
Exploiting Symmetry for Partitioning Models in Parallel Discrete Event
Simulation

Jan Lemeire1, Bart Smets1, Philippe Cara2, Erik Dirkx1
1Parallel Systems lab, 2Department of Mathematics

Vrije Universiteit Brussel (VUB)
Brussels, Belgium

Email: {jlemeire,bsmets,pcara,erik.dirkx}@vub.ac.be

Abstract

We investigated the benefit of exploiting the
symmetries of graphs for partitioning. We represent the
model to be simulated by a weighted graph. Graph
symmetries are studied in the theory of permutation
groups and can be calculated in polynomial time with the
nauty algorithm [15]. We designed an algorithm to
extract useful symmetries from the automorphism group,
which can be used to create partitions derived from the
graph’s structure. Our approach is focused on composite
graphs, for which identical subgraphs reoccur in the
graph. If these identical subgraphs can be mapped onto
each other by symmetries, the subgraphs are replaced by
equivalent multivertices, resulting in a ‘natural’
aggregation of vertices. This approach is applied to
parallel simulation of a detailed IP-switch with a
conservative synchronous algorithm. The experimental
results show that even for good partitions, global and
temporal load imbalances are inevitable.

1. Introduction

We study the problem of finding good model
partitions for Parallel Discrete Event Simulation (PDES).
This problem is equivalent to graph partitioning, where
the model is represented by a weighted graph. The weight
of an edge represents its amount of communication and
the weight of a node its amount of computation. Graph
partitioning is an important problem that has extensive
applications in many other areas, including scientific
computing, VLSI design, data mining and grid
applications. The goal is to partition the vertices of a
graph in roughly p equal parts to balance the graph, such
that it minimizes the number of edges connecting vertices
in different parts. These are the edge-cuts, representing
the communication between the different parts.

We investigated how symmetries can be used to
partition the graph. This work started with the work Bart
Smets [16]. Naturally, symmetry is not guaranteed and
symmetric partitions are no guarantee for efficient

partitions. However, models in PDES, like network or
electronic components, are often highly structured. They
often consist of reoccurring components with more
communication inside the components then between
them. These structural properties of the model result in
what we called composite graphs and can be exploited to
get an ‘natural’ partition.

1.1. Parallel Discrete Event Simulation

In discrete event simulation, the device under study is
modeled by interconnected logical processes, in which
state changes happen at discrete times by events.

Figure 1. IP-switch model

Figure 1 shows the model of a detailed IP-switch [8],

in which the IP-packets are first converted into prisma
cells, then into multi-slot cells before going through the
switching elements. After this, the original IP-packets are
reconstructed and sent to the output. Feedback signals try
to prevent packet loss due to congestion in the switching
elements. Packets are therefore buffered into the input
stages. The switch contains 32 inputs, resulting in more
than 4000 processes.

In Parallel Discrete Event Simulation (PDES) [5,6]
the model is partitioned among the available processors
and simulated with a parallel algorithm that synchronizes

the different partitions. We will explain our approach
with the simplified model of the switch (Figure 2),
whereas the experimental results are gathered from the
simulation of the detailed model.

Figure 2. Simplified switch model

1.2. Related Work

The partitioning task is known to be NP-complete in
general [7]. However, when the graph exhibits certain
regularities, good partitions can be found in polynomial
time. An example is METIS [13], a multilevel coarsening
algorithm, in which highly interconnected nodes are
successively grouped (step 1) to become a much smaller
graph with lower partitioning complexity. After
partitioning of the aggregated graph (step 2), the
partitions are gradually refined when the multivertices are
expanded to reconstruct the original graph (step 3). In
[14], the assumptions on the graph for the success of the
algorithm are analyzed.

Graph partitioning is defined in section 2 and graph
symmetries in section 3. Section 4 discusses the
symmetry tree that is used in section 5 for partitioning.
Finally, section 6 shows the experimental results.

2. Graph Partitioning

A graph contains the relational information of an
object. It is defined as a structure G=<V, E> in which V is
a finite set of vertices (or nodes) and E⊂V×V is a finite
set of edges (unordered pairs or ordered pairs for a
directed graph). Two vertices u and v are called adjacent

if Evu ∈),(. A weighted graph associates a number |v|
to each vertex and a number |e| to each edge.

Figure 3. A composite graph

We define a composite graph is a graph that is

composed of subgraphs that occur multiple times in the

graph. Identical subgraphs can then be replaced by a
single multivertex. Structured models often contain such
subgraphs, as shown in Figure 3, in which nodes can be
replaced by the multivertices A1, B1, etc. In fact, the
vertices of Figure 3 are on their turn composed out of
subgraphs of the detailed IP switch model of Figure 1.
Furthermore, each process of Figure 1 can again be
described in more detail, as shown in Figure 4, which is
the detailed description of the buffer&convertor1 process
of Figure 1. This is called the level of abstraction of the
model. We study the graphs for which these subgraphs
are symmetric. Note that we are now working with
undirected graphs, since the direction of the
communication is irrelevant for the partitioning.

Figure 4. The buffer&convertor1 process in

detail

Graph partitioning is defined as follow: given a graph

G=<V,E>, partition V into p disjoint subsets V1 … Vp
such that the following objectives are optimized:
1. The sum of the weights |v| of all v of Vi for each i

(1…p) is the same.
2. The sum of the weights of the cut edges (edges for

which the nodes belong to a different partition) is
minimized.

3. Graph Symmetries

Symmetries are investigated in mathematics by Group
Theory [12]. A symmetry of an object is defined as a
transformation that leaves the essential features of the
object unchanged [10]. The set of all symmetries of an
object form a group. This means that symmetries can be
composed, an identity transformation exists and each
transformation has an inverse transformation.

A graph symmetry is a permutation f of the vertex set
V that preserves adjacency:

EvfvfEvvVvv ∈⇔∈∈∀))(),((),(:, 212121 (1)

The group of all such permutations together with

composition is called the automorphism group Aut(G) of
the graph [3]. A permutation is a bijective transformation.
It can be described with the cyclic notation. For example,
the permutation (a1, a2, a3) carries a1 to a2, a2 to a3 and a3

to a1. The permutation (a1, a2)(b1, b2) carries a1 to a2, a2 to
a1 and simultaneously b1 to b2 and b2 to b1. Some of the
symmetries of the graph of Figure 2 are:

(0, 1)
(3, 4)
(0, 3) (1, 4) (2, 5)
(7 8)
(10 11)
(7 10)(8 11)(6 9)
(0 7)(1 8)(2 6)(3 10)(4 11)(5 9)

Note that all other symmetries can be composed out of
these, therefore they are called a set of generators for
Aut(G).

An efficient and widely used algorithm for finding the
symmetries in a graph is nauty [15, see also
http://cs.anu.edu.au/~bdm/nauty]. The average
performance is polynomial, with a degree no bigger than
4 and in practice less than 3 [15]. A handy tool for
finding and manipulating graph symmetries, using the
nauty algorithm, is GAP [http://www.gap-system.org].

We will analyze the symmetries in composite graphs.
Note that reoccurring multivertices are called isomorphic
subgraphs in group theory. We define a multivertex
symmetry as a permutation that maps multivertices onto
each other and preserves adjacency of these. It is clear
that the multivertices of Figure 3 are symmetric. These
multivertex symmetries are interesting for optimizing the
partitioning task. Therefore we have to extract them from
Aut(G) and describe them into a practicable
representation.

4. The Composite Symmetry Tree

We represent the composite graph by a hierarchical tree
of reoccurring multivertices, where each multivertex is
refined in the next level. Figure 5 shows the composite
symmetry tree of the switch in Figure 2. At each level,
equivalent multivertices are represented by the same
symbol, they are mutually interchangeable by a
symmetry.

Figure 5. The composite symmetry tree

of the simplified switch model

In the work of Smets [16], the definition of the tree is

extended for ring symmetries. This is represented by
connecting the nodes which are neighbors in the ring
transformation.

4.1. Additional Definitions

For the construction of the tree, we need some
concepts from the theory of permutation groups [9]. The
orbit of a vertex v∈V is defined as: orb(v) = {g(v): g
∈Aut(G)}, the set of all vertices on which v can be
mapped by the automorphisms of the graph. If a vertex
v’∈ orb(v), then v is also an element of the orb(v’). In
this way, the orbits partition the vertices of the graph into
disjoint subsets (Figure 6).

Figure 6. Orbits of a graph

The stabilizer of a subset V’ of V, are the symmetries

that keep all elements of V’ unchanged:

)})(:'|)({)(' vvgVvGAutgGAut V =∈∀∈= (2)

A block of imprimitivity is a set of vertices B⊆V for
which:

0'..'..:)(', =∩=∈∀ BgBgorBgBgGAutgg (3)

A block of imprimitivity is completely mapped onto

itself by the symmetries or onto a disjoint set of vertices.
The other set will necessarily also be blocks of
imprimitivity. A maximal block of imprimitivity of a
vertex set V’ is an imprimitivity block B⊂V’ of maximal
size, but non-trivial (B=V’). These concepts can be
calculated by GAP/nauty.

4.2. Construction Algorithm

The intuitively defined symmetric components are
clearly blocks of imprimitivity. We will however only
aggregate vertices if an objective choice exists and if the

number of connections between the different
multivertices is low.

The principle of the algorithm is to aggregate vertices
of different orbits. For the graph of Figure 6, the goal is to
aggregate the vertices 1 and 4 into a multivertex, that is
isomorphic to multivertices {2,5} and {3,6}. However,
we will only group vertices that are adjacent to exactly
one vertex of another orbit. In other cases, when all or
multiple vertices of one orbit are connected to the same
vertex, aggregation makes no sense. When all vertices are
interconnected, as for 2, 5 and 8 with 0, and {4,5,6} with
{7,8,9} in Figure 6, both orbits can permute
independently and there is no objective reason to group
vertices. If only some, but more than one, vertices are
adjacent, as for the vertices of orbit {7,8,9} with orbit
{10,11,12} in Figure 6, vertices of both orbits cannot
transform independently. By permuting some of the
vertices of one orbit, some of the other should also
permute. Then, there are multiple equivalent choices in
grouping the vertices of the different orbits. Moreover,
grouping such vertices would cause a lot of
communication between the multivertices. Hence, we will
also not aggregate vertices in such cases.

Figure 7. Orbits of a composite graph

For complex composite graphs, a ‘hierarchy’ can be

identified inside orbits, as in Figure 7. To apply the
aggregation method, we should start with grouping the
maximal imprimitivity blocks of the orbits, shown in
Figure 8. By applying the above algorithm, block 1a can
be aggregated with block 2a, and block 1b with 2b. They
form the top-level components A1 and A2 of the symmetry
tree of Figure 5.

Figure 8. Maximal blocks of imprimitivity

of the orbits

The symmetry tree is recursively built in a top-down

way. For deeper investigation of the symmetries of a
multivertex, all other multivertices are stabilized. The
new automorphism group Aut’(G)V’ is then used to find
the subcomponents with the same aggregation method.
Since components are isomorphic, all subcomponents
found in one component also appear in the other
components. Applied onto the graph of the switch (Figure
3), the symmetric supervertices A1 and A2 can be refined
into B1, B2, B3 and B4. This gives us the desired symmetry
tree of Figure 5.

4.3. Performance

The experimental performance results on a 1.8GHz
Pentium 4 processor are shown in Table 1. We compared
the processing time of the algorithm for a random graph,
the simplified switch of Figure 2 and the detailed switch
of Figure 1, for a varying number of vertices.

Table 1. Processing time (in seconds) of
symmetry tree construction in function of the

number of vertices
#vertices 1000 2000 3000 4000
Random graph 0.014 0.091 0.165 0.242
Simplified switch 9.35 132 480 1331
Detailed switch 8.87 116 413 983

It is known that nauty quickly detects that graphs have

few symmetries, namely in polynomial time of degree 2
[15]. This is confirmed by the experiments that give a
quadratic processing time for a random graph without
symmetries. For the simplified and detailed switch we get
a third degree polynomial dependency.

5. Exploiting the Symmetry Tree for
Partitioning

With the Composite Symmetry Tree, proposals for
graph partitions can easily be extracted. The simplified
switch can be partitioned along 2 axes, as shown in
Figures 9 and 10. A switch with more inputs will have
axes parallel with Ax 2 and partitioning along these axes
will give good results.

Figure 9. Partitioning with the symmetry tree

Figure 10. The resulting model partitioning

The partitions result from the structure of the graph, so

it is a kind of ‘natural’ partitioning. The symmetries
guarantee an equal distribution of the workload and by
construction, the communication is minimized.

Note that the approach resembles the aggregation
method of METIS and is a kind of ‘natural’ aggregation
of the vertices according to symmetries.

6. Simulation of IP Switch

The illustrating experiment is the simulation of the
detailed IP-switch [8] of Figure 1 on a cluster of 8
Pentium II processors of 333MHz connected by a
100Mb/s non-blocking switch. For parallel simulation, we
use a conservative synchronous algorithm [1], based on
the time window algorithms [5]. It consists of cycles of
independent simulation on each processor, alternated with
synchronization between the different processors by
communicating the events traveling through the cut-
edges. The cycle length or window size equals the
lookahead.

Table 2. Experimental results for the parallel

overheads

0

10

20

30

40

50

60

2 4 6 8

p

%

communication
overhead
synchronisation
overhead
total idle time

global load
imbalances
temporal load
imbalances
Total Overhead

The switch has 32 in- and output channels and is fed

with random TCP/IP traffic according to a normal
distribution. It puts an average load of 62% on the
switching elements. It is partitioned along the horizontal
symmetry axes (parallel with Ax 2 in Figure 10). The
experimental results in function of the number of
processors are shown in Table 2. The values for the

speedups are 1.7 for p=2, 3.0 for p=4, 4.1 for p=6 and
5.2 for p=8.

The parallel simulation time with 6 processors of 1s
real time was 1683s, resulting in a speedup of 4.06. The
total overhead of 45.6% of the parallel runtime was
mainly caused by communication overhead overlapping
with computation (14.1%) and load imbalances (26.9%).
The synchronization overhead of our algorithm only took
4.6% of the parallel runtime. The relatively high
communication overhead is caused by the packets
traveling through the edge-cuts. This intercommunication
is unavoidable. On the other hand, the high load
imbalances suggest a bad partitioning, but this is not the
case. The total idle time Tidle is measured as the sum over
all cycles that the processors have to wait for the slowest
processor, since the simulation happens synchronously in
cycles:

∑
∈

−=+=
cyclesk

k
avg

k
tligliidle SimTSimTpTTT)(. max (4)

where SimTk is the simulation time of cycle k, the
maximal and average respectively. We identify 2 different
types of load imbalances that cause idling: the global and
temporal load imbalances. The global load imbalance Tgli
is caused by unequal total simulation time TotalSimT
between the processors:

).(max avggli TotalSimTTotalSimTpT −= (5)

The temporal load imbalances Ttli on the other hand,

are caused by fluctuations of the load imbalances between
the different cycles and can be calculated as follow:

gliidletli TTT −=
 (6)

The slowest processor that causes the idle time at each

synchronization point can differ from cycle to cycle. The
resulting global load imbalance, which is an average of
the load imbalance over all cycles, can thus be low (here:
7%), whereas temporal fluctuations are generating a much
higher idling of the processors (here:19.9%).

Since our model is completely symmetric, with the
same average, but stochastic, load in each of the
symmetric components, no better partitioning is available.
However, the deviation from the average load leads to a
global imbalance and load fluctuations generate high
temporal imbalances as an effect of using a synchronous
parallel simulation algorithm. Table 2 shows how the
temporal imbalances increase rapidly with the number of
processors and cause the main limitation on the growth of
the speedup.

7. Conclusions

We argued that if a graph has symmetries, these should
be exploited for partitioning. We constructed an
algorithm that uses the theory of permutation groups to
find multivertex symmetries in composite graphs. These
useful symmetries are represented in a symmetry tree,
from which proposals for partitions can easily be
constructed. The application of this approach to our
highly structured models yields promising results.

We want to extend the algorithm to other types of
symmetries and to quasi-symmetries. Moreover,
symmetrical properties are useful in reducing the
complexity of algorithms in general and should be
reflected in the visualization of such models and their
graphs.

8. References

[1] W. Brissinck, “Tuneable Granularity Parallel Discrete

Simulation.” PhD thesis, Vrije Universiteit Brussel,
Brussels, May 1999.

[2] R.E. Bryant, “Simulation of Packet Communications
Architecture Computer Systems.” Technical Report MIT-
LCS-TR-188, Massachusetts Institute of Technology,
1977.

[3] Peter J. Cameron, “Automorphisms of Graphs”, Queen
Mary University of London, 2001.

[4] K.M. Chandy and J. Misra, “Distributed Simulation: A
Case Study in Design and Verification of Distributed

Programs”, IEEE Trans. on Softw. Eng. SE-5, 5 , 440-452,
Sept 1997.

[5] A. Ferscha, “Parallel and Distributed Simulation of
Discrete Event Systems”, Handbook of Parallel and
Distributed Computing, McGraw-Hill, 1995.

[6] R.M. Fujimoto, “Parallel Discrete Event Simulation”,
Communications of the ACM, 33, pp 29-53, Oct 1990.

[7] M. Garey, D. Johnson and L. Stockmeyer, “Some
simplified NP-complete graph problems”, Theoretical
Computer Science, 1976.

[8] S. Geudens, “Quantitative Study of a Highly Formant
Network Switch with Distributed Simulation”, Master
Thesis, Vrije Universiteit Brussel, Brussels, 2000.

[9] M. Jr. Hall, “The Theory of Groups”, Macmillan, New
York, 1976.

[10] R. Howlett, “Aspects of Symmetry”, Lecture Notes,
Sydney
(http://www.maths.usyd.edu.au:8000/u/bobh/2gwhole.pdf).

[11] G. Israel and M. Wilhelm, “Groups and Their Graphs”, The
Mathematical Asociation of America,1965

[12] John F. Humphreys, “A Course in Group Theory”, Oxford
University Press, 1996.

[13] G. Karypis and V. Kumar, “A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs”,
Technical Report 95-035, Dept. Computer Science, Univ.
Minnesota, Minneapolis, Minnesota, 1995.

[14] G. Karypis and V. Kumar, “Analysis of Multilevel Graph
Partitioning”. Proceedings of Supercomputing’95, San
Diego, 1995.

[15] B. McKay, “Practical Graph Isomorphism”, Congressus
Numerantium 30, 45-87, 1981.

[16] B. Smets, “Symmetrie-onderzoek van Graffen”, Master
thesis, Vrije Universiteit Brussel, Brussels, 2003.

