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Abstract—In this letter, the performance of multiuser-radio
frequency/free space optics (RF/FSO) two-way relay network in
the presence of interference is investigated. The FSO link ac-
counts for pointing errors and both types of detection techniques,
i.e. intensity modulation/direct detection as well as coherent
demodulation, which is modeled as double generalized gamma
(D-GG) turbulence channel. On the other hand, the multiple
users on the RF link are assumed to undergo Nakagami-m
fading. Multiple co-channel interferers (CCIs) which corrupt the
signal at relay node are modeled using Nakagami-m distribution.
Specifically, the exact closed-form expressions for the outage
probability (OP) of the overall system is derived. Moreover, the
closed form expression for the achievable sum-rate (ASR) of the
considered system is presented. In order to simplify the results,
the asymptotic approximations of the OP and ASR are derived
in terms of elementary functions. The results presented in the
paper are validated by Monte-Carlo simulations.

Index Terms—Free-space optical (FSO) communication, mul-
tiuser diversity, co-channel interference, Fox’s H-functions.

I. INTRODUCTION

The offerings of FSO systems such as rapid deployment

time, high security, flexibility are limited by the atmospheric

turbulence and pointing error [1]. Besides, utilization of FSO

system as an alternative and/or a complement to radio fre-

quency (RF) counterparts has given rise to mixed RF/FSO re-

lay systems [1, 2]. Relaying schemes provide benefits such as

spatial diversity gains without increasing the receiver hardware,

uniform quality-of-service and extended coverage. Conven-

tional one-way-relaying (OWR) is spectrally inefficient since

the exchange of information between source to destination

requires two complete time-slots. Spectral efficiency can be

improved by utilizing two-way-relaying (TWR) scheme [3],

where the transmission of information from two nodes takes

place simultaneously, through a relay node. In the first phase,

the two nodes transmit information simultaneously to the relay

node, which is broadcasted by the relay to the designated

destinations in the second phase of communication. This

brings about an improvement by factor of 2 when compared

to OWR strategy.
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While most of the known results for the FSO relay-assisted

communications have relied on the absence of interference,

it is important to note that asymmetric mixed RF/FSO relay

systems are inherently vulnerable to the effect of co-channel

interference (CCI) due to the involvement of RF links. The

recognition of the interference-limited behavior of mixed

RF/FSO systems has motivated the authors of [4] to derive

the expression of outage probability (OP) and bit error rate

(BER) for an interference limited mixed RF/FSO amplify-and-

forward (AF) OWR relaying system. The interfering signals

have been modeled using the Nakagami-m fading distribu-

tion, while the FSO systems are assumed to follow double-

generalized Gamma (D-GG) turbulence model to demonstrate

exact and asymptotic performance of the overall system in [4].

Moreover, the effect of multiple CCIs on the mixed RF/FSO

OWR systems have been analyzed in [5] where the authors

have derived expressions of the OP, BER and capacity for

channel state information (CSI) assisted system. On the other

hand, impact of multiuser diversity (MUD) on interference lim-

ited mixed RF/FSO OWR systems has been indicated by the

authors of [6]. Furthermore, research work [7] demonstrates

the improvement imparted by MUD scheme on mixed RF/FSO

TWR system for interference free transmission. Notably, no

work has been reported on the effect of interference over

MUD assisted mixed RF/FSO TWR system. This motivates

to explore the performance for a bidirectional MUD-RF/FSO

system, where the relay node operates in the presence of

multiple CCIs. The main contributions of this work are:

1) In this work, performance analysis of interference lim-

ited RF/FSO cooperative TWR networks is performed,

where user diversity scheme is implemented, such that

the relay node selects the user with best channel condi-

tion.

2) The closed form expressions for performance metrics

such as OP and ergodic sum-rate is derived.

3) The OP and ergodic sum-rate expressions account for

both intensity modulation/direct detection (IM/DD) and

coherent demodulation schemes on the optical link, in

the presence of pointing error.

4) Finally, the derived closed form expression for the OP is

expressed asymptotically to validate the proposed work.

II. SYSTEM AND CHANNEL MODELS

Consider a mixed RF/FSO two-way cooperative AF relaying

system, where K mobile users on the RF link communicate

http://arxiv.org/abs/1905.03087v1
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with the FSO destination node through the bidirectional relay

node R. In particular, the relay node exchanges information be-

tween two source nodes SRF, j and SFSO, where SRF, j represents

the j th-user selected by the relay node based on best channel

conditions. The user selection at relay node is performed

using the opportunistic scheduling based on the quality of the

SRF, j ⇄ R links. It is assumed that N number of interferers

following Nakagami-m distribution, corrupt the signal at relay

node. In the multiple access phase T1 of communication, both

RF and FSO nodes simultaneously transmit their respective

information to relay node R. The received signal yR at node

R is given by

yR =

√

PRF, jhRF, j xRF +

√

POpt

FSOgFSOxFSO +

N
∑

i=1

√

PIR, i
hI,r xr,i + NT1

(1)

where hRF, j is Nakagami-m distributed fading amplitude of

RF channel carrying information xRF of j th-user and gFSO

represents irradiance fluctuation on the FSO link. The PRF, j

stands for useful transmit power whereas PIR denotes the

interference power with channel coefficient hIr at the relay

node R, xr,i is the symbol emitted by ith interferer, and

NT1
represents the additive white Gaussian noise (AWGN). In

the second phase of communication, the relay node R sends

the processed version of the signal xRF towards the FSO

node SFSO and symbol xFSO to SRF, j . Specifically, the relay

node amplifies the received signal by G = 1
|hRF, j |2+ |gFSO |2

,

and forwards it to SFSO and SRF, j . It is considered that, the

channels SRF, j ⇄ R and SFSO ⇄ R are reciprocal and that

the channel coefficients remain unchanged during both the

phases of transmission. Given that the two nodes can perform

self-interference cancellation with the knowledge of hRF, j and

gFSO , the received signal at RF node can be estimated as:

ỹT2,RF =

√

PR(ηgFSO
)
r
2 GhRF, j xFSO +

√

PRhRF, jG

N
∑

i=1

√

PIR, i
hIr

xr,i + N01

where PR is the power of signal transmitted from relay node,

the overall noise from SFSO and SRF, j is represented as N01,

whereas η is the electrical-to-optical conversion coefficient.

Constant r denotes the type of optical demodulation employed

where r = 1 represents coherent demodulation and r = 2

corresponds to IM/DD demodulation. Similarly, the estimated

signal at the FSO node can be given as:

ỹT2,FSO =

√

PR(ηgFSO)
r
2 GhRF, j xRF + gFSO

√

PRG

N
∑

i=1

√

PIR, i
hIr

xr,i + N02

where N02 represents the overall noise from SRF, j and SFSO

node. Without loss of generality, the noise contributions N01

and N02 are assumed to be AWGN with zero-mean and

equal variances σn
2. The end-to-end signal-to-interference-

plus-noise ratio (SINR) for SRF, j → R → SFSO can be given

as

γT2,RF =

PRG2 |hRF, j |
2 |gFSO |

2

∑N
i=0 PIR, i

|hIr |
2 |gFSO |2 + σn2

(2)

Similarly, the end-to-end SINR for SFSO → R → SRF, j can

be formulated as

γT2,FSO =

PRG2 |hRF, j |
2 |gFSO |

2

∑N
i=0 PIR, i

|hIr |
2 |hRF, j |2 + σn2

(3)

Under the assumption of Nakagami-m distribution, the

fading coefficients on the RF link, for the kth user, fol-

lows the probability density function (PDF) given by [8]

fγk (γ) =
βmRF

Γ(mRF )
γmRF−1 exp(−βγ), where mRF is the shape

parameter, β =
mRF

γ̄k
and γ̄k is the average SNR of the

kth−user. Furthermore, the PDF of instantaneous SNR on the

RF link with K users can be obtained using the definition

of ordered statistics as fγSR, j (γ) = K[Fγk (γ)]
K−1 fγk (γ). The

closed form expression for the cumulative distribution function

(CDF) can be obtained using FγRF
(γ) =

∫ γ

0
fγSR, j (y)dy.

For integer values of mRF , utilizing [6, Eq. (2)] along with

[9, Eq. (3.381.1) and (8.352.1)], with some mathematical

manipulations, the closed-form expression for the CDF can

be expressed as:

FγRF
(γ) =

K−1
∑

n1=0

n1(mRF−1)
∑

n2=0

A1

(

1 − e(−B0γ)
mRF+n2−1

∑

l=0

(B0γ)
l

l!

)

(4)

where B0 = β(n1 + 1) and A1 is given by:

A1 =
K(m

RF
+ n2 − 1)!

ΓmRF

(−1)n1

(

K − 1

n1

)

ζn1n2
(mRF)(n1+1)−n2−mRF

(5)

where ζn1n2
(mRF) is the coefficient of multinomial expansion

which can be recursively obtained using the relation ζn1n2
=

∑n1

b=n1−x+1

ζbn2−1

n1−b
I[0,(n2−1)(x−1)] where I[a,b] is the indicator function

as defined in [8, Eq. (9.120)].

On the other hand, it is assumed that R ⇄ SFSO link

encompasses the turbulence-induced fading Ia with pointing

errors Ip such that I = IaIp. The atmospheric turbulence

fading Ia on the FSO link is modeled as double generalized

gamma (D-GG) fading model [2]. The irradiance Ia = Ix Iy ,

such that Ix ∼ GG(α1, β1,Ω1) and Iy ∼ GG(α2, β2,Ω2). β1
and β2 are shaping parameters, whereas α1 , Ω1, α2 and Ω2

are calculated based on the variances of the small and large

scale fluctuations. The PDF of SNR on the FSO link can be

expressed as [2]:

fγFSO
(γ) =

D1

rγ
G
λ+σ+1,0
1,λ+σ+1

[

D2zy
(

γ

µr

)
y

r

�

�

�

�

�

τ2
τ1

]

(8)

with D1 =
ξ2σ

β1−
1
2 σ

β2−
1
2 (2π)

1−σ+λ
2

Γ(β1)Γ(β2)
, D2 =

βσ
1
βλ

2

λλσσΩ
σ
1
Ω

λ
2

where

τ1 =

[

ξ2

y
,∆(σ : β1),∆(λ : β2)

]

, τ2 =
[

1 +
ξ2

y

]

, µr =
(ηE(I ))r

N0

and r denotes the kind of demodulation scheme [2]. Consider-

ing D3 =
∏σ+λ

g=1 Γ

(

1
y
+ τ0,g

)

, z can be given as z =
D1(D2)

1/yD3

(1+ξ2)
.

where τ0 = [∆(σ : β1),∆(λ : β2)] with ∆(z : x) defined

as [ x
z
, x+1

z
, . . . , x+z−1

z
]. Moreover, G

m,n
p,q

[

.

�

�

�

]

is the Meijer-G

function defined in [9, Eq. (9.301)] and y = α2λ. The pointing

error parameter ξ is defined as the ratio between the equivalent

beam width ωeq and pointing error jitter standard deviation σs ,

given by relation ξ =
ω2

eq

σs
[2].
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Pout =

K−1
∑

n1=0

n1(mRF−1)
∑

n2=0

A2

[

y
Nm1

(2π)
y−1

2

G
n,y+1

y+1+r,n+1

[

D7γ
y
th

�

�

�

1,τ3,τ5

τ4,0

]

−

n2+mRF −1
∑

m=0

(B0γth)
m

m!

(

ΩI 1

m1

)−m

H
x2
x1

[

τ6
�

�

�

� (0, 1)

�

�

�

�

τ7
τ8

�

�

�

�

B1,B2

]

]

(13)

Further, the CDF of FSO channel over D-GG atmospheric

turbulence with pointing errors can be formulated as follows

[2]

FγFSO
(γ) = D4G

n,1
r+1,n+1

[

D5

(

γ

µr

)y �
�

�

�

1,τ3

τ4,0

]

(9)

where n = r(λ+σ+ 1), D4 =
ξ2σ

β1−
1
2 σ

β2−
1
2 (2π)

1−
r (σ+λ)

2 r (β1+β2−2)

yΓ(β1)Γ(β2)
,

D5 =

(

D2z
y

rσ+λ

)r

, τ3 = [∆(r : τ2)] and τ4 = [∆(r : τ1)] compris-

ing of r(λ + σ + 1) terms.

III. PERFORMANCE ANALYSIS

In this section, the investigation of outage performance

and sum-rate of the bidirectional relay system based on the

aforementioned channel models is presented.

A. Exact Outage Probability

The outage probability (OP) is an important performance

indicator of wireless communication system. OP is defined as

the probability that the instantaneous SNR falls below a pre-

defined threshold γth. For the considered TWR system, the OP

can be defined as:

Pout =Fe2e(γ)|γth
= Pr (min[γT2,RF, γT2,FSO < γth])

= 1 − Pr (min[γT2,RF > γth, γT2,FSO > γth])

= 1 − Pr

(

PRmin
[

|hRF, j |
2, |gFSO |

2
]

∑N
i=0 PIR, i

|hIr |
2

> γth

)

(10)

Moreover, the PDF of the total interference-to-noise ratio

(INR)
∑L

i=1 γIr,i can be expressed as [8]:

f
Ir
(γ) =

[

m1

ΩI 1

]m1L γm1L−1

Γ(m1L)
exp

(

−
m1L

ΩI 1

γ

)

(11)

where m1 is Nakagami-m fading parameter and ΩI 1 is the

average interference to noise ratio (INR) at the relay node.

Defining Y =
∆

PRmin
[

|hRF, j |
2, |gFSO |

2
]

, and considering statis-

tical independence between γT2,RF and γT2,FSO, the OP can be

further calculated as:

Pout = 1 −

∫ ∞

0

Pr (Y > zγth) f
Ir
(z)dz

= 1 −

∫ ∞

0

FγRF
(zγth) FγFSO

(zγth) f
Ir
(z)dz (12)

Appropriately substituting (4), (9) and (11) into (12), while

invoking [10, Eq. (2.3)], with some mathematical manipula-

tions, closed-form expression for the OP is derived as given in

(13), where H
h2

h1
[A1,A2] is the bivariate Fox’s H-function as

defined in [10, Eq. (1.1)]. The order of H-function can be for-

mulated as {x1, x2} = {(0, 1 : 1, 0 : n, 1), (1, 0 : 0, 1 : r+1, n+1)}.

Moreover, in (13), the argument of Meijer-G is given by

D7 = D5

(

yΩI 1

m1µr

)y

, whereas the arguments of Fox’s H-function

are derived to be B1 =
ΩI 1

m1
B0γth and B2 = D5

(

ΩI 1γth

µrm1

)y

.

The constant A2 = A1D4
(mRF+n2−1)!
Γ(m1N)

, while various parameters

involved in (13) can be defined as τ5 = [∆(y : 1 − m1N)],

τ6 = (1 − m − m1N, 1 : y), τ7 =
[

(1, 1), (τ3, [1]length(τ3))
]

and

τ8 =
[

(τ4, [1]length(τ4)), (0, 1)
]

. The bivariate Fox’s-H function

can be evaluated numerically using the efficient MATLAB

implementation as provided in [11].

B. Asymptotic Outage Probability

The exact expression derived in (13) fails to offer quick

insights into the performance of overall system. A simpler

asymptotic (high SNR) expression for OP can be developed

to get more insights about system’s performance. According

to [12, Theorem (1.7) and Theorem (1.11)], the asymptotic

expansion of H-function can be obtained as the residue of com-

plex integration at the poles nearest to contour of integration.

Assuming that pn = min(τ4) is the dominant pole closest to

contour, the expansion of Meijer-G function can be formulated

as:

G
n,y+1

y+1+r,n+1

[

D7γ
y
th

�

�

�

1,τ3,τ5

τ4,0

]

≃
µr→∞

Λ1

y
∏

j=1

Γ(1 − τ5, j − pn)γ
−ypn
th

(14)

where Λ1 =
D7

−pn
∏n

j=1 Γ(τ4, j+pn)

pn

∏y+1+r

j=y+2
Γ(τ3, j+pn)

. Similarly, by expressing the

bivariate Fox’s H-function in complex integral form using [10,

Eq. (1.1)], and making use of identity [9, Eq. (9.113)], the

asymptotic representation can be given as:

H
x2
x1

[

τ6
�

�

�

� (0, 1)

�

�

�

�

τ7
τ8

�

�

�

�

B1,B2

]

≃
µr→∞

Γ (m + m1N − ypn)

× 1F0

(

m + m1N − ypn; ;−
ΩI 1B0

m1

γth

)

Λ1

{

γth

y

}−ypn

(15)

where 1F0

(

a; ; b
)

is the Gaussian hypergeometric function

as defined in [9, Eq. (9.111)]. Plugging (14) and (15) into

(13), the asymptotic high SNR approximation of OP can be

obtained.

C. Achievable Sum Rate

In this section, the achievable sum-rate (ASR) offered by the

proposed model is derived. The sum-rate of the system can be

defined as the throughput over all the channel realizations. The

ASR of wireless fading channels can be defined as:

R =
1

2
E(1 + γT2,RF ) +

1

2
E(1 + γT2,FSO) = R1 + R2 (16)
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where E(.) denotes the expectation operator. The transmission

rate for the link SRF, j → R → SFSO can be obtained as:

R1 =
1

2

∫ ∞

0

log2(1 + γ) fγT2,RF
(γ)dγ (17)

Firstly, a closed-form expression for FγT2,RF
(γ) can be attained

using FγT2,RF
(γ) =

∫ ∞

0
FγRF

(γy) f
Ir
(y)dy. Further to this,

placing (4) and (11) and applying [9, Eq. (3.381.4)], FγT2,RF
(γ)

can be derived, which can be differentiated to obtain fγT2 ,RF
(γ),

which can be represented as:

fγT2 ,RF
(γ) =

1

2

K−1
∑

n1=0

n1(mRF−1)
∑

n2=0

mRF+n2−1
∑

m=0

A3

[

(m + m1N)B0

m!
γm

×
[

B0γ +
m1

ΩI

]−(m+m1N+1)

− mγm
[

B0γ +
m1

ΩI

]−(m+m1N)
]

(18)

where A3 = A1
(mRF+n2−1)!

Γ(m1N)

(

m1

ΩI

)m1N
Γ(m+m1N)B0

m

m!
. After rep-

resenting log2(1 + γ) = G
1,2

2,2

[

γ

�

�

�

1,1
1,1

]

with the aid of [13, Eq.

(07.34.03.0456.01)], substituting fγT2 ,RF
(γ) into (17) and apply-

ing [13, Eq. (07.34.03.0271.01) and (07.34.21.0013.01)], with

some mathematical manipulations, the closed-form expression

of R1 can be obtained as given in below:

R1 =
1

2

K−1
∑

n1=0

n1(mRF−1)
∑

n2=0

mRF+n2−1
∑

m=0

A3

[

(

B0ΩI 1

m1δ

)

G
3,2

3,3

[

B3

�

�

�

τ9
τ10

]

− mG
3,2
3,3

[

B3

�

�

�

τ11
τ12

]

]

(19)

where B3 =
Ω1B0

m1δ
, whereas the parameters are defined as:

τ9 = [−m − m1N,−m − 1,−m], τ10 = [0,−m − 1,−m − 1],

τ11 = [1 − m − 1,−m,−m] and τ12 = [0,−m,−m]. Similarly,

the effective CDF on the FSO link can be obtained by sub-

stituting (9) and (11) in FγT2,FSO
(γ) =

∫ ∞

0
FγFSO

(γy) f
Ir
(y)dy,

which can be evaluated using [13, Eq. (07.34.21.0013.01)].

The resulting expression can be further differentiated using

[13, Eq. (07.34.20.0017.02)] to express the PDF of γT2,FSO.

Plugging the PDF, thus obtained, into the relationship R2 =
1
2

∫ ∞

0
log2(1 + γ) fγT2 ,FSO

(γ)dγ, the closed-form expression of

R2 can be obtained as given below

R2 =
log2(e)D4(y)

Nm1−
3
2

2δΓ(m1N)(2π)
3
2
(y−1)

G
n+2y,3y+1

4y+r+1,n+3y+1

[D7

δy

�

�

�

�

τ13
τ14

]

(20)

where τ13 = [0,∆(y : 1), 1, τ5, τ3] and τ14 = [τ5,∆(y : 1), 1, 0].

Finally, on substituting (19) and (20) into (16), the expres-

sion of ASR can be established. Furthermore, the asymptotic

approximation of Meijer-G function involved in R1 can be

developed considering the fact that as γ̄k → ∞, the argument

B3 → 0. Invoking [13, 07.34.06.0006.01], the Meijer-G in R1

can be approximated as:

G
3,2

3,3

[

B3

�

�

�

τ9
τ10

]

≃
γ̄k→∞

3
∑

i=1

∏3
j=1, j,i Γ(τ10, j − τ10,i )

Γ(τ9,3 − τ10,i )
B3

τ10, i

×

2
∏

j=1

Γ(1 − τ9, j + τ10,i) (21)

Similar approach can be opted to represent G
3,2
3,3

[

B3

�

�

�

τ11
τ12

]

asymptotically. Additionally, in order to simplify the expres-

sion of R2, it can be noted that as µr → ∞, the argument
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of Meijer-G in (20) diminishes, i.e., D7 → 0, which can be

approximated using [13, 07.34.06.0006.01] as:

G
n+2y,3y+1

4y+r+1,n+3y+1

[D7

δy

�

�

�

�

τ13
τ14

]

≃
µr→∞

n+2y
∑

i=1

∏n+2y

j=1, j,i
Γ(τ14, j − τ14,i )

∏4y+r+1

j=3y+2
Γ(τ13, j − τ14,i)

×

(

D7

δy

)τ14, i
∏3y+1

j=1
Γ(1 − τ13, j + τ14,i )

∏n+3y+1

j=n+2y+1, j,i
Γ(1 − τ14, j + τ14,i )

(22)

Substituting the aforementioned approximations of Meijer-G

function in (19) and (20), the asymptotic representation of

ASR can be obtained.

IV. NUMERICAL RESULTS

In this section, numerical examples are shown to demon-

strate the findings of the research work, together with Monte-

Carlo simulations. Fig. 1 illustrates the OP of mixed RF/FSO

fixed-gain AF TWR systems versus the average SNR per

hop in moderate (i.e., α1 = 2.1, α2 = 2, β1 = 4, β2 =

4.5,Ω1 = 1.0676,Ω2 = 1.06) turbulence conditions. The figure

also investigates the effect of strong (i.e., w/a=5) and weak

(i.e., w/a=10) pointing errors on the system performance. OP

deteriorates by increasing the number of interferers, i.e., N .

It can be noted that, at high SNR, the asymptotic expansion

matches very well with its exact counterpart, which confirms

the validity of our mathematical analysis for different parame-

ter settings. On the other hand, it can be observed that coherent

detection (r = 1) outperforms IM/DD (r = 2) in turbulent

environments as previously observed. Additionally, the impact

of type demodulation schemes, along with the number of RF

users, on the ASR has been demonstrated in Fig. 2. It can be

noted that increasing K provides a remarkable improvement

in the system performance. Finally, the deterioration intro-

duced by interference on ASR of the considered TWR relay

network is quantified in Fig. 3. In the plot, the parameters

assumed to model turbulence on the FSO link is given as:

α1 = 2.169, α2 = 1, β1 = 0.55, β2 = 2.35,Ω1 = 1.5793,Ω2 = 1.

It is evident in the plot that the average rate improves as the

number of interferers, N , reduces.

V. CONCLUSION

In this work, performance analysis for a mixed MUD-

RF/FSO TWR network in the presence of interference is

presented. Specifically, the exact and asymptotic closed-form

expressions for OP and ASR have been derived in order to

demonstrate the effect of various model parameters on overall

performance of considered system. The analysis is extended to

provide asymptotic OP expression. The derived results account

for both IM/DD and coherent demodulation techniques on the

optical link. The improvement brought about by MUD on RF

link and two-way transmission is evident in the findings.
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