—output relation matrix are important factors because they detegmi
(MIMO) systems. We derive new bounds on the extreme eigen- o rformance in spatially correlated channBIs [16]] [1@]tHis

values of a spatial correlation matrix that is characterizel by deri dl b d th .
the exponential model in this paper. The new upper bound on paper, we derive new upper and lower bounds on the maximum

the maximum eigenvalue is tighter than the previous known €igenvalue ?nd an upper bound on the minimum eigenvalue of
bound. Moreover, numerical studies show that our new lower the correlation matrix. Although the exact eigenvalueshef t
bound on the maximum eigenvalue is close to the true maximum exponential model are derived in 18], the expressions need
eigenvalue in most cases. We also derive an upper bound onp,merical solutions of the trigonometric function. Moreav

the minimum eigenvalue that is also tight. These bounds can the b ds derived f th t . £ f
be exploited to analyze many wireless communication scerias € bounds derived from the exact expressions are not func-

including uniform planar arrays, which are expected to be widely ~ tions of the number of transmit antennas, which makes it hard

used for massive MIMO systems. to analyze massive MIMO systems with practical numbers of
Index Terms—Spatial correlation matrix, maximum/minimum ~ @ntennas. Thus, it is desired to have simple and tight upper
eigenvalue, exponential model, massive MIMO. and lower bounds on extreme eigenvalues expressed with the

number of antennas for analyzing the exponential model.
The new upper bound on the maximum eigenvalue, which
is based on a novel matrix expansion approach, is tighter tha
Spatial correlation in the channel can give both gains afite one from[[18]. Moreover, simulation results show that ou
losses depending on the scenario in multiple-input metipllower bound on the maximum eigenvalue is very tight with the
output (MIMO) systems [1]. Spatial correlation is harmfat f true value in general. The new upper bound on the minimum
single-user MIMO systems using multiplexing because th&genvalue is tight as well. All these new bounds are fumstio
correlation reduces the rank of the communication channgt,the number of transmit antennas. The new lower bound on
resulting in a reduced number of parallel paths for spatitde maximum eigenvalue and upper bound on the minimum
multiplexing [2]. On the other hand, spatial correlation igigenvalue are intuitive and simple to be derived; howewer,
beneficial for multi-user MIMO systems because the strorguld not find such derivations even after extensive liteeat
directivity of channels between a transmitter and users cg@darch. Most of the literature adopted the previous boumds i
help to reduce inter-user interference even with simple prig] for performance analysi§|[4]. [11] or simply performed

I. INTRODUCTION

coding strategies at the transmittel [1]. numerical studies with the exponential modél [5]2[10].
The most common model for the spatial correlation matrix
is the exponential model [1][[3]. The exponential model is Il. SYSTEM MODEL

very simple because the correlation matrix is controlledbg We consider multiple-input single-output (MISO) channels
parameter. Although simple, it has been shown experimgntathat are spatially correlated at the transmitter side. Assg
that the exponential model characterizes uniform linegayar N; transmit antennas at the transmitter, the input-outpat rel
(ULA) antenna scenarios well[3]. Thus, many works, e.gtion at baseband is given as
capacity analyses iri[4][[5], codebook designs for channel
state information (CSI) quantization inl[6]+[8], and triaig
signal designs for channel estimation in [9]2[11], are dasavherey is the received signah € C"* is the channel vector,
on the exponential model for the spatial correlation matrix x € C™t is the transmitted signal, andl ~ CN(0,0?)
The exponential model is useful for analyzing unifornts additive complex Gaussian noise. Because we consider
planar array (UPA) scenarios. Note that UPA deploymenggatially correlated channell, is modeled as
are growing in popularity due to the emergence of massive h=R7h,
MIMO systems [[12], [[13]. It was shown in_[14] that the ) _ ) )
spatial correlation matrix of a UPA can be approximatefhereR = E[hh”] is the spatial correlation matrix a, ~
by the Kronecker product of the spatial correlation maEricé’N(OvINt). is an i.i.d. complex Gaussian vector. .
corresponding to the vertical and horizontal domain.[Tr[14 Depending on antenna structuke can be modeled in many
[15], this approximation was exploited to design codebook¥dys- There is particular interest of antenna deploymesitgu
for CSI quantization in a UPA scenario. UPAs in massive MIMO systems. Note that a UPA can suppo_rt
Because of the reasons above, we focus on spatial corréd@rge number of antennas compactly, which makes massive

tion matrices following the exponential model in this papeM/MO practical. For a UPA,[[14] showed by eigenvalue and
capacity distributions that the spatial correlation matf a
Junil Choi and David J. Love are with the School of Electricald UPA can be approximated as
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where ® is the Kronecker product an®, and R, are From [4), it is obvious th8t

the spatial correlation matrices of the horizontal andivatt l+a

domains, respectively. M(R) < —, (5)
The simplified model in[{1) makes it possible to adopt any 1 _ Z

kind of ULA spatial correlation model fdR;, andR., because An, (R) > (6)

a UPA is simply a ULA in each vertical and horizontal domain 1 o _
(assuming co-polarized antennas). Therefore, it is ingpoto  Remark: Note that the bounds ill(5) arid (6) are not functions

understand the spatial correlation matrix properties of.&U Of the number of antenna¥’;. Thus, it is not clear how the
to understand those of a UPA. extreme eigenvalues would behaveldsgrows large, which

Note that the maximum and minimum eigenvaluesRof is an important aspect in predicting performance of massive
are particularly important in analyzing spatially corteth MIMO systems|[[19].
channels[[16],[[17]. Froni{1), we have

R~R;,®R, B. New Bounds on Eigenvalues

- (UhAhUhH) ® (UUAva) In the following, we derive an improved upper bound and
(Un @ U,) (Ap ® Ay) (Up © U )H new lower bound om\; (R) that are both functions a¥;.
= h v h v h v

whereR;, = U,A, U andR, = U,A, U denote the
eigen-decompositions. Let;(A) be thek-th largest eigen-
value of the matrixA. Then, we have 1+a 2a(1—a™)

- <
MR) =M (RN (R, An, (R) = Ay, (Rp)Ay, (Ry). l—a Ni(1—a)?
(2) when N; > 1.

For these reasons, we focus on the spatial correlationxmatri  Proof: We first prove the upper bound. We exteRdto

Lemma 1. With the exponential model of R as in (3), the
maximum eigenvalue of R is bounded as

(1+a)(1 — a1
1—a

AM(R) <

of a ULA in this paper. an2(N; — 1) x 2(N; — 1) circulant matrix as
We let R denote a ULA spatial correlation matrix. There

. . 1 a aNt—l aNt—Q aNt—3 a

are many ways to mod@& depending on scenario. The most Ny Nl b

common and easy way to modRlis to rely on the exponential a 1 et e Attt e a

S Rx=|. .
model which is given & oL _ :
_ Jol if i >j @) a a® - a2 g Nt
(2.3) ()=l if i<y Note thatR is contained in the firsiV; rows andN; columns

. o of Rx. Therefore,

where * denotes a complex conjugate, = ae?? is the

correlation coefficient ofR with 0 < a < 1. Note that the AM(R) <M (Rx).

eigenvalues oR only depend on the value af, andé only
controls the eigenvectors &. Because we are interested i
the maximum and minimum eigenvalues Bf we assume
r = a throughout the paper.

fpecauseR x is a circulant matrix, the eigenvectorsBfy are
the columns of th&(N; — 1) point DFT matrix. If we letl 5

be theN x 1 vector with all one entries, it is easy to conclude
that the dominant eigenvector &y is

IIl. BOUNDS ONEIGENVALUES 1

w(Ry) = ———=1y(n,_
We first briefly recall previous results on analyzing the 1(Rx) V2(Ny —1) S
eigenvalues oR.. We then derive new bounds on the maximu

. . That cophases all of the entriesBfy because of the assump-
and minimum eigenvalues @t.

tion thata is a real positive number. Then, we have

A. Previous Results M (Rx) =w(Rx)"Rxu;(Ry)
In [18], it has been shown that all eigenvalueshofcan be 1 2(Ns—1) /Ny—1 , Ni—2 ,
[ = —— 1 2
exactly derived as 3N, = 1) Z Z a’t + Z a
1— a2 k};l . £1=0 lo=1
/\i R) = 4 — L
®) 14 a2 + 2acos ¢; ) :(1+a)1(1 a’™)
where ¢; # nm for any arbitrary integen are the solutions “
of the trigonometric equation Thus,
— sin ¢; 14+a)(1l—ale !
tan Ny = - sin ) M(R) < M(Rx) = ( )1( _p )
(1252) cosdi + 24

2The bounds in[{5) and(6) are reciprocal. This comes from #ut that
1The field tests from[[3] show that the exponential model atterizes the 1 (R) and An, (R) have an approximate inverse relation regarding.e.,
spatial correlation of ULA very well even with its simpligit A1 (R) (An, (R)) increases (decreases) @grows larger.



To prove the lower bound, we use the definition of the
maximum eigenvalue, which follows the general inequality

)\1 (R) 2 fHRf - = Simulation
Ma A+ Previous upper bound
1 i i 1 2 __ 4 = © = New upper bound
with an arbitrary vectof satisfying||f||5 = 1. Because the o o pper boune

elements oR are all positive real numbers, the all one vector
1y, with appropriate normalization would give a good lower
bound onA;(R). Thus, we have

1

M (R) > EIJTV'RIM

Ny—1 £ 28 5

1 k

—(2>Y Y " -nN S S S S S R S

Nt 20 40 60 80 100 120 140 160 180 200
£=0 k=0 # of antennas

1+a 2a(l—a
= ( ) Fig. 1: The plots ofA;(R) and its upper and lower bounds

l—a Ni(1-a)?
“ «1-a) according toN;. The previous upper bound is froml (5) and

max. eigenvalue

which finishes the proof. B the new upper and lower bounds are based on Lefima 1.

It is obvious that the upper bound in Lemida 1 improves on
(5) because

(1+a)1—a1) 1+4a We can upper boundy, (R) with 1y, as
<
_ = 1= 1 - -
. L-a 1 —a A, (R) < —1% Riy,

for arbitrary0 < a < 1. Moreover, the upper and lower bounds Ny
on A\ (R) both converge to[{5) ad; — oco. This shows that 5 5 HE-1
all three bounds become tight whe is large. =1—— | Y (Ne—(2k—1))a® " >~ (N, — 2k) o

It is also interesting to analyze the tightness of the upper N k=1 k=1

and lower bounds on; (R) regardinga. Let A\{if(R) be the . . .
difference of the two bounds in Lemr 1, which is given a)5/Ve can get the desired result after solving the above series

and employing basic algebra. [ ]
NI (R — (1+a)(1l—ah) l+a 2a(1—al) Using these bounds, we can also derive upper and lower
i (R) = 1—a “\1-a Ni(1 — a)? bounds on the condition number & and on the (approxi-

) . ) _ mated) maximum and minimum eigenvalues of UPA spatial
With some algebra, we can show thet(R) is monotoni- . relation matrix by[R).

cally increasing with:. Moreover \{iff(R) — 0 asa — 0 and
A (R) — N, — 2 asa — 1. Thus, the two bounds are tight
whena is small while the gap becomes Iargeaa[sncrease@g.J . ] .
This is verified numerically in Sectidi]V. First, we plot the maximum eigenvalue 8, A\;(R), and _
Now, we derive an upper bound on the minimum eigenvaldge upper and lower bounds froid (5) and Lenitha 1 according
of R. The numerical studies in SectibilIV show that the lowdp the number of antenna¥, in Fig.[1. The new upper bound

bound in [8) and the new upper bound &R, (R) are both derived in Lemmall is tight whem is low to moderate, while
tight in general. ' the gap between the new upper bound and the M@®)

_ _ becomes large whem = 0.9. However, the new upper bound
Lemma 2. With the exponential model of R as in (3), the keeps following the curve ok; (R) while the previous upper

IV. NUMERICAL STUDIES

minimum eigenvalue of R is upper bounded as bound in [5) is constant regardless &f. It is interesting to
1—a 2a(l—(—a)) point out that the new lower bound is tight for all values of
An,(R) < N; anda. Therefore, the new lower bound can be used as an

= 2
L+a Ne(1+a) excellent approximation ok (R). As mentioned earlier, the
Proof: We Only prove WherNt is even. Similar derivation upper and lower bounds in Lem[ﬁh 1 are t|ght wheis low

can be shown WheﬂNt is odd. USing the definition of the to moderate, and the gap becomes |arge approaches one.
minimum eigenvalue, we have the general inequality In Fig.[2, we plot the minimum eigenvaluey, (R), the new
A, (R) < FARE upper bpund from Lemm 2, arlld. the prgvious lower bound
in (@) with N;. Regarding the minimum eigenvalue, the two
for an arbitrary vectof with ||f||2 = 1. Let 1y be theN x 1 bounds are both tight regardless of the values ahd N;.
vector defined as Finally, we plot the maximum eigenvalue of the spatial
- N2 N_11T correlation matrix of UPA given if{1) and its upper and lower
Iy = [L “L1, =1, (=) (1) ] : bounds with different combinations of the numbers of vaitic
3 G _ _ and horizontal domain antennas in Hig. 3. All bounds aredase
Note thatA{"" (R) — Ny —2 is only an asymptotic gap between the two

bounds whem — 1. The two bounds converge fd (5) 4 — oo whenever on the approximationﬂZ) anq qlerived as in the case of Fig.
a< 1. . We set the correlation coefficient &; as 0.6 and that of
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Fig. 3: The plots of\; (R) for the UPA scenario and its upper
and lower bounds with different numbers df, and V,,. The
correlation coefficients oR, andR;, are set ta0.6 and0.9,
respectively.

[12]

(23]

R, as 0.9. It is clear that the new lower bound is very tight
for all antenna combinations. The new upper bound also giviél

much better tightness compared to the previous upper bound.

[15]
V. CONCLUSION
In this paper, we derived new bounds on the maximum ang)
minimum eigenvalues of a spatial correlation matrix that is
characterized by the exponential model. The upper bound on
the maximum eigenvalue derived in this paper gives improved
tightness than the previous upper bound. Moreover, using
numerical studies, the new lower bound on the maximu
eigenvalue is shown to be very tight regardless of the number
of antennas and the intensity of spatial correlation. We al§l9]
derived a new upper bound on the minimum eigenvalue of the
spatial correlation matrix. It was shown by simulationsttha
the new upper bound and the previous lower bound on the
minimum eigenvalue are both tight in general. The theoagtic
results derived in this paper can be applied to performance
analyses in many wireless communication scenarios inoudi

uniform planar array, which are growing in popularity due to
the emergence of massive MIMO systems.
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