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Bounds on Eigenvalues of a Spatial Correlation Matrix
Junil Choi and David J. Love

Abstract—It is critical to understand the properties of spatial
correlation matrices in massive multiple-input multiple-output
(MIMO) systems. We derive new bounds on the extreme eigen-
values of a spatial correlation matrix that is characterized by
the exponential model in this paper. The new upper bound on
the maximum eigenvalue is tighter than the previous known
bound. Moreover, numerical studies show that our new lower
bound on the maximum eigenvalue is close to the true maximum
eigenvalue in most cases. We also derive an upper bound on
the minimum eigenvalue that is also tight. These bounds can
be exploited to analyze many wireless communication scenarios
including uniform planar arrays, which are expected to be widely
used for massive MIMO systems.

Index Terms—Spatial correlation matrix, maximum/minimum
eigenvalue, exponential model, massive MIMO.

I. I NTRODUCTION

Spatial correlation in the channel can give both gains and
losses depending on the scenario in multiple-input multiple-
output (MIMO) systems [1]. Spatial correlation is harmful for
single-user MIMO systems using multiplexing because the
correlation reduces the rank of the communication channel,
resulting in a reduced number of parallel paths for spatial
multiplexing [2]. On the other hand, spatial correlation is
beneficial for multi-user MIMO systems because the strong
directivity of channels between a transmitter and users can
help to reduce inter-user interference even with simple pre-
coding strategies at the transmitter [1].

The most common model for the spatial correlation matrix
is the exponential model [1], [3]. The exponential model is
very simple because the correlation matrix is controlled byone
parameter. Although simple, it has been shown experimentally
that the exponential model characterizes uniform linear array
(ULA) antenna scenarios well [3]. Thus, many works, e.g.,
capacity analyses in [4], [5], codebook designs for channel
state information (CSI) quantization in [6]–[8], and training
signal designs for channel estimation in [9]–[11], are based
on the exponential model for the spatial correlation matrix.

The exponential model is useful for analyzing uniform
planar array (UPA) scenarios. Note that UPA deployments
are growing in popularity due to the emergence of massive
MIMO systems [12], [13]. It was shown in [14] that the
spatial correlation matrix of a UPA can be approximated
by the Kronecker product of the spatial correlation matrices
corresponding to the vertical and horizontal domain. In [14],
[15], this approximation was exploited to design codebooks
for CSI quantization in a UPA scenario.

Because of the reasons above, we focus on spatial correla-
tion matrices following the exponential model in this paper.

Junil Choi and David J. Love are with the School of Electricaland
Computer Engineering, Purdue University, West Lafayette,IN (e-mail:
choi215@purdue.edu, djlove@purdue.edu).

The maximum and minimum eigenvalues of the spatial cor-
relation matrix are important factors because they determine
performance in spatially correlated channels [16], [17]. In this
paper, we derive new upper and lower bounds on the maximum
eigenvalue and an upper bound on the minimum eigenvalue of
the correlation matrix. Although the exact eigenvalues of the
exponential model are derived in [18], the expressions need
numerical solutions of the trigonometric function. Moreover,
the bounds derived from the exact expressions are not func-
tions of the number of transmit antennas, which makes it hard
to analyze massive MIMO systems with practical numbers of
antennas. Thus, it is desired to have simple and tight upper
and lower bounds on extreme eigenvalues expressed with the
number of antennas for analyzing the exponential model.

The new upper bound on the maximum eigenvalue, which
is based on a novel matrix expansion approach, is tighter than
the one from [18]. Moreover, simulation results show that our
lower bound on the maximum eigenvalue is very tight with the
true value in general. The new upper bound on the minimum
eigenvalue is tight as well. All these new bounds are functions
of the number of transmit antennas. The new lower bound on
the maximum eigenvalue and upper bound on the minimum
eigenvalue are intuitive and simple to be derived; however,we
could not find such derivations even after extensive literature
search. Most of the literature adopted the previous bounds in
[18] for performance analysis [4], [11] or simply performed
numerical studies with the exponential model [5]–[10].

II. SYSTEM MODEL

We consider multiple-input single-output (MISO) channels
that are spatially correlated at the transmitter side. Assuming
Nt transmit antennas at the transmitter, the input-output rela-
tion at baseband is given as

y = h
H
x+ n,

wherey is the received signal,h ∈ CNt is the channel vector,
x ∈ CNt is the transmitted signal, andn ∼ CN (0, σ2)
is additive complex Gaussian noise. Because we consider
spatially correlated channels,h is modeled as

h = R
1

2hw

whereR = E[hhH ] is the spatial correlation matrix andhw ∼
CN (0, INt

) is an i.i.d. complex Gaussian vector.
Depending on antenna structure,R can be modeled in many

ways. There is particular interest of antenna deployments using
UPAs in massive MIMO systems. Note that a UPA can support
a large number of antennas compactly, which makes massive
MIMO practical. For a UPA, [14] showed by eigenvalue and
capacity distributions that the spatial correlation matrix of a
UPA can be approximated as

R ≈ Rh ⊗Rv (1)
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where ⊗ is the Kronecker product andRv and Rh are
the spatial correlation matrices of the horizontal and vertical
domains, respectively.

The simplified model in (1) makes it possible to adopt any
kind of ULA spatial correlation model forRh andRv because
a UPA is simply a ULA in each vertical and horizontal domain
(assuming co-polarized antennas). Therefore, it is important to
understand the spatial correlation matrix properties of a ULA
to understand those of a UPA.

Note that the maximum and minimum eigenvalues ofR

are particularly important in analyzing spatially correlated
channels [16], [17]. From (1), we have

R ≈ Rh ⊗Rv

=
(

UhΛhU
H
h

)

⊗
(

UvΛvU
H
v

)

= (Uh ⊗Uv) (Λh ⊗Λv) (Uh ⊗Uv)
H

whereRh = UhΛhU
H
h and Rv = UvΛvU

H
v denote the

eigen-decompositions. Letλk(A) be thek-th largest eigen-
value of the matrixA. Then, we have

λ1(R) ≈ λ1(Rh)λ1(Rv), λNt
(R) ≈ λNt

(Rh)λNt
(Rv).

(2)

For these reasons, we focus on the spatial correlation matrix
of a ULA in this paper.

We let R denote a ULA spatial correlation matrix. There
are many ways to modelR depending on scenario. The most
common and easy way to modelR is to rely on the exponential
model which is given as1

R[i,j] =

{

r|i−j| if i ≥ j

(r∗)|i−j| if i < j
(3)

where ∗ denotes a complex conjugate,r = aejθ is the
correlation coefficient ofR with 0 ≤ a < 1. Note that the
eigenvalues ofR only depend on the value ofa, andθ only
controls the eigenvectors ofR. Because we are interested in
the maximum and minimum eigenvalues ofR, we assume
r = a throughout the paper.

III. B OUNDS ONEIGENVALUES

We first briefly recall previous results on analyzing the
eigenvalues ofR. We then derive new bounds on the maximum
and minimum eigenvalues ofR.

A. Previous Results

In [18], it has been shown that all eigenvalues ofR can be
exactly derived as

λi(R) =
1− a2

1 + a2 + 2a cosφi

(4)

whereφi 6= nπ for any arbitrary integern are the solutions
of the trigonometric equation

tanNtφi =
− sinφi

(

1+a2

1−a2

)

cosφi +
2a

1−a2

.

1The field tests from [3] show that the exponential model characterizes the
spatial correlation of ULA very well even with its simplicity.

From (4), it is obvious that2

λ1(R) ≤
1 + a

1− a
, (5)

λNt
(R) ≥

1− a

1 + a
. (6)

Remark: Note that the bounds in (5) and (6) are not functions
of the number of antennasNt. Thus, it is not clear how the
extreme eigenvalues would behave asNt grows large, which
is an important aspect in predicting performance of massive
MIMO systems [19].

B. New Bounds on Eigenvalues

In the following, we derive an improved upper bound and
new lower bound onλ1(R) that are both functions ofNt.

Lemma 1. With the exponential model of R as in (3), the
maximum eigenvalue of R is bounded as

1 + a

1− a
−

2a(1− aNt)

Nt(1− a)2
≤ λ1(R) ≤

(1 + a)(1 − aNt−1)

1− a

when Nt > 1.

Proof: We first prove the upper bound. We extendR to
an 2(Nt − 1)× 2(Nt − 1) circulant matrix as

RX =











1 a · · · aNt−1 aNt−2 aNt−3 · · · a

a 1 · · · aNt−2 aNt−1 aNt−2 · · · a2

...
... · · ·

. . .
...

a a2 · · · aNt−2 aNt−3 aNt−4 · · · 1











.

Note thatR is contained in the firstNt rows andNt columns
of RX . Therefore,

λ1(R) ≤ λ1(RX).

BecauseRX is a circulant matrix, the eigenvectors ofRX are
the columns of the2(Nt − 1) point DFT matrix. If we let1N

be theN×1 vector with all one entries, it is easy to conclude
that the dominant eigenvector ofRX is

u1(RX) =
1

√

2(Nt − 1)
12(Nt−1)

that cophases all of the entries ofRX because of the assump-
tion thata is a real positive number. Then, we have

λ1(RX) = u1(RX)HRXu1(RX)

=
1

2(Nt − 1)

2(Nt−1)
∑

k=1

(

Nt−1
∑

ℓ1=0

aℓ1 +

Nt−2
∑

ℓ2=1

aℓ2

)

=
(1 + a)(1− aNt−1)

1− a
.

Thus,

λ1(R) ≤ λ1(RX) =
(1 + a)(1− aNt−1)

1− a
.

2The bounds in (5) and (6) are reciprocal. This comes from the fact that
λ1(R) andλNt

(R) have an approximate inverse relation regardinga, i.e.,
λ1(R) (λNt

(R)) increases (decreases) asa grows larger.
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To prove the lower bound, we use the definition of the
maximum eigenvalue, which follows the general inequality

λ1(R) ≥ f
H
Rf

with an arbitrary vectorf satisfying‖f‖22 = 1. Because the
elements ofR are all positive real numbers, the all one vector
1Nt

with appropriate normalization would give a good lower
bound onλ1(R). Thus, we have

λ1(R) ≥
1

Nt

1
T
Nt

R1Nt

=
1

Nt

(

2

Nt−1
∑

ℓ=0

ℓ
∑

k=0

ak −Nt

)

=
1 + a

1− a
−

2a(1− aNt)

Nt(1− a)2

which finishes the proof.
It is obvious that the upper bound in Lemma 1 improves on

(5) because

(1 + a)(1− aNt−1)

1− a
≤

1 + a

1− a

for arbitrary0 ≤ a < 1. Moreover, the upper and lower bounds
on λ1(R) both converge to (5) asNt → ∞. This shows that
all three bounds become tight whenNt is large.

It is also interesting to analyze the tightness of the upper
and lower bounds onλ1(R) regardinga. Let λdiff

1 (R) be the
difference of the two bounds in Lemma 1, which is given as

λdiff
1 (R) =

(1 + a)(1 − aNt−1)

1− a
−

(

1 + a

1− a
−

2a(1− aNt)

Nt(1− a)2

)

.

With some algebra, we can show thatλdiff
1 (R) is monotoni-

cally increasing witha. Moreover,λdiff
1 (R) → 0 asa → 0 and

λdiff
1 (R) → Nt − 2 asa → 1. Thus, the two bounds are tight

whena is small while the gap becomes large asa increases.3

This is verified numerically in Section IV.
Now, we derive an upper bound on the minimum eigenvalue

of R. The numerical studies in Section IV show that the lower
bound in (6) and the new upper bound onλNt

(R) are both
tight in general.

Lemma 2. With the exponential model of R as in (3), the
minimum eigenvalue of R is upper bounded as

λNt
(R) ≤

1− a

1 + a
+

2a(1− (−a)Nt)

Nt(1 + a)2

Proof: We only prove whenNt is even. Similar derivation
can be shown whenNt is odd. Using the definition of the
minimum eigenvalue, we have the general inequality

λNt
(R) ≤ f

H
Rf

for an arbitrary vectorf with ‖f‖22 = 1. Let 1̃N be theN × 1
vector defined as

1̃N =
[

1,−1, 1,−1 · · · , (−1)N−2, (−1)N−1
]T

.

3Note thatλdiff
1

(R) → Nt−2 is only an asymptotic gap between the two
bounds whena → 1. The two bounds converge to (5) asNt → ∞ whenever
a < 1.
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Fig. 1: The plots ofλ1(R) and its upper and lower bounds
according toNt. The previous upper bound is from (5) and
the new upper and lower bounds are based on Lemma 1.

We can upper boundλNt
(R) with 1̃Nt

as

λNt
(R) ≤

1

Nt

1̃
T
Nt

R1̃Nt

= 1−
2

Nt





Nt

2
∑

k=1

(Nt − (2k − 1)) a2k−1

Nt

2
−1
∑

k=1

(Nt − 2k) a2k



 .

We can get the desired result after solving the above series
and employing basic algebra.

Using these bounds, we can also derive upper and lower
bounds on the condition number ofR and on the (approxi-
mated) maximum and minimum eigenvalues of UPA spatial
correlation matrix by (2).

IV. N UMERICAL STUDIES

First, we plot the maximum eigenvalue ofR, λ1(R), and
the upper and lower bounds from (5) and Lemma 1 according
to the number of antennasNt in Fig. 1. The new upper bound
derived in Lemma 1 is tight whena is low to moderate, while
the gap between the new upper bound and the trueλ1(R)
becomes large whena = 0.9. However, the new upper bound
keeps following the curve ofλ1(R) while the previous upper
bound in (5) is constant regardless ofNt. It is interesting to
point out that the new lower bound is tight for all values of
Nt anda. Therefore, the new lower bound can be used as an
excellent approximation ofλ1(R). As mentioned earlier, the
upper and lower bounds in Lemma 1 are tight whena is low
to moderate, and the gap becomes large asa approaches one.

In Fig. 2, we plot the minimum eigenvalueλNt
(R), the new

upper bound from Lemma 2, and the previous lower bound
in (6) with Nt. Regarding the minimum eigenvalue, the two
bounds are both tight regardless of the values ofa andNt.

Finally, we plot the maximum eigenvalue of the spatial
correlation matrix of UPA given in (1) and its upper and lower
bounds with different combinations of the numbers of vertical
and horizontal domain antennas in Fig. 3. All bounds are based
on the approximations (2) and derived as in the case of Fig.
1. We set the correlation coefficient ofRh as 0.6 and that of
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Fig. 2: The plots ofλNt
(R), the previous lower bound from

(6) and the new upper bound from Lemma 2 according toNt.
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Fig. 3: The plots ofλ1(R) for the UPA scenario and its upper
and lower bounds with different numbers ofNh andNv. The
correlation coefficients ofRv andRh are set to0.6 and0.9,
respectively.

Rv as 0.9. It is clear that the new lower bound is very tight
for all antenna combinations. The new upper bound also gives
much better tightness compared to the previous upper bound.

V. CONCLUSION

In this paper, we derived new bounds on the maximum and
minimum eigenvalues of a spatial correlation matrix that is
characterized by the exponential model. The upper bound on
the maximum eigenvalue derived in this paper gives improved
tightness than the previous upper bound. Moreover, using
numerical studies, the new lower bound on the maximum
eigenvalue is shown to be very tight regardless of the number
of antennas and the intensity of spatial correlation. We also
derived a new upper bound on the minimum eigenvalue of the
spatial correlation matrix. It was shown by simulations that
the new upper bound and the previous lower bound on the
minimum eigenvalue are both tight in general. The theoretical
results derived in this paper can be applied to performance
analyses in many wireless communication scenarios including

uniform planar array, which are growing in popularity due to
the emergence of massive MIMO systems.
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