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Abstract—We suggest a hybrid quantum-classical routine for
the NP-hard Electric Vehicle Fleet Charging and Allocation
Problem. The original formulation is a Mixed Integer Linear
Program with continuous variables and inequality constraints.
To separate inequality constraints that are difficult for quantum
routines we use a decomposition in master and pricing problems:
the former targets the assignment of vehicles to reservations
and the latter suggests vehicle exploitation plans that respect
the battery state-of-charge constraints. The master problem
is equivalent to the search for an optimal set partition. In
our hybrid scheme, the master problem is reformulated in a
quadratic unconstrained binary optimization problem which can
be solved with quantum annealing on the DWave Advantage
system. On large instances, we benchmark the performance of
the decomposition technique with classical and quantum-inspired
metaheuristics: simulated annealing, tabu search, and vector
annealing by NEC. The numerical results with purely classical
solvers are comparable to the solutions from the traditional mixed
integer linear programming approaches in terms of solution
quality while being faster. In addition, it scales better to larger
instances. The major advantage of the proposed approach is that
it enables quantum-based methods for this realistic problem with
many inequality constraints. We show this by initial studies on
DWave hardware where optimal solutions can be found for small
instances.

Index Terms—quantum annealing, hybrid quantum-classical
algorithms, electric vehicles, combinatorial optimization, column
generation

I. INTRODUCTION

Many industrial problems related to logistics, planning,
scheduling, or resource allocation can be formulated as NP-
hard optimization problems over discrete and continuous vari-
ables [1]. Employing efficient algorithms may significantly
reduce operational costs and increase profits - therefore, the
search for computational advantage is crucial for competi-
tiveness. In practice, operational problems are usually solved
with of-the-shell commercial solvers such as Gurobi; however,
when the search for the exact solution is time-consuming we
can use heuristic algorithms to get good results in a reasonable
time.

The emergence of the quantum hardware offers new op-
portunities for the design of efficient heuristics [2]. Quan-
tum heuristics leverage the laws of quantum mechanics to
improve the approximation gap or reduce the the time-to-
solution [3]. For instance, the tunneling effect in the navigation
of the energy landscape allows quantum annealing [4] to
find optimal solutions under a certain condition [5]. This
condition – namely the polynomially-bounded spectral gap – is
nevertheless difficult to guarantee, therefore, an experimental
evaluation on difficult industrial problems is necessary to
decide on the practical potential of the heuristic.

Quantum algorithms adapted to near-future quantum hard-
ware solve problems in so-called QUBO (Quadratic Uncon-
strained Binary Optimization) formulations [2], i.e. all problem
specifications are captured in a quadratic objective function
over binary variables. At first glance, the NP-hard QUBO is
a powerful model: traditional discrete problems [6] as well as
some simplified industrial use-cases [7], [8] can be represented
in QUBO without a huge resource overhead.

However, most real-world industrial problems exceed this
simple framework: for instance, in the MILP (Mixed Inte-
ger Linear Program) model the solution space is typically
restricted by many inequality and equality constraints and
variables are not necessarily binary. In theory, if all variable
domains are discrete and bounded, the MILP can be reformu-
lated as QUBO: discrete variables are encoded as binary string,
slack variables transform inequality constraints into equalities,
and quadratic penalty terms M(aTj x − bj)

2 (where M is a
large number) in the objective function enforce linear equality
constraints aTj x = bj .

However, these obvious transformations lead to a large
overhead in the number of variables in QUBO [8]. Thus,
the size of the problems tractable on the near-future quantum
hardware becomes strictly limited. In addition, penalty terms
negatively impact the performance of quantum routines due to
the additional energy scale separating feasible and infeasible
solutions [9], [10]. To address this obstacle, the works [11],
[12] suggest to restrict the quantum evolution to the feasible
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subspace - but the protocol is difficult to put into practice.
Alternately, a hybrid augmented Lagrangian method [13] may
perform well when the formulation has only a few constraints.

We believe that a balanced interaction between quantum and
classical routines is the most promising way to enable quantum
enhancement for complex optimization problems [14]. In this
work, we introduce a hybrid approach that delegates some
operational constraints to a classical routine while leaving a
difficult selection problem to the quantum heuristic.

We consider the problem of managing a fleet of electric
vehicles (EV) previously considered in [15], [16]. In this
problem, we search for an exploitation plan for a set of EVs
over a discrete time horizon T = {0, . . . , tmax}. We aim to
fulfill as many reservations as possible with cars from our fleet.
When cars are not used we can recharge them. The work [15]
proves the NP-hardness of the problem and suggests a MILP
formulation that is further optimized with the Gurobi solver1.
The solver fails to find optimal (or even good) solutions in one
hour already for instances with 10 vehicles over a 48-hour time
horizon - motivating the exploration of heuristic approaches.

In the original MILP from [15] a set of inequality con-
straints ensure that the state-of-charge (SoC) of each EVs
battery is always non-negative and doesn’t exceed the battery
capacity. These inequality constraints are particularly challeng-
ing for quantum routines. We decompose the problem into
master and pricing problems: the master problem coordinates
the collective solution while the pricing suggests new charging
and utilization plans for individual EVs. The master problem
is equivalent to the NP-hard Set Partition problem [17] that
can be naturally formulated as QUBO [18] – following [10]
in our hybrid procedure we solve it with quantum annealing.
The pricing problem deals with the charging schedule limited
by the SoC-validity constraints. It uses a graph representation
of possible individual actions at each time step, a path in the
graph corresponding to a complete exploitation plan for one
vehicle. By associating different weights to the edges of the
graph in an iterative way we encourage the pricing problem
to include or not a particular reservation in the plan.

We numerically evaluate our approach on realistic data2.
As the actual quantum hardware can tackle the problems
of relatively modest size, in addition to experiments on the
DWave Advantage 6.1 system for small instances (over 8-hour
time horizon) we benchmark classical and quantum-inspired
meta-heuristics on master problems for large instances (over
48-hour time horizon).

Structure of the paper: In section II we introduce the
problem, briefly recall the structure of the MILP formulation
from [15], and present the decomposition on the master and
pricing problems. In section III we present our hybrid approach
and its potential applications. We report the results of our
numerical experiments in section III and discuss the insights
in section V.

1gurobi.com
2https://www.ac.tuwien.ac.at/research/problem-instances/#evfcap

II. PROBLEM STATEMENT

In the Electric Vehicle Fleet Charge and Allocation Problem
(EVFCAP) we consider a set V of n electric vehicles on a
time horizon T of tmax time steps each of duration ∆t (in
our data ∆t = 15min). Each vehicle v ∈ V has the same
battery capacity Ecap and an individual initial level of charge
Ev,0 ∈ [0, Ecap]. Reservations r ∈ R (|R| = rmax) have
each a starting time T start

r < T , an ending time T end
r ≤ T

and an expected energy consumption Eres
r ∈ [0, Ecap]. When

vehicles are not used, they can be charged from the grid
with power bounded by pmax ∈ R+. The price of the grid
energy varies in time and we denote its value at timestep t
with ct ∈ R+. If a reservation is uncovered, i.e. not served
by an EV from the fleet, it is fulfilled by a fuel car for
the cost cuncovEres

r . Future costs are anticipated with a term
α(Ecap − Ev,tmax) that penalizes low EV charging levels at
the end of the time period. The target is to find a schedule of
minimal cost satisfying all operational constraints.

A. Compact formulation

In [15] the problem is formulated as a Mixed Integer Linear
Program (MILP). In what follows we refer to this MILP as
compact formulation (compact MILP). It has (n + 1)rmax

binary variables: xr,v = 1 represent the assignment of the
reservation r to the vehicle v and yr = 1 (yr = 0) indicates
that a reservation is not assigned (assigned) to any vehicle.
Continuous variables represent charging powers of vehicle
v at time t as pv,t ∈ [0, pmax]. A multitude of constraints
prevent conflicts, such as the assignment of two overlapping
reservations to the same vehicle. In addition, for each vehicle
inequality constraints ensure that the battery charging levels
are within allowed bounds [0, Ecap].

B. Extended formulation

In this work, we focus on a slightly modified version of the
original problem [15]: First, we restrict the charging powers to
two discrete levels, pn,t ∈ {0, pmax} (instead of the continuous
values in the original formulation). Second, we discretize the
energy levels [0, Ecap] → E = {0, . . . , i∆E, . . . , imax∆E}
with equal spacing ∆E between these levels. The initial SoC
Ev,0 and the energies for reservations Eres

r are rounded to
the next lower and upper levels in E , respectively. Finally,
we ignore ”free” photovoltaic energy during the optimization
process and simply integrate it into the final solution.

This modified problem formulation still captures all the
relevant aspects and the complexity of the original problem
setting.

A feasible exploitation scenario for one EV, i.e. the as-
signment to reservation(s) and the charging schedule, can
be represented as a path on a weighted directed acyclic
graph G = (V,A) (see Fig. 1). Nodes V correspond to
possible charge levels E at different time steps {0, . . . , T}; two
auxiliary nodes source and sink help to encode the selection
of a vehicle from the fleet and the value of the final SoC
respectively. Arrows represent possible actions at different



timesteps: selection of a particular vehicle, charging, allocation
to a reservation, or nothing.

The number of nodes depends on the discretization step ∆E
and the number of timesteps |T |, while the number of arrows
is linear on the size of the problem: we add one arrow from the
source per vehicle and at most |E| arrows for each reservation.

The EVFCAP problem can then be decomposed into two
subproblems: i) the pricing problem which suggest new
promising exploitation scenarios, i.e. the paths in the graph
ii) the master problem which selects one feasible exploitation
scenario for each EV in the fleet from the subset of feasible
exploitation scenarios. Each exploitation scenario comes with
a cost, and the global objective is to minimize the total costs
of selected scenarios plus the cost of unsatisfied reservations.

Ti Ti+1 tmax

Ej

Ev,0

Eu,0

Ecap

cipmax∆t

0

pmax∆t

r1

Eres
r1

r2

αEcap

α(Ecap − Ei)

source

sink

Ti

Ei

Fig. 1. Graph of feasible exploitation scenarios. For clarity we show arrows
only for one internal node. The graph contains one node per discrete SoC level
per time step (black circles) and two additional nodes called source and sink.
Arrows correspond to different actions: charging (blue arrow), allocating to
a reservation (green arrows) and nothing (pink arrow). Only feasible actions
are represented in the graph. We connect the source node to the initial SoC
values Ev,0, v ∈ V (one arrow for each vehicle). All nodes corresponding
to the final timestep vi = (i∆E, tmax) are connected to the sink node. We
assign a cost to each arrow (black subscript). Arrows corresponding to the
charging at a timestep Ti get the cost value of cipmax∆t. The arrows going
to the sink node have the cost α(Ecap − Ei). All other arrows have zero
cost.
The black path is an example of a feasible exploitation scenario that uses the
vehicle u and satisfies one reservation: in this scenario, we take the vehicle
v with initial charge Ev,0, use it for one reservation starting at t = 0, then
charge it on some time intervals.

C. Master problem

We introduce one binary variable λp ∈ {0, 1} for each
path p ∈ P from the source node to the sink node in the
graph G. The cost of the path cp is a sum of the costs of
all arrows in it: it corresponds to the sum of the grid energy
costs (internal arrows) with the future costs (the arrow going
to sink). In addition, as in the compact MILP, we take one
variable yr ∈ {0, 1} per reservation r ∈ R; yr = 1 implies
that the reservation r is unsatisfied.

The master problem may be formulated as Set Partition:

min
∑
p∈P

cpλp + cuncov
∑
r∈R

Eres
r yr (1)∑

p∈P:
r∈p

λp + yr = 1, ∀r ∈ R (2)

∑
p∈P:
v∈p

λp = 1, ∀v ∈ V (3)

λp ∈ {0, 1}, ∀p ∈ P (4)

where
• r ∈ p in (2) means that for some Ej the arrow ar :

(Ej , T
start
r ) → (Ej − Eres

r , T end
r ) corresponding to the

reservation r is in the path p. The constraint (2) implies
that the reservation can be satisfied at most once.

• In (3) the notation v ∈ p means that the arrow taken
from the source node corresponds to the vehicle v. The
constraint (3) means that we have to select precisely one
path for each vehicle (it can be trivial).

The Set Partition problem (alternately called Exact Set
Cover) is NP-hard [17] as is its approximation within the
factor lnn [19]. Typical instances issued from the EVFCAP
data are difficult for the of-the-shell solvers: for example, the
Gurobi solver does not find optimal solutions within one hour
for 12 out of 30 instances with tmax = 192, n = 20 and
rmax = 320 from our dataset. On the other side, no inequality
constraints are present in this formulation, which allows for an
efficient mapping to a QUBO form. Therefore, if the quantum
annealing for the QUBO formulation rapidly returns good-
quality solutions, it can improve both the gap and the runtime
of the proposed decomposition scheme.

D. Pricing problem

The number of paths |P| in the graph G is exponential in
the size of our instance. Therefore, we can’t directly solve
even the relaxed version (where λp ∈ [0, 1]). We use so-
called column generation [20] originally introduced in [21] to
circumvent this obstacle. In column generation, while solving
the relaxation we do not consider all variables P at once, but
rather a restricted subset P ′ ⊂ P . We add new variables to P ′

only if they can improve the solution of the relaxation.
Promising variables are found in the pricing routine that

searches for violated cuts in the dual problem. Indeed, each
variable in the primal problem (whether in P ′ or not) corre-
sponds to a constraint in the dual problem, and by the duality
theorem if the dual solution is feasible, then the primal solution
is optimal [22].

In our case, the pricing is equivalent to the search of the
shortest path between source and sink nodes where edges
corresponding to vehicle selection and reservations get costs
determined by the dual solution of the restricted problem.

III. HYBRID QUANTUM-CLASSICAL APPROACH

We suggest a hybrid approach that uses a classical column
generation technique to build an instance of the Set Partition



Master Problem
(variables P)

Solving the relaxation
Restricted

Master
Problem

(variables P ′)

Relaxation
(λp ∈ [0, 1])
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dual
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Pricing
problem

p improves
the solution?
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No

P ′ → P ′ ∪ {p}

Solve p Relaxation
solved

P ′

Branching
Exact Branch & Price

Solve
Integer

Master Problem
over variables in P ′

Heuristic

Fig. 2. The Hybrid quantum-classical algorithm for the EVFCAP problem. The red node (solution of the integer master problem) is delegated to the quantum
annealing. Dashed part shows the workflow of the traditional Branch & Price.

problem, that is further transformed into a QUBO form and
solved with quantum heuristics (see Figure 2).

In the first (classical) part we solve the relaxed version of the
master problem: we start from a restricted set of variables that
guarantee the existence of a feasible solution (trivial plans) and
iteratively add variables that may improve the relaxed solution.
If the pricing problem fails to find a ”promising” variable,
the relaxation is solved to optimality. In such case we take
all generated variables (P ′) and consider an integer master
problem over them - this ILP is equivalent to a search of an
optimal set partition.

In the traditional Branch & Price [20], a fractional solution
for relaxation leads to the branching, and the variables may
be regenerated in every node of the branching tree. The
regeneration is necessary to find an exact optimum as an
optimal integer solution may involve variables that don’t
appear in the solution process for the relaxed linear program.
The quantum-assisted procedure presented in [10] integrates
the quantum solver as a primal heuristic in the traditional
Branch & Price scheme.

In contrast, in our approach, the variables are generated
only once in the so-called root master problem. Compared
to Branch & Price we significantly reduce the running time at
the cost of the optimality guarantees. In a nutshell, we obtain
a heuristic method, where the column generation presents
candidate exploitation plans for individual vehicles that are
further combined in the master problem.

Our hybrid approach can be applied in the same contexts
as the Branch & Price (or heuristic Branch & Price) when,
in addition, the time-to-solution is an important performance
metric. We recall that the Branch & Price is particularly
suitable for complex planning and logistics problems where
difficult (nonlinear) constraints restrict the set of possible
solutions [23].

IV. NUMERICAL RESULTS

A. Evaluation of the decomposed formulation

On Figure 3 we compare the quality of solutions returned
with the proposed decomposition scheme (”EF” for extended
formulation) to the results found within one hour by the
Benders-decomposition-based heuristic from [15]. As a base-
line, we take the solution obtained by Gurobi within one
hour on the compact MILP formulation (CMILP ). In this
experiment, we aim to evaluate the relevance of the decom-
position (disregarding the performance of quantum solvers),
so we delegate the master problem to the Gurobi solver
(version 9.5). We report the relative difference in the cost
value, (Ch − CMILP )/CMILP , where Ch is the value of
the objective function in the solution returned by heuristics
h : (BH) and (EF).

We observe that on difficult instances the proposed EF
approach leads to solutions of comparable quality while being
significantly faster, except for the largest instances where the
time needed for solution hits the one hour (3600 seconds)
limits. We recall that on instances with tmax = 192 the
Benders-decomposition-based heuristic always runs for one
hour disregarding the values of other parameters [15]. More-
over, for large instances with n = 20 vehicles the performance
of EF approach scales better since the relative cost difference
decreases with increasing rmax. However, this is most likely
due to the degrading performance of the reference MILP
approach rather than an improved performance of the proposed
heuristic approaches.

B. Metaheuristics for the master problem

On large instances (n = 20, rmax = 16n = 320 ) the
Gurobi solver reaches the 1-hour time limit while solving the
integer master problem (Figure 3, last panel). Therefore, we
accelerate this step by moving from the exact Gurobi solver to
the quantum annealing as well as to classical heuristic solvers.



Fig. 3. Solution quality and runtime (in seconds) on instances for various numbers n of EVs, maximal number of reservations rmax and for tmax = 192.
Relative cost changes are given with respect to the 1-hour compact MILP solution. We report the values for the Bender-decomposition-based heuristic from
[15] (BDH) and for the approach proposed here (EF) on instances with tmax = 192.
The first three plots demonstrate the relative difference in the cost value obtained by both heuristics. We observe that on most difficult instances (with n = 20
or with n = 10 and rmax > 8n) the solution quality of the EF heuristic is systematically higher compared to BDH. For the largest instances (n = 20), the
negative relative cost (with respect to the MILP solution) demonstrates the advantage of the heuristics over the time-limited Gurobi solution.
The rightmost plot demonstrates the runtime of the EF heuristic. On the largest instances (n = 20, rmax = 16n) it hits the one-hour limit. However, it
doesn’t disqualify the EF approach: we recall that the BDH runtime always equals 1 hour (3600 seconds), and the compact MILP is solved to optimality
before the one-hour time limit only for n = 5.

Fig. 4. Performance of classical metaheuristics on the generated instances of
the Set Partition problem. (SA) stands for the simulated annealing, (Tabu) for
the tabu search, (VA) for the vector annealing by NEC.

We test the performance of the classical metaheuristics
simulated annealing [24] and tabu search [25] (Figure 4)3.
We also benchmark the quantum-inspired vector annealer by
NEC4 on our instances of the Set Partition Problem. The vector
annealer performs the simulated annealing (on a vector super-
computer) but restricts local moves to the feasible subspace.
We observe that this modification significantly changes the
behavior of the metaheuristic: while the standard simulated
annealing on the QUBO formulation finds better solutions with
an increasing number of reservations (and, as a consequence,
the number of constraints in the master problem), the opposite
is true for the vector annealer.

Comparing the approximate solutions with the solutions
found by Gurobi in one hour (Fig. 4), we observe that
the quality of the solution decreases substantially. The cost

3We use the implementation from the dwave-neal module
4https://www.nec.com/en/global/quantum-computing/

difference is always positive (no improvement) and for large
instances is at least 10% worse. However, given the substan-
tially reduced runtime - each heuristic takes no more than
5 minutes - it might be reasonable to use heuristics and
trade solutions quality for runtime improvement. As quantum
annealers may further reduce the time-to-target [3], in a close-
to-online regime (where new reservations appear during the
time-horizon) the hybrid approach is a promising option for
cost-efficient planning.

C. Quantum annealing for the master problem

Finally, we evaluate the potential of our quantum-classical
hybrid scheme on instances with tmax = 32 where we use the
DWave Advantage 6.1 for solving the Set Partition problem of
the proposed decomposition scheme. If the quantum annealer
returns an infeasible solution we restore feasibility in a greedy
fashion: subsets from the infeasible solution are iteratively
added to a partial solution if the addition doesn’t violate any
constraints.

We remark that even if we are able to run experiments only
on the smallest instances from the benchmark dataset, we used
the real data and not the simplified one as in most papers [8],
[10] that benchmark the quantum annealer on industrial use-
cases. We compared the obtained results to the ones found
by QuEnc - the variational quantum algorithm for gate-based
quantum computers based on amplitude encoding [26].

In the DWave Advantage hardware physical qubits interact
only with their local neighbors in the Pegasus layout. The
QUBO has to be embedded in the hardware architecture,
which leads to an overhead since a logical qubit xi has to be
represented by a chain of physical qubits {q1i , . . . , qki }, see,
e.g., [27].

We observe (see Tab. I) that quantum annealing is able to
find optimal or near-optimal solutions for very small instances
of n = 1 and n = 2 EVs. For n = 5 the relative performance



TABLE I
GAP ON 90 INSTANCES FOR THE QUANTUM ANNEALING (QA) AND

QUENC

n rmax QA Gap (%) #physicala #logical a QuEnc Gap (%)
1 4 0.00 4.70 4.70 0.00
1 8 0.00 5.30 5.30 0.00
1 16 0.00 5.80 5.60 0.00
2 8 0.21 21.10 14.80 22.99
2 16 0.00 15.90 13.20 6.31
2 32 0.01 18.60 14.80 7.31
5 20 23.75 239.70 61.20 27.78
5 40 9.59 251.00 80.80 9.50
5 80 5.25 256.10 121.20 4.17
a number of physical and logical qubits used by the quantum annealer.

is worst for the smallest number of reservations rmax = 20 and
improves with larger rmax. Interestingly, this trend correlates
with the embedding overhead. The QuEnc approach shows the
same qualitative behavior as a function of rmax for fixed n,
but already fails to find optimal solutions for n = 2 EVs.
The possible cause might be the generic hardware-efficient
structure of QuEnc ansatz – contrary to the problem-specific
annealing evolution or cost-dependent QAOA ansatz [28].

V. DISCUSSION

We suggested a new approach to address real-world prob-
lems with hybrid quantum-classical routines. Instead of for-
mulating the problem as one MIP, we separate it into master
and pricing problems; the NP-hard master problem is further
delegated to a quantum (or hybrid) algorithm. Constraints
that are difficult for quantum routines are managed inside the
classical pricing routine.

We tested our approach on the EVFCAP problem. The
proposed decomposition of the original problem into two sub-
problems enables hybrid quantum-classical approaches despite
the many inequality constraints in the compact formulation.
Additionally, for larger instances, it allowed us to find better
solutions in a shorter time while using only classical methods.
Our numerical experiments also confirm that quantum anneal-
ing is in principle capable to solve the master problem. This
spurs the hope that the integration of quantum routines can
further accelerate the search for a good-quality approximate
optimum in the future. However, experiments on hardware
with more qubits and better connectivity are necessary to
further evaluate the potential of a quantum advantage for this
problem.

In this regard, the proposed approach provides a promising
route to solve planning problems with difficult constraints with
hybrid quantum-classical schemes.
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