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LiDAR Data Classification Using Extinction Profiles
and A Composite Kernel Support Vector Machine
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Abstract—This letter proposes a novel framework for the
classification of LiDAR-derived features. In this context, several
features are extracted directly from the LiDAR point cloud data
using aggregated local point neighborhoods, including laser echo
ratio, variance of point elevation, plane fitting residuals, and echo
intensity. Additionally, the LiDAR Digital Surface Model (DSM)
is input to our classification. Thus, both the LiDAR raster DSM
and also rich geometric and also backscatter 3D point cloud
information aggregated to images are considered in our workflow.
These extracted features are characterized as base images to
be fed to extinction profiles to model spatial and contextual
information. Then, a composite kernel SVM is investigated to
efficiently integrate the elevation and spatial information suitable
for the LiDAR data. Results indicate that the proposed method
can obtain high classification accuracy using LiDAR data alone
(e.g., more than 86% overall accuracy on the benchmark Houston
LiDAR data using the standard set of training and test samples
on all 15 classes) in a short CPU processing time.

Index Terms—Extended multi-extinction profile, Composite
Kernel SVM, LiDAR

I. INTRODUCTION

Light Detection and Ranging (LiDAR), also referred to as
laser scanning, provides high resolution 3D spatial point cloud
data, elevation models, and further raster derivatives for large
areas such as entire countries. Fast and accuracte analysis of
these big LiDAR datasets is of major importance for wide
area of Earth observation applications. The capability of such
data has already been proven for different number of research
areas, in which mapping of objects and the classification of
different land cover classes play a central role.

Supervised classification plays a vital role in remote sensing
image processing. However, the use of LiDAR raster data
alone for the fast mapping of complex areas (e.g., where many
classes are located close to each other) is limited compared
to optical data (e.g., multispectral and hyperspectral data) due
to the lack of spectral information (and thus many features)
provided by this type of sensors [1], which led to the re-
search era of multisensor (e.g., LiDAR and hyperspectral) data
fusion [2, 3]. Surprisingly, in the hyperspectral community,
it was shown that the consideration of spatial information
(i.e., extracting information from neighborhood pixels) can
equivalently be beneficial as the use of spectral information
in terms of eventual classification accuracy [4]. Very recently,
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in [5, 6], a method, entitled extinction profile (EP), has
been established to extract spatial and contextual information
from raster images, which can considerably improve final
classification accuracies in an unsupervised manner. The EP
simplifies the input raster image driven by an arbitrary measure
which can be related to characteristics of regions in the scene
such as the scale, shape, contrast etc. It is apparent that
the capability of the EP can further be improved by feeding
informative features as base images to it [6]. In order to keep
the advantages of image-based processing and classification
and make use of the inherent 3D information and signal
backscatter of LiDAR point clouds, we developed a method-
ology that derives additional features as raster layers directly
from the georeferenced point cloud, which can be fed to the
EP to effectively extract spatial information. Those additional
features contain valuable aggregated geometric and backscatter
information of LiDAR points’ 2D and 3D neighborhood and
support to distinguish classes that cannot be distinguished in
traditional LiDAR elevation models.

This paper proposes an efficient and effective classification
approach suitable for a situation when only airborne LiDAR
point clouds are available without additional optical image
data. To do so, we first extract several informative features
from the LiDAR point cloud data, such as the Digital Sur-
face Model (DSM), and point cloud derived geometric and
backscatter features (i.e., here we call them as Xlidar for the
sake of simplicity). Then, the concept of the EP is adopted
according to the specification of the LiDAR-derived features
to extract useful spatial information (i.e., here we call them
as EPlidar). Finally, the Xlidar and EPlidar are integrated and
classified using a composite kernel SVM especially designed
for the extracted features to produce accurate classification
results very swiftly and automatically.

The rest of the paper is organized as follows: Section II is
devoted to the proposed methodology. Section III presents ex-
perimental results. Section IV wraps up the paper by providing
the main concluding remarks.

II. METHODOLOGY

A. LiDAR-Derived Features

Since the data set shared by the fusion committee [7] is
of 2.5m spatial resolution, we aimed at deriving also 2.5m
as target cell size for the LiDAR features. We derive three
different types of LiDAR features, which contain complemen-
tary information about the objects to be classified. First, we
use the (1) Digital Surface Model (dsm), which is generally
available or can be easily derived from the point cloud. The
used point cloud comprises 7641595 single 3D points for an
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area of 4775 × 889m2 and has a median point count per 2.5
× 2.5m2 pixel of 11.0 (standard deviation of 4.6). The DSM
contains information about the upper surface of all objects
(e.g. tree canopy). In our case the DSM was already provided
by the University of Houston for the fusion contest 2013
[7]. Second, we derive geometric point cloud information via
three different features that are aggregated into 2.5m raster
cells, (2) elev: variance of all point elevations within a cell,
(3) echoratio: median of all points’ slope-adapted echo ratio
values describing the ratio of the number of points in a local
3D versus 2D point neighborhood of 2.5m radius [8] and (4)
sigmaz: standard deviation of residuals of robustly fitting a
local plane into the points within a search radius of 2.5m
around each cell center. All features are computed within the
OPALS framework [9]. Furthermore, (5) intensity: we derive
an image from LiDAR points’ intensity values by taking the
10%-quantile of intensity values per 2.5m raster cell. Due
to missing flight trajectory data we cannot perform intensity
correction [10]. However, by taking the quantile of intensity
values, effects from flight strip data from higher altitudes and
neighboring strips are suppressed for image generation. Thus,
the LiDAR feature dsm (Xdsm) gives us information about the
upper surface of different objects. Our features elev (Xelev),
echoratio (Xecho), and sigmaz, (Xsig) are derived from full 3D
data and give input about the vertical LiDAR echo distribution
and the “roughness” of the local surface [11]. The feature
intensity (Xint) is related to the backscatter strength of the
surface in the LiDAR’s wavelength [8, 10] and complements
the geometric LiDAR features. The Xlidar is obtained by
concatenating all the aforementioned features on the third
dimension (i.e., Xlidar = {Xdsm,Xelev,Xsig,Xecho,Xint}).

B. Extinction Profiles (EPs)

EPs are based on applying a sequence of thinning and thick-
ening transformations (extinction filters) with stricter criteria
(the number of extrema) on an input raster image [5]. An EP
for the input gray scale image, F, can be defined as follows:

EP (F) ={φPλL (F),φPλL−1 (F), . . . ,φPλ1 (F)︸ ︷︷ ︸
thickening profile

, (1)

F,γPλ1 (F), . . . ,γPλL−1 (F),γPλL (F)︸ ︷︷ ︸
thinning profile

},

with Pλ : {Pλi} (i = 1, . . . , L) a set of L ordered predicates
(i.e., Pλi ⊆ Pλk , i ≤ k). φ and γ show thickening and
thinning transformations, respectively [5].

In [5], it was shown that EPs works more effectively than
attribute profiles (APs) [12], one of the best approaches in
the literature for extracting spatial and contextual information)
[12], in terms of simplification for recognition, since EPs
are able to preserve more regions and correspondences found
by affine region detectors. In addition, in contrast to APs,
the parameters of EPs can be simply (automatically) set
without needing a prior knowledge of the scene since they
are independent of the kind of attribute being used (e.g. area,
volume,...), and are only based on the number of extrema [5].

In this work, a set of LiDAR-derived features, Xlidar,
have been considered as inputs for the EP, i.e., Xlidar =

{X1, . . . ,Xn} where {Xi}ni=1 shows the corresponding fea-
tures extracted from the LiDAR point cloud data. Then, the
EP can be performed on the {Xi}ni=1 and form the spatial
features, EPlidar, which can be defined as follows

EPlidar = {EP(X1),EP(X2), . . . ,EP(Xn)} . (2)

Extinction filters have a flexible concept and can be of
any type. Therefore, EPlidar can be obtained by considering
different types of extinction attributes [e.g., area (a), height
(h), volume (v), diagonal of bounding box (bb), and standard
deviation (std) on different extracted features] into a single
stacked vector, as follows:

EPall
lidar =

{
EPalidar,EPvlidar,EPbblidar,EPhlidarEPstdlidar

}
, (3)

Since different extinction attributes can extract different and
complementary spatial information, the EPalllidar has a greater
capability in modeling contextual information than a single
EPlidar. In addition, the computational cost of the EPalllidar
and EPlidar are almost the same since the max-tree and min-
tree construction, which are the most time consuming part
of producing profiles, are done only once for each LiDAR-
derived feature (except for the standard deviation extinction
attribute) [5]. A complete analysis of the max-tree construction
complexity for different data types and different implementa-
tions is given in [13]. In our implementation, we use the array-
based node-oriented max-tree representation proposed in [14].
This representation is very flexible, and for some attributes,
like height, it reduces their computational complexity from
O(N) to O(M), where M and N are the number of max-tree
nodes and the number of image pixels, respectively. Also, the
structure is suitable for parallel processing of the max-tree.

C. Support Vector Machines

SVM was originally introduced as a linear classifier, while
decision boundaries are often nonlinear for classification prob-
lems. To solve this downside, kernel methods have been
proposed to extend the linear SVM approach to nonlinear
cases. In this context, a nonlinear mapping is used to project
the data into a high-dimensional feature space. After the
transformation, the input pattern x can be shown as Φ(x),
where xi ∈ IRd, i =1, . . . , n is a set of n training samples
with their corresponding class labels yi ∈ {−1,+1}. The
nonlinear mapping function Φ is applied according to the
Cover’s theorem [15], which guarantees that the transformed
training samples in the new feature space are more likely to be
linearly separable. It should be noted that all Φ transformations
in kernel SVMs are applied in the form of inner products,
which can be given as follows:

〈Φ(xi),Φ(xj)〉 = k(xi,xj). (4)

The transformation into the higher-dimensional space can
be computationally intensive. The computational cost can be
decreased using a positive definite kernel k, which fulfills the
so-called Mercer’s conditions [16]. If the Mercer’s conditions
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are met, the final decision function for any test vector x can
be defined by

f(x) = sgn

(
n∑
i=1

αiyik(x,xi) + b

)
, (5)

where αi denotes the Lagrange multipliers and b is obtained
using primal-dual relationship [17]. For a detailed derivation
of (5) please see [18]. In the new feature space, an explicit
knowledge of Φ is not required, except having enough knowl-
edge about the kernel function k. For kernel SVMs, any kernel
k(., .), which fulfills Mercer’s condition, can be used.

Theorem 1: Mercer’s kernel. Let χ be any input space and
k : χ × χ −→ < a symmetric function. k is regarded as a
Mercer’s kernel if and only if the kernel matrix formed by
restricting k to any finite subset of χ is positive semidefinite
(i.e., having no negative eigen values). The Mercer condition
comprises the vital requirement to achieve a unique global
solution when developing kernel-based classifiers (e.g., SVM)
since they reduce to solving a convex optimization problem
[19]. There are several kernel approaches to integrate different
types of features in a consolidate framework such as the
stacked features approach, direct summation kernel, weighted
summation kernel, and cross-information kernel [19]. Here,
we use the weighted summation kernel to integrate the Xlidar
and EPlidar information derived from point cloud LiDAR data.
To do so, let xwi ∈ IRNw represent the sample vectors of
the Nw LiDAR-derived features and xsi ∈ IRNs be the Ns
spatial features of the EPlidar. A composite kernel that can
balance the Xlidar and EPlidar information can be defined as
k(xi,xj) = µks(x

s
i ,x

s
j) + (1 − µ)kw(xwi ,x

w
j ), where µ is a

positive free parameter (0 < µ < 1), which defines a trade-off
between spectral and spatial information to classify a given
pixel. The advantages of this composite kernel are: it enables
to inject a priori knowledge to the classifier by allocating
specific µ values per class, and also enables to extract some
information from the best tuned µ parameter [19].

EPs simplify input images by eliminating some unnecessary
information with respect to the threshold value (i.e., the
number of extrema). As a result, EPs decrease the nonlinearity
of the input data by excluding extra information of the scene,
which increases between class distances in the feature space.
This is the main motivation to use linear kernel for the
classification of the spatial features extracted by the EPs. In
addition, for reducing the corresponding CPU processing time
way, we used a linear kernel for spatial features (EPlidar),
while an RBF kernel was used for spectral features (Xlidar). To
this end, the linear kernel is defined as k(xi,xj) = 〈xi,xj〉,
while the RBF kernel is k(xi,xj) = exp(−‖xi − xj‖2 /2σ2),
where σ ∈ R+ is a free parameter.

III. ALGORITHM SETUP AND DISCUSSION

A. Data Set Descriptions

Houston LiDAR data: The data were distributed for the 2013
GRSS data fusion contest. Here, we use only LiDAR point
cloud data for the experiments, without getting any feedback
from the corresponding hyperspectral image. The LiDAR data
were acquired on June 22, 2012 over the University of Houston

campus and the neighboring urban area. The size of the
LiDAR-derived features are set to 349 × 1905 with the spatial
resolution of 2.5m. The 15 classes of interests are: Grass
Healthy, Grass Stressed, Grass Synthetic, Tree, Soil, Water,
Residential, Commercial, Road, Highway, Railway, Parking
Lot 1, Parking Lot 2, Tennis Court and Running Track. The
“Parking Lot 1” includes parking garages at the ground level
and also in elevated areas, while “Parking Lot 2” corresponded
to parked vehicles. The number of training and test samples
for all 15 classes are reported in Table I. It is important to
note that we used exactly the same sets of training and test
samples prepared for the fusion contest 2013 [7], which makes
our results fully comparable with the state-of-the-art. Fig. 1.(f),
(g), and (h) show the training samples, test samples, and the
corresponding colorbar, respectively.

B. Algorithm Setup

In order to compare classification accuracies of different
approaches, overall accuracy (OA), average accuracy (AA) and
Kappa coefficient (K) have been taken into account.

In terms of the EP, the values of n used to generate
the profile for different attributes are automatically given by
bαjc j = 0, 1, ..., s − 1. The total EP size is 2s including
thinning and thickening profiles [5]. The term above was
determined experimentally. The larger the α, the larger the
differences between consecutive images are. The smaller the
α, the profile will concentrate in keeping few extrema, where
most of the image information is usually present. Our recom-
mendation is to use an α between 2 and 5. In the experiments
here, we used α = 3, and set s = 7. The profiles were
computed considering the 4-connected connectivity rule.

RF and SVM show a situation when RF and SVM are ap-
plied to dsm. EPechoratio, EPelev, EPintensity, EPdsm, and
EPsigmaz are referred to situations when an SVM with the
RBF kernel (and five-fold cross-validation to tune hyperplane
parameters) are performed to EPs on echoratio, elev, intensity,
dsm, and sigmaz, respectively. RF EPall and SVM EPall
show situations where RF and SVM with the RBF kernel
(and five-fold cross-validation to tune hyperplane parameters)
are applied to the concatenation of the EPs on echoratio,
elev, intensity, dsm, and sigmaz. The proposed method, CK,
considers a composite kernel SVM (RBF kernel for Xlidar and
linear kernel for EPlidar).

C. Discussion

Table II investigates an optimal value for the parameter µ,
which finds a trade-off between different kernels. As can be
seen, the best performance is reported when µ is set to 0.5.
In this way, the proposed method can define more optimal
boundaries in feature space to classify different classes of
interest by injecting information obtained by both LiDAR-
derived features and EPs. The ignorance of the spatial infor-
mation (µ = 0.2) leads to very poor performance, which prove
that the EP plays an important role for the classification of the
scene.
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Fig. 1. (a)-(e) are the LiDAR-derived features including DSM, echo ratio, elev,
intensity, and sigmaz. The figures (f)-(i) demonstrate training samples, test
samples, thematic maps, and the classification map obtained by the proposed
approach.

Table I demonstrates class specific accuracies for all 15
available classes followed by AA, OA, kappa, and the cor-
responding CPU processing time, obtained by different ap-
proaches. As can be seen the consideration of spatial informa-
tion extracted by EPs (RF EPall, SVM EPall, EPintensity,
EPelev, EPdsm, and EPsigmaz) can significantly improve the
classification accuracies compared to the situations where the
classifiers are directly applied to the LiDAR-derived features
(RF and SVM).

The proposed method demonstrates the best classification
accuracy (i.e., OA, AA, and kappa) compared to the other
approaches. For example, the proposed approach improved
SVM, SVM EPall, and EPdsm by almost 57.5%, 0.7%, and
19% in terms of overall accuracy, respectively. In addition,
the CPU processing time of the proposed method is much
less than RF EPall and SVM EPall, since it considers the
linear kernel on the EPs.

Table III demonstrates the contribution of different LiDAR
derived features (i.e., dsm, intensity, elevation, echoratio, and
sigmaz) on the final classification accuracy in terms of OA,

AA, kappa coefficient using the proposed composite kernel
method. As can be seen, the set of features, dsm, intensity,
and elevation, provides slightly the best result. The strong
value of signal intensity additionally to the geometric LiDAR
features is highlighted in our results, and suggests that LiDAR
backscatter can compensate missing spectral optical data to
a certain degree. As discusses in [8], LiDAR backscatter
combines surface reflectance as well as geometry of scanned
objects, and thus helps to discriminate several classes that
cannot be separated in elevation or spectral data only.

IV. CONCLUSION

In this letter, we designed an effective and efficient frame-
work for the classification of LiDAR point cloud derived fea-
tures in terms of classification accuracy and CPU processing
time. The proposed approach is based on extracting a few
features such as echoratio, elevation, DSM, intensity, and
sigmaz and consider them as base images for the EPs. For
the classification step, the designed composite kernel SVM
(RBF kernel for LiDAR-derived features and linear kernel for
the concatenation of EPechoratio, EPelev, EPintensity, EPdsm,
and EPsigmaz) have been taken into account. Results demon-
strate that the proposed approach can effectively classify a
complex urban area (more than 86% in terms of overall
accuracy) composing of the 15 classes within a short CPU
processing time.
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