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Abstract—We show that subtle acoustic noises emanating
from within computer screens can be used to detect the content
displayed on the screens. This sound can be picked up by ordinary
microphones built into webcams or screens, and is inadvertently
transmitted to other parties, e.g., during a videoconference call
or archived recordings. It can also be recorded by a smartphone
or “smart speaker” placed on a desk next to the screen, or from
as far as 10 meters away using a parabolic microphone.

Empirically demonstrating various attack scenarios, we show
how this channel can be used for real-time detection of on-screen
text, or users’ input into on-screen virtual keyboards. We also
demonstrate how an attacker can analyze the audio received
during video call (e.g., on Google Hangout) to infer whether the
other side is browsing the web in lieu of watching the video call,
and which web site is displayed on their screen.

I. INTRODUCTION

Physical side-channel attacks extract information from
computing systems by measuring unintended effects of a
system on its physical environment. They have been used to
violate the security of numerous cryptographic implementa-
tions (see [36], [1], [29] and the references therein), both
on small embedded devices and, more recently, on complex
devices such as laptops, PCs, and smartphones [11], [19],
[6], [20], [13], [12], [21]. Physical emanations were used to
recover information from peripheral input/output devices such
as screens [15], [32], [16], printers [4] and keyboards [2], [7],
[48], [25], [5], [26], [51], [14].

Attackers seeking to exploit such channels face a challenge:
attaining physical proximity to the target computer, in order
to acquire physical measurements. In many settings, physical
access is controlled, and attempts to attain proximity will
be blocked or detected. Alternatively, the attacker can seek
to control suitable sensors that are already located in close
proximity to the target; this may be tractable when there
are ubiquitously deployed commodity devices, with suitable
sensors, that can be adversarially controlled; for example, one
of the low-bandwidth acoustic attacks [22] can be conducted
via a smartphone, using a malicious app that records audio
using the built-in microphone when the smartphone is placed
(for an hour) near the target.

We raise a third possibility: are there physical side-channel
attacks for which the requisite physical measurements are
readily available, and are shared by victims with untrusted
parties as a matter of course, and yet the victims have no reason
to suspect that they inadvertently leak private information?

∗ Authors are ordered alphabetically.

We observe a new physical side channel that facilitates
such an attack: content-dependent acoustic leakage from LCD
screens. This leakage can be picked up by adjacent micro-
phones, such as those embedded in webcams and some com-
puter screens. Users commonly share audio recorded by these
microphones, e.g., during Voice over IP and videoconference
calls. Moreover, the pertinent sounds are so faint and high-
pitched that they are well-nigh inaudible to the human ear, and
thus (unlike with mechanical peripherals) users have no reason
to suspect that these emanations exist and that information
about their screen content is being conveyed to anyone who
receives the audio stream, or even a retroactive recording. In
fact, users often make an effort to place their webcam (and
thus, microphone) in close proximity to the screen, in order to
maintain eye contact during videoconference, thereby offering
high quality measurements to would-be attackers.

Exploiting this channel raises many questions: What form
of content-dependent acoustic signals are emitted by screens?
Can these emanations be used to detect screen content? What
measurement equipment and positioning suffices to measure
them? Can they be acquired remotely via Voice over IP
applications, despite the signal conditioning and lossy codecs
employed by such applications?

A. Our results
We observe the existence of the aforementioned synesthetic

side channel: “hearing” on-screen images. We characterize this
content-dependent acoustic leakage on numerous LCD screens
of various models and manufacturers. The leakage has existed
in screens manufactured and sold for at least the past 16 years,
old and new models alike, in both PC and laptop screens, with
both CCFL and LED backlighting. See Appendix C for a list
of screens we experimented with, all of them were found to
exhibit this acoustic leakage.

We show that this leakage can be captured by:

• Webcam microphones (see Figure III.3).
• Mobile phones in proximity to the screen (Figures III.2).
• “Smart speaker” virtual assistant devices (Figure III.4).
• The built-in microphones of some screens.
• A parabolic microphone from a 10-meters line-of-sight to

the back of the screen (see Figure III.1).

Moreover, the leakage can be observed and analyzed:

• In archived audio recordings.
• From the remote side of a Google Hangouts video-

conference call.
• In the cloud-stored audio saved by virtual assistants.

We demonstrate exploitation of the above attack vectors for
several attack goals:
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1) Extracting text displayed on the screen (in a large font).
2) Distinguishing between websites displayed on the screen,

or between websites and a videoconference screen.
3) Extracting text entered via Ubuntu’s on-screen keyboard.

(This shows that on-screen keyboards are not an acoustic-
leakage-resistant alternative to mechanical keyboards.)

Our attacks use tailored signal processing combined with deep
neural networks. We demonstrate that leakage characteristics,
and trained neural-networks, often generalize across screens
(even of different models) allowing for training to be done on
one screen while attacking another. Finally, the attacks are ro-
bust to office-environment noise-level from nearby equipment
such as computers, other monitors, and human speech.

B. Related work
Physical side channels. Numerous prior works demonstrated
physical side channels. Categorized by channels, these in-
clude electromagnetic radiation [41], [18], [15], [32], [16];
power consumption [28], [29], [36]; ground-potential fluctua-
tions [21]; timing (often observable by any of the above) [30],
[9], [8]; and acoustic emanations from keyboards [2], [7],
[48], [25], [5], [26], [51], [14], printers [4] and CPU power
supplies [22]. Acoustic emanations are also mentioned in
NACSIM 5000 “TEMPEST Fundamentals” [38] and related
US government publications, but only in the context of elec-
tromechanical devices (as described in [38]: “[...] mechanical
operations occur and sound is produced. Keyboards, printers,
relays — these produce sound, and consequently can be
sources of compromise”; see [22] for further discussion).

While some physical side channels have been thoroughly
explored, the only previous work extracting information from
involuntary acoustic leakage of electronic components is
Genkin et al.’s acoustic cryptanalysis [22], which exploits
laptop coil whine, and does not consider leakage from displays.

Screen emanations. Extracting screen content via elec-
tromagnetic emanations (“Van Eck phreaking” and screen
“TEMPEST”) is well known and studied, originally for CRT
screens [15], and later also for modern flat-panel screens
and digital interfaces [32], [33]. Such electromagnetic attacks
require antennas and radio receivers in physical proximity to
the screen, and tuned to suitable radio frequencies. Acoustic
attacks relying on microphones, which are ubiquitous and open
new attack scenarios, have not been previously addressed.

C. Outline
This paper is organized as follows: Section II charac-

terizes the content-dependent acoustic leakage from various
screens, and suggests a signal processing scheme for producing
clean leakage traces. Section III introduces the attack vec-
tors evaluated in this paper. We then discuss several attack
scenarios, categorized by the attacker’s goal: an on-screen
keyboard snooping attack (Section IV), a text extraction attack
(Section V), and a website-distinguishing attack from various
vantage points, including a remote attack over a Hangouts
VoIP call (Section VI). Section VII explores generalization
of leakage characteristics, as modeled by the attacker, across
screens and screen models. Sections VIII discusses limitations,
Section IX discusses mitigations, and Section X concludes.

II. CHARACTERIZING THE SIGNAL

In this section we explore the acoustic leakage signal
emitted by various LCD computer screens (with both CCFL

and LED backlighting) as well as attempt to characterize the
connections between the leakage signal and the displayed
image. We begin by providing some background about the
process of rendering an image on modern LCD screens as well
as by describing the experimental setup used in this section.

A. Background and experimental setup

Image rendering mechanism. Computer screens display a
rectangular l×n matrix of pixels. Each pixel is typically further
divided into red, green, and blue sub-pixels where the intensity
of each sub-pixel is an integer between 0 and 255, thereby
allowing the color of pixel to be uniquely represented using
24-bit integers. The screen’s refresh rate, r, determines how
many times per second an image to be displayed is sent to
the screen by the computer’s graphics card. The screen then
renders the received image by iterating over the pixel rows
from top to bottom, with the value of the pixels in each row
rendered from left to right. Notice that the screen always
re-renders the image it displays (using the above-described
method) r times per second, even if no changes occurred in
the image to be displayed. Typically, screens are refreshed
approximately 30, 60, or 120 times per second, with a refresh
rate of approximately 60 Hz being the most common.

Experimental setup. For experiments performed in this
section we captured the acoustic noise emanating from various
monitors using a Brüel & Kjaer 4190 microphone capsule (ef-
fective up to approx. 40 kHz, well beyond its nominal 20 kHz
range), attached to a Brüel & Kjaer 2669 preamplifier. For
power supply and further amplification, these were connected
to a Brüel & Kjaer 2610 or 5935 amplifier. The resulting
amplified signal was filtered as necessary using a high-pass
filter (with a cut off frequency between 10 and 21 kHz) and
digitized using a USB sound card, at a sampling rate of
192 kHz (either a Creative E-MU 0404 or Focusrite Scarlett
2i2). We visualize the spectrograms of these signals using the
Baudline software and (from Section II-C onward) process
them via custom scripts.

Vsync probe. For the purpose of signal exploration, we shall
sometimes utilize a trigger signal marking the start of each
screen refresh period; this allows us to focus on the acoustic
leakage from each screen refresh, separately from the task of
synchronizing to the refresh rate. We implement this trigger by
constructing a VGA tap cable that exposes the VGA’s vsync
line which (as specified in the VGA standard) carries a short
0.5 Volt pulse at the start of each screen refresh cycle. Note
that the vsync probe is a didactic aid; it is not necessary for
the actual attacks.

Screen selection. In this paper we analyze acoustic leakage
present from 31 screens of 12 different models from 6 different
manufacturers, with various resolutions and backlight types
(LED or CCFL), as tabulated in Appendix C. The screens used
are those already present in our university lab and offices at the
time of writing (which, heuristically, offers a sample of popular
models), augmented by ad hoc purchases of current models
sold on Amazon.com. For in-depth investigations throughout
the paper we chose, from the above, the screens that presented
the clearest signal. For cross-screen experiments we purchased
additional screens, chosen primarily by ready availability on
eBay of used instances with diverse usage histories.
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Fig. II.1: Setup used for signal characterization. In this
photograph, (A) is a Soyo DYLM2086 target screen, (B) is
a Brüel & Kjaer 4190 microphone, connected to a Brüel &
Kjaer 2669 preamplifier, (C) is a Brüel & Kjaer 2610 amplifier,
(D) is a Creative E-MU 0404 USB sound card with a 192 kHz
sample rate (E) is a laptop performing the attack.

B. Exploring the leakage signal

Distinguishing various images. We begin our analysis of
acoustic leakage emitted from LCD computer monitors by
attempting to distinguish simple repetitive images displayed
on the target monitor. For this purpose, we created a simple
program that displays patterns of alternating horizontal black
and white stripes of equal thickness (in pixels), which we shall
refer to as Zebras. The period of a Zebra is the distance,
in pixels, between two adjacent black stripes. Finally, we
recorded the sound emitted by a Soyo DYLM2086 screen
while displaying different such Zebras. See Figure II.1 for a
picture of our recording setup.

As can be seen from Figure II.2–b, the alternating the
displayed Zebras causes clear changes in the monitor’s acoustic
signature. See Figure II.3 for additional examples of monitors
that displayed particular clear signals. Beyond those presented
in figures throughout the paper, we experimented with dozens
of other monitors, including both old and newer-generation
monitors of various sizes, and observed similar effects. We
conclude that the leakage has existed in screens manufactured
and sold for at least the past 16 years, old and new models
alike, including LED and CCFL-based screens.

Acoustic or EM? To verify that the obtained signal indeed
results from an acoustic signal emanating from LCD monitors,
as opposed to electromagnetic radiation accidentally picked
up by the microphone, we placed a sheet of non-conductive
sound-absorbing material (e.g., thick cloth or foam) in front
of the microphone. Figure II.2–a is analogous to Figure II.2–
b using the same setup, but with the microphone physically
blocked with a thick piece of cloth. As can be seen in the
figure, the resulting signal is severely attenuated, thus proving
that the signals observed here are indeed acoustic. Additional
evidence is that as microphone-to-screen distance increases,
the induced signal delay matches the speed of sound rather
than the speed of light (see Appendix D).1

1 Conversely, with some of the microphones used in the self-measurements
experiments of Section III-C, the observed signal appears to have both acoustic
and electromagnetic contributions (judging by the above methodology). This
is, presumably, due to poor shielding and grounding on those cheap micro-
phones. However, in the self-measurement setting, the precise physical channel
through which the emanation propagates is inconsequential.

(a) covered microphone (b) uncovered microphone

Fig. II.2: (right) Spectrogram of acoustic signals emitted
by Soyo DYLM2086 screen while displaying alternating Ze-
bra patterns. Notice the difference in the screen’s acoustic
signature caused by the change in periods of the displayed
Zebra pattern. (left) Spectrogram of a recording in an identical
setting, but with the microphone covered by a thick piece of
cloth. In both spectrograms, the horizontal axis is frequency
(0-43 kHz), the vertical axis is time (10 sec), and intensity is
proportional to instantaneous energy in that frequency band.
The yellow arrow marks the 4 kHz leakage signal expected to
be produced by a Zebra pattern with a period of 16 pixels.

Physical leakage source. Having established the acoustic
nature of the leakage signal, we attempted to locate its source
within the internal display electronics. To that end, we dis-
assembled a ViewSonic VA903b LCD monitor, which has
a simple, modular internal design with a moderate number
of internal components. As can be seen in Figure II.4, in
addition to the LCD panel itself (A) the ViewSonic monitor
has two main boards: a digital board (B) which is responsible
for implementing the monitors logic and picture rendering
functions and a power supply board (C) which provides stable
voltage to the digital circuits and backlight but does not
directly process the screen’s content.

In an attempt to locate the component producing the
acoustic leakage, we measured the acoustic signals in various
locations on both boards while displaying Zebra patterns on the
LCD panel. We localized the source of emanation to within the
monitor’s power supply board, in the area that is responsible
for supplying power to the monitor’s digital board (circled in
green). We were unable to localize the source down to a single
component, presumably due to acoustic reflections, diffraction
and mechanical coupling in the board.2

Leakage Mechanism. We conjecture that the momentary
power draw, induced by the monitor’s digital circuits, varies
as a function of the screen content being processed in raster
order. This in turn affects the electrical load on the power
supply components [29] that provide power to the monitor’s
digital board [16], causing them (as in [22]) to vibrate and
emit sound. Unfortunately, the precise propagation of signal
along this causal chain is difficult to precisely characterize:
power signal modulation have a complex dependence on
circuit topology, layout and environment; inadvertent power-
to-acoustic transduction varies greatly with circuits electrical
and mechanical characteristics; the different channels involve
different means of acquisition and have different bandwidth
and SNR constraints, necessitating different signal processing;
and the choice of acoustic sensors and their placement creates

2In an attempt to mitigate these, we also tried to lift major components
away from the board and connect them by extension wires; but this changed
the circuits behavior and resulting signal, and did not yield conclusive results.
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(a) Samsung 920NW (b) HP ZR30w (c) Dell U3011t (d) Philips 170S4

Fig. II.3: Acoustic emanations of various target screens while displaying Zebra patterns of different periods, recorded using our
setup from Section II-A. The horizontal axis is frequency (0-43kHz) and vertical axis is time (10 seconds).

Fig. II.4: Internal components of a ViewSonic VA903b moni-
tor. (A) is the LCD panel, (B) is the screen’s digital logic and
image rendering board and, (C) is the screen’s power supply
board. The green circle marks the approximate source of the
acoustic signal. On the right is the acoustic Zebra leakage
(similarly to Figure II.3) from the disassembled screen.

additional considerations that cannot be separated from the
transduction’s physical nature. We thus focus on the aggre-
gate bottom-line effect and its exploitability in the practical
scenarios (e.g., webcams and phones).

Analyzing the leakage frequency. Having verified that
different images produce different acoustic leakage, we now
turn our attention to the connection between the displayed
image and the produced leakage signal. Indeed, assume that
the rendering of individual pixels produce sounds that depend
on the individual pixel’s color (e.g., black or white). Because
the entire screen is redrawn approximately r = 60 times
per second, we expect that spatial-periodic changes in the
displayed pixels will introduce a strong frequency component
corresponding to the frequency of transitions between render-
ing black and white pixels.

More specifically, a Zebra with a 16-pixel period drawn
on a screen with a vertical resolution of 1050 pixels produces
1050/16 = 65.625 color changes per screen redraw. Account-
ing for approximately 60 redraws per second, the acoustic
leakage is expected to have a strong 65.625 · 60 = 3937.5
Hz frequency component; which is clearly observable in Fig-
ure II.2–b (marked by a yellow arrow).

C. Signal analysis in the time domain
Following our hypothesis that the intensity of pixel lines

is directly manifested in the leakage signal, we monitored the
leakage of a Soyo DYLM2086 screen (see Figure II.5) while
displaying the Punctured Sinusoidal Zebra image shown in
Figure II.5–a. This is a Zebra pattern with a 21-pixel period,
modified in two ways. First, the intensity change between
stripes is smoothed, following a sinusoidal pattern of the given
period (to minimize harmonic distortions). Second, we “punc-
tured” it by placing a full-width third-height black rectangle

at the center of the image (to induce clearly-observable times
when the sine waves disappears and reappears).

As can be seen in Figure II.5–b, displaying the Punc-
tured Sinusoidal Zebra causes a strong leakage at the Ze-
bra’s “natural” frequency of 1050/21 · 60 = 3000Hz on
the resulting spectrogram. Next, plotting the acoustic signal
in the time domain (after applying a band-pass filter at 3-
4kHz) has resulted in a 3 kHz signal (matching the Zebra’s
frequency), where the amplitude of the middle third of the
signal is considerably lower compared to the first and last
third (see Figure II.5–c). Experimenting with different sizes
for the solid black area, the lower-amplitude area increases and
decreases correspondingly. We conclude that the momentary
amplitude of the acoustic leakage signal is a rather accurate
approximation of the brightness level of the individual pixel
rows of the target monitor.

D. Analyzing amplitude modulated signals
Observing the spectrogram in Figure II.2–b, we notice that

in addition to signal changes in the 0 − 22 kHz range which
correspond to different Zebra patters, there are also changes at
the 27− 37 kHz range which are again correlated to different
Zebra patters. Analyzing the latter range, we notice that the
signal takes form of two distinct side lobes that mirror a central
32 kHz carrier and that increasing the period of the Zebra
image being displayed leads to the carrier’s side lobes coming
closer together. This signal behavior at the 27− 37 kHz range
is highly indicative of a different type of leakage (compared
to the 0 − 22 kHz range) where an amplitude modulated
signal being transmitted on a central carrier. Investigating this
hypothesis, in Figure II.5–d we plot in the time domain the
signal obtained after applying a 27.5-38 kHz bandpass filter
around the carrier and its two side lobes. As can be seen, there
is a clear correlation between the color of the displayed pixel
row and the amplitude of the 32 kHz carrier (blue), where dark
rows corresponding to high signal amplitudes. Recovering the
envelope signal (red line in Figure II.5–d) using the Hilbert
transform method [24] results in a direct leakage of the color
of the displayed pixel row.

Leveraging the modulated signal. As the modulated signal
is present on a carrier frequency that is much higher than the
frequency of most naturally occurring acoustic signals (e.g.,
human speech), it can be leveraged to extract a relatively clean
version of the screen’s image. We now proceed to describe our
method for performing acoustic image extraction.

Because the screen refreshes approximately 60 times a
second, the output trace produced by our extraction process
is a 192 kHz-sampled time series vector in the duration of one
refresh cycle (1/60 s). Ostensibly, we simply need to sample
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(a) Punctured Sinusoidal Zebra image with period 21 (b) Spectrogram (0-43 kHz, 800 ms) of the resulting acoustic
signal. Notice the strong acoustic signal present at 3 kHz.

(c) A segment of the acoustic signal after applying a 3-4 kHz
bandpass filter. Notice the clear correlation between the amplitidue
of the red signal and the brightness of pixel lines.

(d) Blue: The acoustic signal after applying a 27.5-38 kHz bandpass
filter around the screen’s carrier. Red: amplitude demodulation
of the blue signal. Notice the inverse correlation between the
amplitude of the red signal and the brightness of pixel lines.

Fig. II.5: Analyzing the acoustic leakage of a Soyo DYLM2086 screen. Recording captured using our setup from Section II-A.
Figures II.5–c and II.5–d are time-synchronized using the vsync probe.

the demodulated signal for one refresh cycle. However, as the
leakage signal is not completely noise free, we leverage the fact
that the entire image is redrawn 60 times per second (thus pro-
ducing a fresh sample of the leakage signal corresponding to
the image at each redraw) to reduce noise by averaging. More
specifically, after recording the screen’s acoustic emanations
for a few seconds, we bandpass filter the obtained recording
around the carrier signal (allowing only the frequencies 27.5–
38) and AM-demodulate it by subtracting the trace’s average,
computing the analytic signal using a Hilbert transform [24],
and taking its absolute value. We then divide the signal into
chunks of samples where each such chunk contains the acoustic
leakage produced during a single screen refresh cycle. Finally,
we perform sample-wise averaging of the chunks.

For traces acquired while the vsync probe is attached
(see Section II-A), we can easily apply this approach: after
demodulating, we chop the signal into chunks according to
probe’s signal, so they correspond exactly with refresh periods,
and average. Figure II.6 illustrates this.

Modulated signal quality. We observe that while individual
chunks exhibit some noise-related variations, they do tightly
follow a similar content-dependent pattern, with an average
Pearson correlation coefficient of 0.957 between a chunk and
the average of all chunks. We used this correlation test to
perform a systematic investigation of the effect of distance
on the leakage signal (see Appendix D). We found that by
this metric, the content-dependent leakage is observable when
recording at a distance of up to 3 meters (by a bare microphone

Fig. II.6: One-period modulated signal chunks (in color) and
their average (in black), of the “black-hole” screen trace (see
Figure II.5–a).

without a parabolic dish).

1) Chunking challenges: The vsync probe we use above
is not available to the attacker, who must nevertheless divide
the signal accurately into chunks whose phase within a refresh
period is almost identical. Next, we discuss the challenges in
this, and our approach in addressing them.

Challenge 1: drift. Unfortunately, using exactly 60 Hz is
usually erroneous by up to 0.2 Hz. The refresh rate used has to
be extremely accurate: in our sample rate (192 kHz) and around
a 60 Hz refresh rate, an error of about 0.002 Hz would cause
a drift of one sample per ten chunks. Even such a small error
would introduce destructive interference in averaging hundreds
of chunks. The attacker thus has to very accurately measure the
refresh rate. Empirically, even for the exact same configuration,
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the refresh rate has slight changes of up to 0.02 kHz.

Challenge 2: jitter. Using the vsync probe (see Section II-A),
we examined refresh cycles. We observed signal jitter that
caused destructive interference even when averaging with the
accurate refresh rate. The jitter creates timing abnormalities
that are not averaged out over a few seconds. For our Soyo
monitor, every few dozen refreshes, there is an abnormal cycle,
whose duration is abnormal. The abnormalities are erratic:
cycles can be either down to 10% shorter than 1/60 s long, or
as long as 1/30 s. Even with the accurate average refresh rate,
drift still occurs: the average refresh rate is actually far from
the refresh rate for non-abnormal refresh cycles. Effectively,
every few hundred cycles, the refresh period gets phase-shifted
by some unknown value.

Naive solution: correlation. A natural approach is first
approximating or measuring the refresh rate, segmenting the
trace into chunks corresponding to refresh cycle duration, and
use correlation with one arbitrarily chosen “master” chunk
to phase-align the traces, i.e., trace phases are aligned such
that correlation is the highest. Then, outlier rejection can be
performed to mitigate jitter and drift in still-misaligned chunks.
We found the variants of this approach to underperform
even when the refresh rate used is extremely accurate (see
Appendix A2). Presumably, this is because they all allow for
very lenient alignment of the chunks to the master chunk, i.e.,
all chunks are rotated so that they correlate best with the master
chunk, which contains a noisy version of the signal of interest.
Averaging is thus likely to increase the noise in the master
chunk. Another problem is arbitrarily setting the master chunk,
which can produce an abnormally noisy chunk. The approach
is also prohibitively slow.

2) Our denoising approach: We need a chunking algorithm
that is robust to jitter and small drift, i.e., every chunk should
correspond to a refresh cycle at a specific phase (identical for
all chunks). Denote the sample rate fs. We empirically observe
that, except for abnormal cycles, refresh times are relatively
stable in the following sense: for each of our recordings there
exists an integer W ≈ fs

r such that cycles are either W or
W + 1 samples long, implying that the actual refresh cycle
is between fs

W and fs
W+1 . Moreover, W is always one of

two possible consecutive numbers: S, S − 1. Non-abnormal
cycle sizes are therefore always in S − 1, S, S + 1. Another
empirical observation is that Pearson correlation values can
be used to heuristically distinguish between pairs of chunks
with the same cycle phase and ones with different phases:
same-phase chunks are typically above some threshold value,
whereas different-phase chunks are typically below it (espe-
cially if the phase difference is more than a few samples). Our
chunking algorithm is parametrized by S, by a small integer
d, and a “correlation threshold”, a real number T .

High-level overview. The algorithm starts from the first
sample in the signal, and iteratively finds the next chunk start
location using Pearson correlation with a reference chunk,
assuming that each chunk size is in G = {S − d, ..., S + d}.
The range d is very small: in our experiments it is usually
1, and never more than 3. This is designed to make small
adaptive changes in chunk sizes to account for the minor drift
introduced by the refresh-rate approximation and, sometimes,
misalignment made in the previous round. When correlation
of the reference chunk with the next chunk drops below T , we
enter a “sync” mode where the purpose is to re-synchronize the

chunk phase, again using correlation. If the algorithm enters
sync mode for more than 15% of the signal chunks, or if
the algorithm does not exit sync mode after three iterations,
it quits with an error. After averaging, we rotationally shift
the resultant array such that the highest value is the first.3

Appendix A1 describes our algorithm in detail.

Choosing parameter values. d is chosen to be very small
to ensure we are not increasing the noise by maximizing
correlation (see advantages below). We used 3 for the keyboard
snooping and cross-screen attacks, and 1 for the other ones. T
should be the threshold that differentiates best between out-of-
phase chunk pairs and in-phase chunk pairs. For clean signals
such as the close-range attack, we chose 0.9. For noisier signals
we chose 0.4-0.8, accepting some “false” entries into sync
mode. We measured S = 3206 to S = 3202 empirically
using the vsync probe. The attacker, however, does not need
to attach a probe to the victim computer: since the range of
possible values is small, the attacker can apply brute force
guessing and, using our algorithm, choose the value of S that
maximizes average chunk correlation with the master chunk
and minimizes sync mode iterations. This approach accurately
finds the correct S value using under a minute of victim
screen recordings. In our “cross-screen” experiments described
throughout the paper (e.g. in Section VII), we performed
attacks without attaching a vsync probe to the victim screens.

Advantages of this approach. First, it is less likely to
augment the noise introduced by the master chunk. This is
because of its strict limitation: the vast majority of chunks
found have to be consecutive and with a very tight size
constraint. Only the first chunk in each sequence is leniently
aligned such that it correlates best with the master chunk.

Second, the master chunk is not arbitrarily found, but is a
chunk that correlates well with at least its consecutive chunk.
An abnormally noisy chunk is less likely to be selected.

Third, the algorithm is not parametrized by the exact re-
fresh rate. Instead, it can use an approximation. Not depending
on the exact refresh rate is crucial, since it slightly changes
with time, so the attacker cannot be expected to track it.

Finally, this algorithm is much faster than the rotational-
shift-based baseline. The complexity of both methods is dom-
inated by the required Pearson correlation computations, an
operation with complexity O (S). The baseline’s approach
computes the Pearson correlation and performs this C × S
times, where C is the number of chunks. For a 5 s trace
at 192 kHz sample rate, our implementation of this approach
takes 166 s on an Intel Xeon E5-2609 v4. While in the worst
case (6000 × 0.15 × C correlation operations in sync mode,
and another 2× d× 0.85×C correlation operations in normal
mode), our algorithm performs only about three times fewer
correlation computations as the baseline; in practice it is over
two orders of magnitude faster on average. Even for recordings
captured using a parabolic mic, where the signal is noisy and
sync mode is entered relatively often, the average processing
time is less than 2 s for 5 s recordings.

Figure II.7 shows the output trace for the Punctured Si-
nusoidal Zebra image. Appendix A2 demonstrates how our
approach produces less noisy output traces than a natural
baseline.

3This results in consistent trace phase alignment since, as we found, the
highest-value sample corresponds to one of a few refresh period phases.
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Fig. II.7: The output trace of the image of II.5–a, using T =
0.9, S = 3206, d = 3. This is visually indistinguishable from
the product of chunking and averaging using the vsync probe
(see Figure II.6).

E. Cross-screen signal similarities
From a remote attacker’s perspective, the existence of leak-

age is not enough. If the leakage does not behave consistently
across screens, it will be hard for an attacker without physical
access to the victim’s screen to learn how to process its
emitted signal. This is particularly problematic for an attacker
who trains machine learning models on the leakage signal,
because they might overfit to screen-specific attributes. We
now show that the relationship between content and leakage
is largely predictable and similar across screens, even when
the signal is recorded through different setups and in different
environments.

Visually observing similarities. We used two Dell 2208WFPt
screens. We also used two setups: our setup from Section II-A,
the close-range setup, and one where the microphone is placed
2 meters from the screen in a parabolic dish. See Figure III.1
for an example of such a setup. Both setups were set in
different offices (with different environment noises). In each
setup for each screen, we displayed a Punctured Zebra (a Zebra
overlayed by a full-width third-height black rectangle at its
center) and recorded a 3 s trace. We applied our preprocessing
procedure from Section II-D and proceeded to visualize traces
of identical content, of the same screen, from different screens,
and from different screens and different recording settings.
Figure II.8 shows the result.

First, we compare Figure II.8a, displaying two traces of the
same Punctured Zebra on the same screen, and Figure II.8b,
displaying traces of the same pattern on different screens.
Clearly, the correspondence of signal amplitude and pixel
intensity is similar on both screens. Next, we notice that the
traces do display some minor screen-specific traits, making
traces collected from the same screen (Figure II.8a) to be
more similar than ones collected from different screens (Fig-
ure II.8b).

Second, note that even two signals taken from different
screens and using different setups (Figure II.8c) display ob-
vious similarity: the at-distance signal is weaker, and yet has
the same characteristics, with the on-screen Black Hole clearly
inducing a flat line in the middle portion of both, and the
zebra-like pixel color alternations manifesting as a sine wave
to the right and left of the flat line. Below, we show this
quantitatively.

Quantifying similarity. We then applied a correlation test,
which showed that a relatively strong correlation exists be-
tween signals of different screens showing the same con-

tent, even when they are recorded using different setups. We
recorded multiple traces for zebras with 8, 16, 24, 32, and
40-pixel periods, as well as, again, a Punctured Zebra with
period 16 (as above). Alternating these patterns in a round-
robin fashion, we captured 10 3 s traces in the close-range
setting for one Dell 2208WFPt screen, and at a distance and
using the parabolic dish for another. We applied our signal
processing procedure to all traces. Next, we performed the
following for each of the two screens: first, we randomly chose
a trace for each pattern from this screen’s traces. Then, for
every trace from the other screen, we computed its maximal
Pearson correlation over all rotational shifts, with each of the 6
chosen traces. In 100% of the cases, the trace of the matching
pattern was the one displaying the highest correlation value.
We thus conclude that screen content is the dominating factor
in the screen’s leakage signal, while screen-specific effects can
be considered as negligible.

III. ATTACK VECTORS

We consider four attack vectors. For each, we specify our
experimental setup, demonstrate that leakage exists and, in
following sections, evaluate screen content detection attacks.

A. Close-range and at-distance attacks
In this setting, the attacker uses a high-end microphone to

extract the image displayed on the screen. While a relatively
strong attack model compared to other models considered in
this paper, it is most effective for estimating the extent of
acoustic information leakage from various attack ranges.

Experimental setup. We used a setup similar to the one
in Section II-A. For the distance attack, we mounted the
microphone in a parabolic dish, placed about 10 meters away
from the screen. See Figure III.1 for an example of such
a setup. To simulate a realistic scenario, recordings were
taken in an office environment, with some noise from nearby
equipment and people occasionally talking in the proximity of
the microphone. We do not expect speech to interfere, as most
of the leakage frequencies are well-above speech frequencies.

B. Phone attack
We consider a commodity phone placed in proximity to

a screen, recording its acoustic emanations using the phone’s
built-in microphone (see Figure III.2). This vector is useful in
a host of scenarios, such as spying on a turned-away screen
(e.g., in a business meeting) using a personal phone. The
attack can also be conducted remotely by an app, without the
phone owner’s knowledge, because many mobile apps have
permission to record audio at any time [43], [17].

Experimental setup. For this attack setup, we used an
LG V20 phone (which supports a 192 kHz sample rateand,
empirically, exhibits good sensitivity to sound even beyond
40 kHz) directed at a screen and recording using its built-in
microphone. We used the Amazing MP3 Recorder app [44],
which supports high sample rates and offers an interface
we used for automating trace collection en masse: a “start
recording” and “stop recording” are exported by this app
and can be used by any other app on the device through
Android’s inter-app communication mechanisms. 4 In partic-
ular, we used the Android Debug Bridge (ADB) interface for

4 The app exposes interfaces (“broadcast receivers”) that can be used by
any app, regardless of its permissions, to record audio. This demonstrates the
commonplace nature of mobile based audio capturing adversaries.
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(a) Different signals of the same content of the
same screen, taken using the close-range setup.

(b) Signals of two different screens, taken using
the standard setup.

(c) Signals of different screens, one (solid) taken
in close-range and one (dashed) taken from a
distance using the parabolic dish.

Fig. II.8: Signals recorded while screens were showing a Punctured Zebra (with 16-pixel period and black middle), after our
preprocessing procedure from Section II-D and correlation-based phase alignment.

Fig. III.1: Extracting an image from a screen using a parabolic
microphone at a distance of approximately 5 meters.

invoking recordings. Here, too, recordings were taken in an
office environment with some environmental noise and human
speech.

Demonstrating leakage. We found that the phone, recording
at 192 kHz sample rate, can capture the leakage extremely well.
We performed an experiment similar to those in Section II-B
twice: once with the phone directed at the back of the screen
(simulating a physical attack in, e.g., a business meeting), and
once with the phone naturally positioned on a table near the
screen (simulating a remote attacker, e.g., an app). In both
cases, the measured screen was a Soyo DYLM2086 screen.
Figure III.2 shows the resulting spectrograms, containing the
expected leakage pattern. While for the naturally positioned
phone the signal is attenuated, it is still clearly visible on the
spectrogram. The leakage signal for the directed position is
dominant and is almost comparable to the leakage samples
recorded using high-end equipment.

Evaluation. We evaluate attacks using this vector: on-screen
keyboard snooping is evaluated in Section IV and a website
distinguishing attack is evaluated in Section VI.

C. VoIP attacker
We also consider a remote adversary who is conversing

with the target over the Internet, using a Voice over IP (VoIP)
or videoconferencing service. As long as the webcam (if any)
is not pointing at the screen (or at its reflection of some
object), the target would assume that remote participants in the
call cannot glean information about the local screen’s content.
However, the adversary receives an audio feed from the target’s
microphone, which is usually located close to the screen (in

order to maintain eye contact during video calls), or even
embedded into the screen itself. This microphone picks up
the screen’s acoustic emanations, the VoIP service relays it
digitally, and the remote attacker can (as we will show) analyze
this signal to extract the screen’s content.

Experimental setup. Empirically demonstrating this, we
obtained the screen’s acoustic emanations by recording the
audio sent to a remote party during a Hangouts call, captured
using the victim’s own microphone (built into a commodity
webcam). Here, too, recordings were taken in an office envi-
ronment with some environmental noise and human speech.

More specifically, to simulate the victim, we used a PC
running Windows 10, connected to a Dell 22" LCD monitor
(model 2208 WFPt) screen, and a Microsoft LifeCam Studio
webcam. The camera was placed naturally by the screen,
similarly to Figure III.3–a. To simulate the attacker, we used
a second PC running Ubuntu 16.04. We set up a Hangouts
connection between the attacker and victim, both running
Hangouts over a Firefox browser. At the attacker end, we
redirected all sound output from the soundcard into a loopback
device. We could then use arecord on the device to capture
sound originating at the victim end of the call.

Observing the leakage. We again performed measurements
by acquiring traces while displaying alternating Zebra patterns,
similar to those in Section II-B, but using various webcams and
screens. Figure III.3 summarizes our findings.

We discovered that, first, commodity webcams and mi-
crophones can capture leakage. Second, natural and expected
positioning of cameras can be sufficient. In fact, even the built-
in microphones in some screens (e.g., Apple LED Cinema 27-
inch, see Figure III.3–b) can be sufficient. Third, the leakage
is present (and prominent) even when the audio is transmitted
through a Hangouts call; see Figure III.3–a.

Attack evaluation. See Section VI-B.

D. Virtual assistant / “smart speaker” attack
The contents of the user’s screen can be gleaned by voice-

operated virtual assistants and ”smart speakers“, such as the
Amazon’s Alexa assistant running on Amazon Echo devices
and the Google Assistant running on Google Home devices.
Once configured, such devices capture audio at all times,
includign acoustic leakage from nearby screens. When a wake
phrase, such as “Alexa” or “Hey Google”, is detected by
the device’s elaborate microphone array, it enters an attention
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(a) Phone microphone directed at the back of the screen. (b) Phone placed on a desk by the screen.

Fig. III.2: Acoustic emanations (0-43 kHz, 10sec) of a BenQ q20ws screen while displaying Zebra patterns of different periods,
recorded using an LG V20 smartphone.

(a) Microsoft LifeCam Studio webcam positioned below a LED-backlit
Dell U2713H screen, recorded through a Hangouts call. The frequency
axis range is 0-13 kHz, due to the lower sampling rate used by Hangouts.

(b) Self-measurement: an embedded
microphone in an LED-backlit Apple
LED Cinema 27-inch screen.

(c) Logitech C910 webcam positioned on top
of a 20“ Soyo screen.

Fig. III.3: Time-frequency spectrum of alternating Zebra frequencies measured through various naturally positioned commodity
devices. The spectrograms of all combinations indicate similar acoustic leakage patterns.

Fig. III.4: (Left) alternating Zebra patterns displayed on a Dell
2208WFPt monitor, recorded by a Google Home device and
archived on Google’s cloud. (Right) the spectrogram of the
recorded signal. Note the frequency axis ends at 8 kHz, since
Google’s archived recordings play at 16 kHz sample rate.

mode to recognize and response to commands. An audio
recording of the interaction, including the wake phrase utter-
ance, is then archived in cloud servers (“to learn your voice
and how you speak to improve the accuracy of the results
provided to you and to improve our services” [47]).

We set out to ascertain that the screen’s visual content
is indeed acoustically captured and subsequently uploaded
to Google’s and Amazon’s cloud servers. First, we placed
a Google Home device next to a Dell 2208WFPt screen
displaying alternating Zebra patterns. We then woke the device
up by using its wake phrase (“Hey Google”) and kept the the
recording running during the Zebra alternations. Finally, we
retrieved the recorded audio from Google’s servers. Figure III.4
shows the spectrogram representation of the retrieved audio,
where the alternation of Zebra patterns is clearly visible.
We proceeded to perform the exact same procedure with an
Amazon Echo (2nd Gen.), and observed similar results.

IV. ON-SCREEN KEYBOARD SNOOPING

In this attack, the attacker aims to extract words or
sentences from an on-screen keyboard. On-screen keyboards

(operated by touch or mouse) are offered by all mainstream
operating systems, and also used by some websites as a
security mechanism for password entry, reducing the threat
of keyloggers.5 Using an on-screen keyboard also protects
against attackers with acoustic probes that try to characterize
individual key acoustic emanations [3], [35], [51]. We show,
however, that the pressed on-screen keys can be inferred from
the screen’s acoustic emanations.

A. Machine learning attack methodology
Our attack works in two stages: first, in an off-line stage,

the attacker collects training data (audio traces) to characterize
the acoustic emanations of a given type of screen, and uses
machine-learning to train a model that distinguishes the screen
content of interest (e.g., websites, text, or keystrokes). In the
on-line stage, the attacker records an audio trace of the actual
screen under attack (whether in person or remotely), and then
uses the trained model to deduce the on-screen content.

Why machine learning? The algorithm in Section II-D
produces relatively clean output traces, where sample values
are clearly dependent on the screen’s content.

The correspondence between pixel intensities and sample
values is intricate and difficult to accurately model. It even
seems to vary within a refresh period, with different time spans
within the period presenting slightly different relationships
between signal amplitude and pixel intensities. Moreover,
although we produce relatively clean output traces, they do
contain noise. Two output traces of recordings of the same
screen content will not be entirely the same.

5On-screen keyboards resist keyboard logging by malware (unless the
malware is adapted to log screen content), and also low-level keyboard device
snooping, e.g., by leaky USB hubs [45].
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Neural networks, and specifically convolutional neural net-
works (CNNs) [50], are very good at inferring such intricate
dependencies in time series data, even in the presence of
noise [42]. In many cases, when CNNs are configured cor-
rectly, we can expect them to be able to directly perform the
processing task at hand, especially for supervised learning and
where enough data is at hand.

Using classifiers. We employ a CNN-based architecture for
solving our task. We define, train, and use CNN classifiers:
a classifier’s input is a sample, represented (in our case) as a
time-series vector. Specifically, our classifier inputs will be the
outputs of the signal processing procedure in Section II-D. A
classifier’s output is a vector of probabilities, one for each
class. A sample’s prediction is the class with the highest
assigned probability. Before the classifier can produce mean-
ingful output, it has to be trained. The training procedure feeds
the classifier with sample traces and correct predictions.

Simpler ML architectures. We fine-tuned neural networks
for speed and accuracy. Alternatively, our traces (after signal
processing) are often clean enough to train a rudimentary
logistic regression model (at the cost of much slower train-
ing, due to slow convergence). For the lower-frequency non-
modulated signals acquired through VoIP and used without
trace averaging (Section VI-B), the rudimentary model attains
low accuracy, but a carefully tuned CNN is effective.

B. Attack simulation and results
We simulated this attack in the smartphone and close-

range attack vectors. We assume the on-screen keyboard is
sufficiently large, depending on screen attributes.

Data collection and preprocessing. We captured audio
recordings of a Soyo 20” DYLM2086 in the close-range and
smart phone settings (Section III-A and III-B, while displaying
screen shots of the mouse pressing varying keys. We used the
native Ubuntu on-screen keyboard with a phone-style layout,
“High Contrast” theme and size 700x900. We used portrait
screen layout (see discussion below on screen layouts).

For each attack vector, we iterated 100 times over the 26
letters of the alphabet. To reliably simulate the acoustic leakage
during hundreds of key-presses on the on-screen keyboard
required for training, we used screenshots containing the on-
screen keyboard with the respective key being pressed. In each
iteration, for each key, we collected a 0.5 s long trace when
key is pressed (simulated by the screen shot). We split these
traces to train (90%) and validation (10%) sets. 6

For testing our snooping attack, we also recorded audio
while words are typed on the virtual keyboard. Words were
chosen randomly from from a list of the most common 1000
English words [39] (see results). We use the traces of 50 such
words for testing both classifiers. Characters of the words were
typed consecutively, with 3 s between each transition. We also
experiment with words recorded at 1 s speed (see results).

We applied our signal processing procedure in Section II-D.

Training procedure. Trace processing and training was
performed on an Intel(R) Xeon(R) CPU E5-2609 v4 processor
with two Titan X GPUs. We uses the Keras Python library

6Here and in Section V, we use just 10% of the initial recordings for
validation. In both, validation sets are still in the hundreds, and we record
an additional trace set, 100% of which was used for testing.

with a Tensorflow backend to program and train the networks.
Keras is used with a Tensorflow 1.4 backend and CUDA 8.0,
CUDNN 6.0. We defer the details of the neural network’s
architecture and hyperparameters to Appendix B1.

Each on-keyboard keystroke results in a specific image
displayed on the screen. We can train a classifier to identify
the different characters for a given trace. Some pairs of keys
are completely horizontally aligned on this virtual keyboard.
We expect keys in such pairs to be less easily distinguishable
from the signal (see below discussion about screen layouts),
and group each such pair into one class label. Our labels were
thus ‘b’, ‘c’, ‘m’, ‘n’, ‘p’, ‘v’, ‘x’, ‘z’, ‘aq’, ‘sw’, ‘de’, ‘fr’,
‘gt’, ‘hy’, ‘ju’, ‘ki’, ‘lo’, and space.

Testing procedure. To process a trace, we shift a 0.5 s
window across the duration of the trace. The window offset is
advanced in 3200 sample (1/60 s) intervals. For each offset,
we apply our processing algorithm on the sub-trace contained
in the window. We then apply our classifier.

This process outputs an array of class labels of size
60 · l − 30, where l is the original trace length. We traverse
it from start to finish, outputting class labels appearing more
than 15 times contiguously for the smart phone attack and 35
times contiguously for the close-range attack. Assuming the
CNN always predicts the right class, this produces sequences
of class labels that correspond to the letters typed on the
screen. However, these sequences do not distinguish (1) letters
grouped into the same class, and (2) letters in the same class
that were typed sequentially. For example, for a trace of the
word “love”, the sequence [’lo’, ‘v’, ‘de’] will be produced.
The ‘l’ and ‘o’ keys are grouped into the same class, and there
is only one instance of this class label. Similarly, the expected
trace of the word “screen” is [’sw’, ‘c’, ‘fr’, ‘de’, ‘n’].

To disambiguate each produced trace, we go over the
102000 words in the dictionary. For each, we compute its
expected trace, and check it against the trace. We return the
list of words that matched the trace, or the prediction list.

Results. Our classifier reaches 100% accuracy on the vali-
dation set, for both the smartphone and close-range. For the
close range attack’s word traces, the correct word was always
contained in our prediction list. The size of the prediction list
varied from 2 to 23 with an average of 9.8 words per trace.
For the smartphone attack, the correct word was contained in
the prediction list for 49 out of 50 traces.

To further test the limits of this attack, we repeated the
attack using a different screen, Soyo 22" (model DYLM2248),
in the close-range setting. Again, the validation set accuracy
was 100%. This time, we collected traces of 100 additional
words, twice: once while waiting 3 seconds between each
transition, and once when waiting 1 second. For the 3 s
collection, the correct word was in the prediction list 94 times
out of 100. For the 1 s recordings, the correct word was in the
prediction list 90 times. The average candidate list size was 8.

Portrait vs. landscape layout. A pressed key’s color changes
from white to black; we expect this to affect the amplitude of
the signal emitted while the corresponding black pixels are
rendered. Pixels are rendered in a raster pattern, i.e., line by
line. Because of that, keys that are horizontally aligned, and
span the same pixel lines, are rendered during very similar
times in every refresh period. We therefore expect that pressing
horizontally-aligned keys will induce very similar, temporally-
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close effects in the leakage signal. Conversely, keys positioned
in completely different pixel-lines will be rendered during very
different times, and the corresponding amplitude changes will
be more distinguishable.

For this reason, in this section, we first built a classifier that
only distinguishes between non-aligned keys, and test it on a
portrait layout where far fewer keys are horizontally aligned.

To ascertain whether horizontally-aligned keys can be at all
distinguished, we repeated data collection using the Soyo 22"
in landscape layout. We trained the classifier on both landscape
and portrait datasets, but without grouping horizontally aligned
keys. The portrait layout classifier reaches 96.4%, and the
landscape layout classifier reaches 40.8%. Top-3 accuracies
are much higher: 99.6% and 71.9%. We conclude that even
changes within pixel lines, where pixels are rendered at very
small temporal offsets from each other, can still be distinguish-
able in the signal. Moreover, that on-screen keyboards remain
vulnerable even in landscape layouts.

Cross-screen results. We verified that the attacker’s training
can be done on a different screen than the victim’s. To this
end, we used a smartphone to collect about 130 recordings,
0.5 s each, for each key on a Dell 2208WFPt screen in portrait
layout. We then switched to a different 2208WFPt instance,
and collected 10 traces, 0.5 s each, per key. We followed the
same preprocessing procedure as above, and assigned classes
to traces, again grouping horizontally-aligned keys. We then
trained our classifier using the traces from the first screen
and tested it on the traces of the second screen. The resulting
accuracy is 99.0%. For comparison, this classifier had a 99.4%
accuracy on a similar-sized validation set of traces of the first
screen (not used for training). We conclude that the keyboard
snooping attack in the smartphone setting is possible for a
remote attacker without access to the victim’s screen. This
supports the results of Section VII which indicate that using
more than one screen for training would likely result in even
better generalization.

V. TEXT EXTRACTION

In this attack, the attacker aims to extract text from the
attacked screen. This could be used to extract various types
of sensitive data, such as identifying information, private
messages, search queries, and financial information.

In this attack, we explore the possibility of extracting
content from the screen rather than classifying it. We simulate
an open-world setting where the word base rate is as low
as 1/55000, i.e., a specific word has a 1/55000 probability
of appearing in a trace. To simulate the low base rate, our
implementation assumes that all characters and words are
equally likely: it does not use any knowledge of actual word
or character distribution. Notably, this is conservative for
evaluating natural language word extraction, where the average
base rate is much higher in practice.

We simulate an attack on a portrait-layed victim screen
displaying black-on-white text in very large monospace font
(we discuss these assumptions in Section VIII).

Data collection and preprocessing. We layed a Soyo 22"
DYLM2248 in portrait layout, and captured traces in the close-
range setting (see Section III-A). We collected 10,000 traces,
each 5 s long. In each trace, a different sequence of randomly
chosen letters was displayed on the screen. The length of

sequences was chosen randomly from {3, 4, 5, 6}. Letters were
chosen from the English alphabet. Letters were capitalized, in
font type Fixedsys Excelsior and size 175 pixels in width.
Letters were black on a white screen. We attach each trace to
its corresponding sequence of characters, and again split the
traces to train (90%) and validation (10%), and employ the
same machine learning methodology as in Section IV-A.

Similarly, we also collected a test set: the traces of 100
English words, 25 for each possible length, chosen randomly
similarly to Section IV-B. We apply the signal processing
algorithm described in Section II-D.

Training procedure. We build one classifier for each
character location. Each character location is rendered at a
specific time segment during each refresh cycle. We match
every character location with its time segment.7 We construct
training and validation data for each character by extracting
the respective output trace segment, thus collecting pairs of
output trace segment and corresponding character value.

Appendix B2 details the CNN’s architecture. We again
trained it on a GPU-enhanced machine (see Section IV-B).

Testing procedure. For each of our 100 test set words,
each classifier outputs a probability vector for each character.
To predict which word was typed in, we use the Webster’s
dictionary [49]. We extract the first 6 characters of each
dictionary word, sum the log-probabilities of each word’s
characters, and output the words sorted by their probabilities.

Results. The per-character validation set accuracy (containing
10% of our 10,000 trace collection) ranges from 88% to 98%,
except for the last character where the accuracy was 75%. Out
of 100 recordings of test words, for two of them preprocessing
returned an error. For 56 of them, the most probable word on
the list was the correct one. For 72 of them, the correct word
appeared in the list of top-five most probable words.

Error analysis. Our attack often confuses a commonly
used word for a rare one. For example, the word “dream”
is erroneously predicted as “bream”. To avoid such errors,
we can introduce priors on word and character distributions
(increasing our conservatively low base rate). For example,
by assigning a higher probability for frequent words in the
probability-assigning phase. This would likely significantly
increase accuracy, especially for commonly used words such
as those in our training set.

VI. WEBSITE DISTINGUISHING

In this attack, the attacker is interested in learning whether
the victim is entering a specific website, or is just interested
in the victim’s website visiting habits. Website fingerprinting
attacks, often studied in network traffic analysis settings [40],
[42], [10], convey the target user’s browsing behavior and
are very revealing of their hobbies and personality [31]. In
the VoIP setting, the attacker may be interested to learn in
real time what the other parties to the call are doing. For
example, he may wish to learn whether another party to the
call is currently keeping the videoconference app maximized
(presumably focusing his attention on the call), browsing
Facebook, or responding to E-mails.

7To measure this, we introduced sharp pixel intensity changes in two
different pixel lines and measured when, during the refresh cycle, these
changes affect the signal. Because line rendering time is linear in line numbers,
we can use this to construct an accurate mapping of lines to rendering time.
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We note here that the classifiers described in Section VI-A
accurately distinguish up to 100 websites. Thus, as our method-
ology can accurately classify screen content, it can be lever-
aged for detecting an identified website visit vs. using common
apps as well as classifying common apps. Finally, we also note
that the collected website traces naturally contain dynamically-
changing content (e.g., ads) affecting measurements, but clas-
sifiers nevertheles attain the high accuracy (implying that the
general layout of a website is typically static and unique).

In Section VI-B, we directly evaluate a VoIP attacker
whose goal is identifying the victim’s foreground window,
distinguishing between a VoIP app and popular websites.

A. Using the modulated signal
Data collection and preprocessing. We recorded traces
of a Soyo 22" DYLM2248 at the close-range, at-distance,
and phone attack settings (Sections III-A and III-B). Out of
the Moz top-500 list [37], that ranks websites according to
the number of other websites linking to them (which highly
correlates with popularity), we chose 97 websites by filtering
out corner cases. For example, duplicate domains for the same
website (e.g., google.co.in and google.co.jp) and non-US-based
websites because some of them cause Selenium to hang.

We simulated the attack for the smartphone, at-distance,
and close-range vantage points. For each, we iterated over the
collection of websites over 100 times. In each iteration, we
opened a Chrome browser window (controlled by the Selenium
automation library for Python) with the URL of the website.
We then started recording for 5 s. For each vantage point, we
collected traces for 5 consecutive nights (when the recording
machine was not otherwise in use). We stopped when we
had reached 100 samples per website. This resulted in about
130 traces per website in the close-range vantage point, 100
traces from the at-distance vantage point, and 110 traces in
the smartphone vantage point. For each setting, we used 70%
of traces for training. For the close-range setting, we used the
remaining 30% as a validation, which we used to guide our
classifier architecture tuning (e.g., set learning rate, number of
convolutional layers, etc). For the at-distance and smartphone
settings, we used the remaining 30% as test sets. We apply the
signal processing algorithm described in Section II-D.

Machine learning and results. Our task is to find which of
97 websites is displayed. We train a CNN directly to solve this
task (see Appendix B3), using the setup from Section IV-B.
In about 8% of traces in the close-range and phone attacks,
and about 16% in the at-distance attack, the signal processing
algorithm returned an error, implying the signal is particularly
noisy. For the close-range setting, the validation set accuracy
was 97.09%. For the smartphone and at-distance test sets, the
accuracy was 91.20% and 90.9% respectively.

Eliminating false positives. Our classifiers in this section
work in a closed-world, where the victim visits one out of the
(here, 97) targeted websites. In reality the victim may also visit
other, unknown websites, and the attacker may be interested in
detecting when that occurs. The victim could visit numerous
websites before ever visiting a targeted website, so even an
ostensibly low probability of an alarm on a single non-targeted
site’s trace, can lead to many false alarms. This is so-called
“base rate fallacy” is extensively discussed in fingerprinting
literature [42], [27]. We thus aim to further minimize the
probability of false identification (false positive rate).

Neural network classifiers assign to all classes values
between 0 to 1, whose sum is 1 (similar to a probability
distribution). The prediction is the class with the highest value,
which can be interpreted as the prediction’s confidence. We can
prioritize precision over recall by dropping predictions where
confidence is below a threshold. By setting the threshold to
0.96, we get precision of 0.996, whereas the recall remains well
above 0.94. Our classifier is confidently erroneous only on 14
out of 3222 validation set samples. Moreover, for every other
sample where a confident mistake was not made, it successfuly
disqualifies not 1 class, as the attacker above requires, but
96 classes. In other words, it makes only 14 “confident”
mistakes out of 3222 × 96 = 309312 possible ones (it is
confidently mistaken at a rate of ≈ 5/100000). Thus, while
we do not directly simulate an open-world setting, our results
do demonstrate the necessary low amount of false positives for
detection in very low base rates.

Cross-screen results. In Section VII we extensively evaluate
the prospects of this attack in a cross-screen setting, where the
attacker has no access to the victim’s screen.

B. Attack through a Hangouts call
Here, we assume the attacker and victim are sharing a

Hangouts video-chat session, where audio from the victim’s
environment is transmitted directly to the attacker. Leveraging
acoustic leakage from the victim screen, the attacker’s goal
is to distinguish the scenario where video-chat is at the
foreground from a scenario where the victim is surfing the
Web, and also tell what website they are visiting.

Data collection and preprocessing. We recorded traces using
the setup described in Section III-C. We iteratively switched
the foreground window of the victim screen in a round-robin
fashion between 11 open windows: browser windows for each
of the 10 top websites in Moz, and a (screen-shot) of a video-
chat showing the human face of the attacker sitting in front
of his webcam. We captured a 6 s recording before switching
the next window into the foreground. In this way we collected
300 traces, 6 s each, for each open window.

In previous attack settings, we used the fact that the pattern
of interest is modulated and transmitted, in every refresh pe-
riod, over a carrier signal at 32 kHz. We leveraged this to pro-
duce a relatively clean version of a display-content-dependent
leakage signal (see Section II-D). Here, we only sample at
44 kHz—below the Nyquist rate of the carrier signal. We can
still, however, leverage the effect described in Section II-C—
namely, that pixel intensity directly affects the acoustic signal’s
amplitude. We process traces in a more straightforward way:
we computed the fast Fourier transform of each 6 s trace. This
results in a vector of frequency coefficients, corresponding
with frequencies between 0 kHz and 44100/2 = 22050 kHz.
We take coefficients of frequencies in band 9-15 kHz which,
we found, contain sufficient information, and used them as the
classifier input vector. We split the traces to train (70%) and
validation (30%).

Machine learning and results. Our task is to find which of
11 windows was in foreground. As in Section VI-A, we design
a CNN directly trained to solve this task (see Appendix B3).
The CNN reaches 99.4% accuracy on the validation set.

We compare results on over-VoIP acquired traces and traces
acquired in the close-range setting. To facilitate a fair compar-
ison, we need 2 similar datasets of traces, with the difference
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that one was collected through the close-range setting and
preprocessed as in Section VI-A, and one colleted via the
VoIP setting and preprocessed as above. We use subsets of the
datasets described in this section and that in Section VI-A; both
subsets contain about 80 5 s training traces per website. We
trained a classifier for each dataset, using the appropriate CNN
architecture (see appendix B3). The through-VoIP classifier
attained an accuracy of 98% on the validation set, slightly
less than the through-VoIP classifier described above (which
handles 1 extra class, but uses x3 more traces per class). The
close-range classifier attained an accuracy of 99.2%.

We conclude there is a minor drop in the attacker’s accu-
racy when sound is recorded using commodity equipment and
is moreover encoded and decoded using a lossy VoIP codec.
However, using a higher amount of traces, we still attain near-
perfect accuracy in the through-VoIP setting.

Cross-screen results. We collected and processed 30 traces
per class (totaling 330) from another Dell 2208WFPt screen,
and tested our classifier on them. Our classifier had an accuracy
of around 0.1, slightly above a random guess, indicating that
the classifier is overfitted to the training screen. In Section VII,
we show that overfitting can often be mitigated by training
on more than one screen. We leave the task of applying that
methodology for this attack to future work.

VII. CROSS-SCREEN ATTACKS

Thus far, we performed preliminary evaluations of the
cross-screen scenario for most attacks, by training on one
screen and testing on a different one. While this proved highly
effective in some cases, such an attacker does risk training a
model oferfitted to the traits of a specific screen. In this section
we demonstrate how overfitting can be mitigated by training
on multiple screens rather than one.

Data collection. We used a total of ten screens: five of
model Dell 2208WFPt WD-04 (the Dell4 set), two of model
Dell 2208WFPt WD-05 (Dell5), two of model Dell 2208WFPf
B (DellB), and one of model Soyo 22" DYLM2248. The screen
set was chosen to contain both similarity (nine screens in the
Dell 2208WFP* family) but also variation (including three
different Dell models and one Soyo model). For every screen,
we collected 50 recordings, 5 s each, of each of 25 websites
(similarly to Section VI, the top 25 websites in the Moz top
500), in the close-range setting (see Section III-A).

Data preprocessing. We first applied the signal processing
from Section II-D. Then, for each victim screen v, we evaluate
classifiers trained using each of its training collections:

• Each single screen (including v).
• Each of same-model sets (Dell4, Dell5 and DellB) defined

above, excluding v from the corresponding set.
• The mixed collection, containing 2 randomly chosen

screens from Dell4, 1 from Dell5, and 1 from DellB,
excluding v.

• The all collection, containing all 10 screens, excluding v.
• The nosoyo collection, with all screens except the Soyo.

For every such collection c, we assembled a training data
containing about 50 samples for each website, by taking 50/ |c|
samples for each screen in c.

Machine learning and results. We used our website distin-
guisher architecture similar to that in Section VI, but used the
Adadelta optimizer which converges much faster than SGD

Fig. VII.1: Cross-screen classification accuracy.

when using only 25 classes, and thus trained for only 200
epochs. For each v, we trained our classifier on each of its
training collections and evaluated the resulting classifier on v’s
data (re-initializing learned weights at random before the next
training process). The results are summarized in Figure VII.1.

Observations. First, we observe that classifiers trained on one
of the 3 Dell models often generalized to a different model
within the Dell 2208WFP* family. This sometimes happens
even when training on just one screen (e.g., several classifiers
generalize well on screen Dell4#2), and especially when
training and testing on screens of the same model. Second,
using more screens from the same family improves the intra-
family generalization: training on a single screen yields worse
results than training on two screens (i.e., Dell4 or Dell5);
training on 4 screens yields further improvement (mixed and
Dell4); and training on 9-10 screens (all and nosoyo) gives the
best results. Third, intra-model generalization is slightly higher
than generalization across the Dell models: for classifiers
trained on a single Dell screen and tested a different screen of
the same model, the average accuracy is 0.276, compared to
0.233 for screens of other Dell models. Finally, inter-vendor
generalization is poor: classifiers trained on the Soyo screen
have low accuracy for Dell screens and vice versa.

Conclusions. The accuracy of a remote attacker with no
physical access to the screen is limited by inter-screen gen-
eralization. To attain high generalization, the attacker can use
multiple screens from the same model, or even similar models
from the same vendor. Note that this training phase can be done
once, off-line, and utilized for multiple attacks. It can also be
done retroactively, after recording the victim and using this
recording to fingerprint their screen model.

VIII. LIMITATIONS

While the results presented in this paper clearly demon-
strate that screen content can be detected via an acoustic side
channel, the presented attacks have some limitations:

Remote attack accuracy. Accuracy is reduced in a remote
setting where the adversary uses their own screen(s) for
training (see Section VII, Section IV-B, and Section VI-A).
However, in many cases it remains high (e.g., over 90% for
distinguishing between 25 websites, 98% for distinguishing
letters typed on an on-screen keyboard). Our investigation in
Sections II-E and II-B indicates that different screens display
similar signal content-dependence, explaining why attacks
generalize across screens (when enough screens are used for
training).

Attacker’s prior knowledge. The adversary needs to know
the victim’s screen model (or face reduced accuracy). Note
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that such knowledge is far less sensitive than the screen’s
actual content, and is often readily deducible from the victim’s
purchasing procedures or trash. Changes in components other
than the screen could also affect the acoustic leakage (e.g., the
attached computer may use the screen at an unusual display
resolution), but we conjecture that in practice this is rare.

Moreover, for on-screen keyboard snooping (Section IV-B),
an attacker needs to know the on-screen layout of the victim,
including text background, font, key size, etc. We consider this
scenario plausible, as website and keyboard layouts as well as
fonts are often fixed (e.g., when the victim uses the OS’s native
on-screen keyboard to type a login password). Similarly, our
text extraction attack currently requires a known background
and a large 175pt font. Finally, we note that our website
classification experiments assumes the simple case of a user
statically viewing a webpage. We leave the task of achieving
website classification in the presence of user interaction (such
as active scrolling) as future work.

Granularity. Our attacks detected information at a a coarser
resolution than individual pixels. Indeed, the requisite band-
width for detecting individual pixels seems to far exceed the
acoustic transmission properties of air (modern screens render
pixels at a rate of over 100 MHz, whereas above a few hundred
kHz sound propagation in the air has too short a range due to
attenuation and distortion effects).

This affects the type of screen contents that can be distin-
guished. For example, our text extraction (Section V) works
on large fonts. Similarly, we show that on-screen keyboard
snooping (Section IV-B) is more accurate in portrait orienta-
tion, where coarse pixel line granularity suffices.

Attacker sample rate. In Sections IV-B through VI-A,
we exploit a carrier signal at 32 kHz. To carry out these
attacks, the attacker’s sample rate must be at least 64 kHz
(due to the Nyquist limit, and assuming that aliasing is
eliminated by hardware filters). While modern commodity
hardware often samples at 96 kHz (as we demonstrated in
Sections III-B, IV-B, VI-A using a mobile phone), low-end
attackers recording at lower rates might be limited to the
remote attacks demonstrated in Section VI-B.

Accuracy depends on microphone distance and screen
model. The leakage signal quality and extractability varies
greatly with the microphones’ proximity to the screen (see
Figure III.2), as well as screen makes and models (see Fig-
ure II.3). However, as we show, even relatively noisy signals
acquired at-distance (Section VI-A), or signals passed through
a lossy codec (Section VI-B), can be used to mount an attack.
Deterioration of the underlying signal with distance is analyzed
in Appendix D.

IX. MITIGATIONS

Elimination. An obvious remedy to such leakage is for
computer screen manufacturers to more carefully evaluate
their designs, to minimize “coil whine” and similar electronic
component vibrations within screen circuitry (cf. [22]). The
ubiquity of leakage, across manufacturers and models (Fig-
ures II.3, III.2, III.3 demonstrate leakage in Dell, Soyo, Apple,
Philips, HQ, BenQ, and Samsung; attacks were simulated on
various Dell and Soyo screens in Sections IV through VII),
suggests that this may be difficult or costly.

Masking. Acoustic noise generators can be used to mask
the signal, at a cost in design, manufacturing, and ergonomic

disruption (some of the exploitable signal lies within the
human-audible frequency range). The masking ought to have
adequate energy and spectrum coverage to reduce signal-to-
noise by orders of magnitude, because the leakage signal is
retransmitted 60 times per second, offering high redundancy.

Shielding. Acoustic shielding of screens may reduce the
leakage amplitude, but is difficult to achieve while keeping
adequate air circulation for cooling. For microphones built into
screens, a sound-absorbing barrier may reduce microphone
pickup of internally-generated sounds (but would not affect
external microphones). In the case of some screens or micro-
phones in which there is an electromagnetic contribution to
the leakage (see Section II-B), corresponding shielding would
also be desirable—and, typically, expensive.

Software mitigations. A more promising approach to miti-
gating the attacks presented in this paper are software counter-
measures. More specifically, variations on software mitigations
to the EM Tempest attack, which change on-screen content to
mask the leakage, such as font filtering [34], can be considered.
Moreover, because our extraction attacks use mainly aggregate
horizontal intensity of pixel lines, while mostly losing the
information inside individual lines, fonts can be changed such
that all letters project the same horizontal intensity. Finally, our
attacks all heavily rely on neural network classifiers which,
themselves are vulnerable to inputs specifically crafted to
mislead them [23], [46].

X. CONCLUSION

We report a new physical side-channel leak: acoustic
leakage of screen content. We suggest powerful attacks that
extract highly precise information, such as on-screen text and
on-screen keyboard presses. We posit that this leakage is
uniquely dangerous because even weak attackers, that only
receive encoded audio traces from legitimate communication
channels, as well as a attackers with no access to the victim’s
physical screen, can exploit it.

We demonstrate this by successfully simulating highly
precise content extraction and identification attacks across an
array of setups, as well as a simple, but well motivated, attack
scenario: exploiting an open Hangouts connection to deduce
what on-screen activity a party to the call is involved in.

This is the first demonstrated attack using codec-encoded
acoustic emanations from non-mechanical peripherals, for
which users don’t have a reason to suspect acoustic leakage
would even exist.
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APPENDIX

A. Our trace chunking algorithm
1) Algorithm in detail: The algorithm first initiates an

empty collection of chunks. Then, it searches for the first two
consecutive chunks whose sizes are in G, and their correlation8

is higher than the threshold. It sets one of these chunks to be
the first, master chunk, and adds it to the collection.

Then, starting from the position after the added chunk,
it searches a size ∈ G for the next chunk such that the
correlation of the following chunk is the highest. If the master’s
correlation with the obtained chunk is above T , it is added
to the chunk collection. Otherwise, it is discarded and the
algorithm goes into sync mode.

In sync mode, the next chunk’s size can be between S and
S + 6000 samples. Again, the algorithm finds the size that
maximizes correlation with the following chunk. As long as
the algorithm is in sync mode, it does not add new chunks to
the collection. The algorithm exits sync mode once it found a
size such that the following chunk has correlation < T .

When the algorithm succeeds, it truncates all chunks to
the size of the smallest one (typically min{G}), and performs
outlier rejection: discard the 10% of chunks whose correlation
with the master chunk is lowest, as well as any chunk that has
a peak that exceeds 1.5 times the average highest peak. The
pseudo-code is given in Algorithm 1.

Algorithm 1: Chunkify

1: procedure CHOPSIGNAL(array signal, size S, allowed drift d, threshold T )
2: init:
3: chunks ← list()
4: G ← [S − d − 1, S + d]
5: c_len ← median{G} // expected chunk length
6:
7: find_first, master_chunk:
8: while len(chunks) = 0 do
9: j ← argmaxj∈G{corr(signal[: j], signal[j : j + c_len])}

10: if corr(signal[: j], signal[j + 1 :]) > T then
11: chunks[0] ← signal[: j] // master chunk
12: signal ← signal[j :]
13: else
14: signal ← signal[1 :]

15: loop:
16: next_len ← G //normal mode
17: state ← "normal"
18: sync_count ← 0
19: while len(signal) > len(chunks[0]) + max{next_len} do
20: j ← argmaxj∈next_len{corr(chunks[0], signal[j : c_len])}
21: c ← corr(chunks[0], signal[j : c_len])
22: if corr(chunks[0], signal[: j]) > T and state = "normal" then
23: chunks.append(signal[: j]) // master chunk
24: else
25: if c < T then
26: state ← "sync"
27: next_len ← [S, S + 6000]
28: sync_count+ = 1

8Pearson correlation of two chunks of different sizes is taken after truncating
them to the lower size among the two.

29: if sync_count > 3 then
30: return "error"
31: else
32: state ← "normal"
33: next_len ← G

34: signal ← signal[j :]

35: outlier rejection:
36: outlier_reject(chunks)
37: return chunks

2) Comparing against a natural baseline: Figure A.1 com-
pares our method with the baseline, correlation-based one
outlined in Section II-D1, for processing a particularly noisy
Zebra signal recorded using a parabolic mic directed at a
Soyo screen. This naive approach comprises of (1) chunking
according to the the exact de-facto refresh rate (59.9019 in this
case), (2) rotationally shifting chunks according to maximal
correlation, and (3) performing outlier rejection, removing
chunks whose correlation is less than 0.05.

B. Neural Network Architectures
1) On-screen keyboard snooping: For the experiment in

Section IV-B, we used a convolutional layer with window size
12, 16 filters, and stride 1, followed by another convolutional
layer with the same parameters but 32 filters, followed by a
max-pooling layer with pool size 4, and one fully-connected
layer with output size 512. The convolutional and FC layers
have ReLU activations. The last layer is a softmax. We used an
Adadelta optimizer with a categorical crossentropy loss, and
a batch size of 64. We trained each network for 200 epochs.
Each epoch takes around 3 s. The model was evaluated on the
validation set after every epoch; the best-performing model
was saved for testing.

2) Text extraction: For the experiment in Section V, we
used 1 convolutional layer with window size 12, 64 filters,
and stride 1, one max-pooling layer with size 2, and 1 fully-
connected layer with output size 2048. The convolutional and
FC layers have ReLU activations. The last layer is softmax.
We used an SGD optimizer with learning rate of 0.01, norm-
clipped at 1. We used a batch size of 16, and trained for 1000
epochs. After every epoch the model was evaluated on the
validation set; the best-performing model was saved for testing.

3) Website distinguishing: For the experiment in Sec-
tion VI-A, we used 6 convolutional layers, with a max-pooling
layer after every 2. All convolutions are of window size 24
and stride 1. For the first and second layer, we have 16 and
32 filters respectively, and 64 for the other four convolutional
layers. The 10th layer is a fully connected layer with 512
outputs, followed by a 0.9 dropout layer. The first 10 layers
have ReLU activations. The last layer is an FC layer with
softmax activations. We used an SGD optimizer with a 0.01
learning rate, 0.1 gradient clipping, a categorical crossentropy
loss, and batch size of 64. We trained each network for 800
epochs (about 4 s per epoch).

For the experiment in Section VI-B, we used 3 convo-
lutional layers with kernel size 12, stride 1 and 16 filters,
followed by a max-pooling layer with pool size 8, followed
by a fully connected (FC) layer with output 512, followed by
a Dropout 0.5 layer, followed by a softmax output layer. Con-
volutional, FC, and max-pooling layers have ReLU activations.
We used an Adadelta optimizer with categorical crossentropy
and batch size 16. We trained for 100 epochs. Each epoch took
about 7 s.
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(a) Output of the naive approach. (b) Output of our approach, using S = 2306, T =
0.05, d = 3.

(c) Output of “ground truth” chunking, using the
trigger signal obtained via the vsync probe to accu-
rately segment the trace.

Fig. A.1: Comparing the outputs of the two chunking approaches on a Zebra of 30 periods, recorded using a parabolic mic (see
Section III-A). The naive approach produces a signal whose amplitude is erratic and bears less resemblance to the one of the
ground truth, even though it is using as input the exact refresh rate (up to 0.0001 s), and even though this rate is entirely stable
across this particular recording (there are no abnormally sized cycles).

C. List of Screens Used
We specify the screen models used in the experiments

reported in this paper. Similar effects were observed during
opportunistic ad-hoc tests on additional screens.

Model Size Resolution Backlight Qty
Apple Cinema A1316 27" 2560 × 1440 LED 1
BenQ q20ws 20.1" 1680 × 1050 CCFL 1
ViewSonic VA903b 19" 1280 × 1024 CCFL 2
Samsung 920NW 19" 1440 × 900 CCFL 1
Dell 2208WFPt 22" 1680 × 1050 CCFL 8
Dell 2208WFPf 22" 1680 × 1050 CCFL 2
Dell 3011 30" 2560 × 1600 CCFL 5
Dell U2713H 27" 2560 × 1440 LED 2
HP ZR30w 30" 2560 × 1600 CCFL 5
Philips 170S4 17" 1280 × 1024 CCFL 1
Soyo DYLM2086 20" 1440 × 900 CCFL 1
Soyo DYLM2248 22" 1680 × 1050 CCFL 2
Eyoyo S801C 8" 1024 × 768 LED 1
Eyoyo 808H 8" 1024 × 768 LED 1
Lenovo Carbon X1
3rd Gen laptop screen

14" 2650 × 1440 LED 1

D. The effect of microphone distance
We investigate the effect of microphone proximity to the

screen on the leakage signal. We used the setup in Section II-A
to record a Dell 2208WFPt screen from various distances.
The microphone was placed near the screen’s top and then
moved away along a straight line, pitch 40 degrees up, while
maintaining the microphone’s orientation towards the screen
coaxially. We recorded traces of a Punctured Zebra from
a distance of 1cm, 2cm, 5cm, 10cm, 20cm, 50cm, 100cm,
200cm, 300cm, and 500cm. Then, to measure the signal quality
at a given distance, we performed the correlation test from
Section II-D and Figure II.6: we demodulated and “chopped”
the signal into chunks (each corresponding with a refresh
period) using the vsync probe. We then measured the average
Pearson correlation of the chunks from the average of chunks.

Figure A.2a shows the resulting chopped-and-averaged
trace for each distance. Especially for small distances, one
can readily observe the regular patterns corresponding to
Zebra stipes, as well as the flatter region corresponding to
the puncturing (black rectangle) in the middle. Figure A.2b
shows the correlation values for the various distances. Even at
a distance of 3 meters, we see nontrivial correlation value.

Note the discernible shifts between the traces in Fig-
ure A.2a, as distance increases. These occur since the signal is

(a) For various distances, the averages of modulated signal segments
corresponding with refresh periods.

(b) Signal quality (average correlation value) as a function of
microphone distance.

Fig. A.2: For recordings of a black hole from various
distances, we quantitatively and qualitatively characterize the
relationship between microphone distance and signal quality.

captured acoustically but triggered electronically. At a 60 kHz
refresh rate, the speed of sound (343 m/s) causes a delay of
17.5% of the refresh cycle per meter of distance — consistently
with the observed signal. Had the signal source been electro-
magnetic (conducted or emanated), the delay would have been
induced by the speed of light in the relevant medium (metal
or air), and thus smaller by 6 orders of magnitude.
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