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Abstract

Magnetoencephalography (MEG) is a functional neuroimaging tool that records the magnetic 

fields induced by electrical neuronal activity; however, signal from non-neuronal sources can 

corrupt the data. Eye-Blinks (EB) and Cardiac Activity (CA) are two of the most common types of 

non-neuronal artifacts. They can be measured by affixing eye proximal electrodes, as in 

electrooculography (EOG) and chest electrodes, as in electrocardiography (EKG), however this 

complicates imaging setup, decreases patient comfort, and often induces further artifacts from 

facial twitching and postural muscle movement. We propose an EOG- and EKG-free approach to 

identify eye-blink, cardiac, or neuronal signals for automated artifact suppression.

Our contributions are two-fold. First, we combine a data driven, multivariate decomposition 

approach based on Independent Component Analysis (ICA) and a highly accurate classifier 

constructed as a deep 1-D Convolutional Neural Network. Second, we visualize the features 

learned to reveal what features the model uses and to bolster user confidence in our model’s 

training and potential for generalization. We train and test three variants of our method on resting 

state MEG data from 49 subjects. Our cardiac model achieves a 96% sensitivity and 99% 

specificity on the set-aside test-set. Our eye-blink model achieves a sensitivity of 85% and 

specificity of 97%. This work facilitates automated MEG processing for both, clinical and research 

use, and can obviate the need for EOG or EKG electrodes.
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I. Introduction

Magnetoencephalography (MEG), a functional neuroimaging method, offers better temporal 

resolution than fMRI [1, 2]. Compared to electroencephalography (EEG), MEG is less 

affected by intervening tissue characteristics, which results in a more accurate source space 
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reconstruction [2–4]. Nevertheless, MEG is vulnerable to electromagnetic noise arising from 

non-neuronal sources. For example, the spectral bandwidth of muscle activity overlaps with 

the gamma-frequency band [4, 5]. Furthermore, eye-blink (EB) artifacts and cardiac artifacts 

(CA), which are two of the most common sources of artifact in MEG data, share frequency 

bands (1Hz – 20Hz) with alpha, theta, and delta waves [6, 7]. Fig. 1 shows how a CA can 

corrupt all areas of MEG brain source space reconstruction making its identification and 

suppression critical for mapping true brain activity.

Removing artifacts from MEG using Independent Component Analysis (ICA) improves 

MEG signal-to-noise ratio by 35%, while spectral approaches achieve an improvement of 

only 5–10% [8]. ICA decomposes the data into individual components, separating artifact 

and signal in the process. However, these components are randomly ordered and must be 

manually labeled as signal or artifact [4, 9]. To automate the process of detecting EB and CA 

artifacts, some researchers use electrooculography (EOG) and electrocardiography (ECG) 

electrodes to separately record the eye-blink and cardiac artifact signals [7]. However, these 

methods add complexity and time to the data acquisition setup, can be uncomfortable for the 

subjects, and can induce additional artifacts from postural muscle movements and/or facial 

twitching [4].

II. Methods

A. Data Collection and Preprocessing

8 minutes of resting state MEG data was obtained from 49 male football players: 19 high 

school (14–18 years old) and 30 youth (9–13 years), as part of the Imaging Telemetry And 

Kinematic modeling in youth football (iTAKL) concussion study [10]. To minimize ocular 

saccadic movement, subjects held their eyes open and fixated on a target. Data preprocessing 

included down-sampling to 250Hz, application of a notch filter to suppress to line noise, and 

band pass filtering to 1Hz-100Hz using Brainstorm [11].

B. Independent Component Analysis (ICA)

Using InfoMax ICA [12], the data was decomposed into 20 components. Each one of these 

components consists of a spatial map indicating areas of magnetic scalp influx and outflux 

and a time course (Fig 2) of the spatial map’s activation. In this study, the time courses were 

the input feature utilized. The time courses from all 49 subjects were labeled by an expert 

rater with more than 5 years of experience in MEG image interpretation (ED)

C. Convolutional Neural Networks

Convolutional neural networks (CNN) have demonstrated remarkable success in the Image-

net Large Scale Visual Recognition Challenge (ILSVRC) [13]. Such 2D-CNNs learn to 

recognize the local structure within an image. Inspired by these successes, the hypothesis for 

this study is that a 1D-CNN will be able to recognize local structure in our time courses 

signals. For example, a cardiac signal has peaks in a predictable order (Fig. 2, top third). 

Therefore, 1-D CNN based classifiers were constructed with the architecture shown in Fig. 

3.
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D. CNN Model development and testing

The model was trained using the 19 high school subjects. A leave-one-subject-out strategy 

was employed to optimize the hyper-parameters. The remaining 30 youth subjects were set 

aside for testing the model. These subjects were not used for optimizing any hyper-

parameters. The separate dataset and age group was utilized for testing in order to provide a 

stronger assessment of the generalization capabilities of the model, as compared to testing 

on data from the same dataset.

Three different versions of the MEG-net were constructed. The first two are binary 

classifiers. Model 1 was trained to only detect cardiac artifact, while model 2 was trained to 

only detect the eye-blink artifact. Model 3, which is a 3-category classifier, was trained to 

detect both.

1) Input size—CNNs have a fixed input size that is decided prior to training, and we 

wanted to create classifiers that will generalize to data with recordings shorter than 8 

minutes (120,000 time-steps). Thus, we trained classifiers that only require 40 seconds 

(10,000 time-steps) of input (Fig. 3, Right). Longer signals can be truncated and shorter 

signals can be extended to 40 seconds by repeating the existing signal.

2) Max-pooling—Because the shape of the individual P-QRS-T wave complex is 

variable among different subjects (Fig. 2, Cardiac), we suspect that a repeating sequence of 

multiple P-QRS-T complexes is more important than the morphology of an individual 

complex for accurately detecting a cardiac signal. The five pairs of convolution and max-

pooling layers (Fig 3) allow us to create a receptive field in the last max-pooling layer that is 

large enough to recognize two consecutive complexes irrespective of the signal’s phase. The 

last max-pooling layer is able to scan the input signal over 1.6 seconds. A subject who has 

one heartbeat every 1.6 seconds will have a heart rate of 37.5 beats/min. Any subject with 

higher heart rate than 37.5 beats/min will produce at least two complexes in our chosen 

receptive field. Since most people have heart rates between 60 beats/min to 100 beats/min, 

our model should be able to detect a cardiac signal regardless of the P-QRS-T complex 

morphology.

III. Results

MEG-net-1 (cardiac only model) demonstrated remarkable accuracy (96% sensitivity and 

99% specificity) for detecting the cardiac artifact. MEG-net-2 (eye-blink only model) also 

demonstrated promising results (85% sensitivity and 97% specificity). Full test results are 

summarized in Fig. 4 along with the respective confusion matrices for the held-out, test set 

which was not used during training or model selection.

IV. Discussion

A. Related Work

There is little existing research on the automation of MEG artifact removal without the use 

of supplementary electrodes (EOG, EKG). One exception is Duan et al. [1] in which a 

support vector machine (SVM) was trained with five manually selected features (Kurtosis, 
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Probability Density, Central Moment of Frequency, Spectral Entropy, and Fractal 

Dimension) were extracted from the time series of ICA using data from 10 pediatric 

subjects. They report a cross-validation specificity of 99.65% and sensitivity of 92.01%. 

However, the small sample size used (10 subjects total) is a significant limitation of this 

study. In comparison, we train a 1-D convolutional neural network (CNN) using data from 

19 subjects and report accuracy measures from a held-out set from a separate dataset and 

cohort containing 30 subjects. We also report test accuracy as opposed to cross-validation 
accuracy. Test accuracy tends to more accurately reflect real-world performance, while 

cross-validation accuracy tends to overestimate performance. Furthermore, our MEG-net 

uses the raw time series data and automatically learns the important features. Thus, we avoid 

manually selecting features that might add bias to our model.

B. Feature Visualization, Grad-CAM

In order to gain a deeper insight into what MEG-net has learned, gradient-weighted class 

activation maps (grad-CAM) [14] were generated to visualize learned features (Fig 5). 

MEG-net-3 was selected as an example because it can provide insight into how a model 

handles features for all three different classes. For illustrative purposes a time course was 

constructed that contains segments from all three classes as input for grad-CAM. The 

method provides information on three simple questions. 1) Which input features (time 

points) are most important for cardiac classification? 2) The eye-blink classification? 3) 

And, non-artifact classification? The time segments that are most important for artifact 

classifications correspond well with the time segments that human experts find 

discriminative for identifying the artifacts (Fig. 5). In particular, the peaks in the feature 

importance for eye-blink classification (Fig. 5, row 2, green curve) correspond appropriately 

to the eye-blink features shaded in green (Fig 5, row 1). Meanwhile, feature importance 

curves of cardiac and the non-artifact classes show little or no importance during these eye-

blink time segments. Additionally, feature importance curve of non-artifact class (shown in 

yellow) displays highest importance in the non-artifact segment (row 1, right side). Lastly, 

the feature importance of cardiac class (red curve) has a high baseline and displays highest 

importance from the R and T waves in the cardiac segment (row 1, left).

V. Conclusion

We have proposed 1D-CNNs for the accurate detection of cardiac and eye-blink artifacts. 

The solution is fully automated and does not require current standard of care EOG or EKG 

recordings, which complicate imaging setup, decrease patient comfort, and often induce 

further artifacts. Additionally, using advanced visualizations, we demonstrate that the 

features our CNNs have learned correspond well with those used by human experts. Future 

work can extend the model to utilize spatial map data.
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Fig. 1. 
Effect of cardiac artifacts on source space reconstruction of neuronal activity. A cardiac ICA 

component was manually identified and projected into brain space via MNE source 

localization. Top row: projection of signal between two heartbeats (without artifact). Bottom 

row: projection during a heartbeat. Diffuse activity is modeled across both hemispheres due 

to the artifact.
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Fig. 2. 
Examples of time courses generated by ICA for each of the three signal categories of 

interest: cardiac, eye-blink, and non-artifact. The cardiac time course shows characteristic P-

QRS-T complexes and regularity of an EKG, eye-blink time courses show broad signal dips 

that are less regular, while non-artifact signal show more broad spectrum (superposition of 

alpha, beta, delta wave signals).
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Fig. 3. 
Proposed processing pipeline. Left: Overall processing pipeline proceeds from resting state 

MEG acquisition, through preprocessing and automatic artifact identification and finally 

artifact suppression before reconstructing the brain signal without the artifact components. 

Right: CNN architecture includes several convolution and max pooling layers followed by 

fully connected or dense layers. For binary classification, the last layer has 1 neuron 

(shown), while for 3-category it has 3 one-hot-encoded neurons (not shown). The dropout 

layer allows for regularization by randomly setting some neurons in previous layers to zero 

during training. Our model requires only 10,000 time-points (40 seconds at 250Hz).
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Fig. 4. 
Accuracy of our three MEG-net models shown as normalized confusion matrices. Left: 

CNN binary classifier that identifies cardiac artifacts. Center: CNN binary classifier, which 

identifies eye-blink artifacts. Right: Three-category CNN, which identifies cardiac, eye-blink 

and non-artifact components. Parentheses contain the numbers used to compute the 

normalized matrices.
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Fig. 5. 
Visualization of the features learned in MEG-net-3. Top row: Input consists of a time course 

with 3 segments: cardiac, eye-blink, and non-artifact signal (labeled on top of figure). With 

different colors, we shade the features human experts use to visually distinguish these three 

segments. Cardiac R and T waves are shaded red; eye-blinks are shaded green, while non-

artifact features are shaded yellow. Bottom row: Gradient-weighted class activation maps 

(grad-CAM) are shown by the red, green and yellow curves. The red curve peaks for time 

points considered important for cardiac classification, green curve for those important for 

eye-blink classification, while yellow curve for those important for the non-artifact 

classification.
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