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A Quantum Probability Driven Framework for
Joint Multi-Modal Sarcasm, Sentiment and

Emotion Analysis
Yaochen Liu, Yazhou Zhang, Dawei Song

Abstract—Sarcasm, sentiment, and emotion are three typical kinds of spontaneous affective responses of humans to external events
and they are tightly intertwined with each other. Such events may be expressed in multiple modalities (e.g., linguistic, visual and
acoustic), e.g., multi-modal conversations. Joint analysis of humans’ multi-modal sarcasm, sentiment, and emotion is an important yet
challenging topic, as it is a complex cognitive process involving both cross-modality interaction and cross-affection correlation. From
the probability theory perspective, cross-affection correlation also means that the judgments on sarcasm, sentiment, and emotion are
incompatible. However, this exposed phenomenon cannot be sufficiently modelled by classical probability theory due to its assumption
of compatibility. Neither do the existing approaches take it into consideration. In view of the recent success of quantum probability (QP)
in modeling human cognition, particularly contextual incompatible decision making, we take the first step towards introducing QP into
joint multi-modal sarcasm, sentiment, and emotion analysis. Specifically, we propose a QUantum probabIlity driven multi-modal
sarcasm, sEntiment and emoTion analysis framework, termed QUIET. Extensive experiments on two datasets and the results show
that the effectiveness and advantages of QUIET in comparison with a wide range of the state-of-the-art baselines. We also show the
great potential of QP in multi-affect analysis.

Index Terms—Quantum Probability, Sarcasm Detection, Sentiment Analysis, Emotion Recognition, Multi-Modal Framework.

✦

1 Introduction

The ability of affect understanding and cognition is one
of the main differences between human and machine.

As an active research direction in AI (Artificial Intelligence),
affect analysis aims to help machine infer and understand
human affect, and then make an appropriate response [1].
Human affect is often multi-modal (e.g., language, facial
expressions and acoustic behaviors) and contextual (e.g., the
same utterance expresses different affects under different
contexts) in nature. Hence, multi-modality and contextuality
would provide richer clues for detecting human affect.

As a generalized concept, human affect consists of differ-
ent types of feelings, e.g., sarcasm, sentiment, emotion, etc.
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They are correlative and interdependent. Sarcasm is a subtle
form of metaphorical affection, where the literal meaning
of the author is contrary to his/her true attitude. It often
expresses criticism, anger or mock emotion. Sentiment is a
long-term subjective attitude of a human based on his/her
feeling towards a situation, topic or event, while emotion
refers to a strong but unabiding physiological feeling such
as happiness, anger and sadness.

There have been a rich body of existing approaches
in multi-modal sarcasm, sentiment, and emotion analysis,
most of which focus on multi-modal feature extraction and
multi-modal fusion. For instance, Zhang et al. [2] presented
a quantum inspired decision fusion model for multi-modal
sentiment analysis. Hu et al. [3] presented a graph neural
network for conversational emotion recognition. The poten-
tial of analyzing sentiment, sarcasm, and emotion under a
unified framework still needs the deeper exploration.

From a cognitive perspective, the analysis of sarcasm,
sentiment, and emotion involves a complex cognitive phe-
nomenon in constructing the same affect. Hence, sarcasm,
sentiment, and emotion are closely intertwined with each
other [4]. For example, the sarcastic utterance “I like work,
it fascinates me. I can sit and look at it for hours.” expresses
the author’s negative sentiment and a strong dislike or
unhappiness of his/her job. Detecting sarcasm, sentiment,
and emotion would bring benefits to each other.

From a probability theory perspective, the above phe-
nomenon means that the judgments on sarcasm, sentiment,
and emotion are incompatible, i.e., they do not share a
common probability space and their joint probability can-
not be determined from the marginal probabilities without
considering the interference and incompatibility between
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these judgements. Such exposed phenomenon cannot be
sufficiently modelled by classical probability theory due
to its assumption of compatibility. Neither do the existing
approaches take it into consideration. The recent studies
have largely neglected their cognitive correlation. This raises
our research question: Can we solve this cross-affection correla-
tion and propose a multi-modal, contextual and joint multi-affect
detection framework?

To fill this gap, it is essential to jointly study multi-
modal sarcasm, sentiment, and emotion from a more gen-
eral cognitive framework that unifies both multi-modality,
contextuality and multi-affect judgment. In recent years,
quantum probability (QP), as a mathematical framework of
quantum physics that proposes two assumptions of both
compatibility and incompatibility, has been adopted for de-
scribing elusive human cognitive and emotional activities,
where a new research community, viz. quantum cognition,
has been emerging [5]. An increasing body of theoretical and
empirical evidence has shown the effectiveness and advan-
tages of QP in modeling various AI tasks involving human
cognition, e.g., semantic analysis, question answering and
sentiment classification. For instance, quantum language
model (QLM) [6] represented user’s information needs and
documents as density matrices (DMs) in a quantum prob-
abilistic space. Wang and Li et al. [7] defined a complex
semantic Hilbert space to capture the “quantumness” in the
cognitive aspect of human language.

In this paper, we theoretically justify the use of QP in the
multi-modal sarcasm, sentiment and emotion analysis task.
Then, we propose a QUantum probabIlity driven multi-
modal sarcasm, sEntiment and emoTion analysis frame-
work, termed QUIET. Specially, it consists of a complex-
valued multi-modal encoder, a quantum composition layer,
a quantum interference-like inter-modal fusion layer and a
quantum measurement layer. It is formulated and applied to
conversational multi-modal multi-affection detection. First,
each multi-modal (e.g., textual, visual and acoustic) utter-
ance is encoded as a quantum superposition of a set of
basis terms, represented as a complex-valued vector. Sec-
ond, three complex-valued vectors are fed into the quan-
tum composition layer to learn their contextual represen-
tations. Third, all contextual representations are forwarded
to the quantum interference-like fusion layer for produc-
ing a fused multi-modal representation. Finally, quantum
incompatible measurements are performed on the multi-
modal representation to yield the probabilistic outcomes of
sarcasm, sentiment, and emotion recognition.

We verify the effectiveness of the QUIET framework
on two benchmark datasets, i.e., MUStARD and MELD.
Extensive empirical results demonstrate the potential of
using QP, with the QUIET framework outperforming the
existing state-of-the-art approaches by large margins. The
major innovations of the work are summarized as follows.

• We propose a quantum probability driven multi-task
learning framework for joint multi-modal sarcasm,
sentiment and emotion analysis, aiming to address
the challenges of multi-modal affect understanding.

• We propose a multi-modal complex-valued represen-
tation approach by leveraging the concept of quan-
tum superposition.

• We design a quantum-like fusion network to effec-
tively model both intra-modality contextuality and
inter-modality incongruity.

• We present the theoretical advantages of our QUIET
model, and further empirically show its effectiveness
on two benchmark datasets.

The rest of this paper is organized as follows. Section
2 briefly depicts the related work. Section 3 presents the
preliminaries of QP. Section 4 provides a detailed theoretical
interpretation for the advantages of using QP in the multi-
modal sarcasm, sentiment and emotion analysis task. Sec-
tion 5 describes the proposed QUIET model step by step. In
Section 6, we report the empirical experiments and conduct
a detailed analysis. We conclude the paper and discuss
future research directions in Section 7.

2 Related Work
In this section, we review the related works on sentiment
analysis, sarcasm detection and emotion recognition.

2.1 Sentiment Analysis
Sentiment analysis refers to the study, analysis and identi-
fication of the subjective polarity carried in user generated
contents. Now, deep learning based approaches have been
widely proposed. For instance, to solve the problem of
sentiment reversal, Wang et al. [8] proposed an iterative
algorithm called SentiDiff for Twitter sentiment analysis.
Under the inspiration that linguistic hints can serve as
reliable polarity indicators, Wang et al. [9] proposed a joint
framework, termed SenHint, which could integrate the rep-
resentation vector and implications of linguistic hints into a
unified model. Zhang et al. [10] emphasized on the need of
incorporating the correlation among multiple domains, and
proposed an efficient adaptive transfer network (EATN) for
aspect-based sentiment analysis. Inspired by quantum the-
ory (in short QT), Zhang et al. [11] first used density matrix
to represent textual word and designed quantum relative
entropy to detect sentiment via an unsupervised manner.
Their model did not consider the contextual information nor
the multi-modal fusion.

2.2 Sarcasm Detection
Sarcasm detection is a relatively less explored task, as
sarcasm often completely flips the sentiment polarity of
a sentence. Nowadays, the mainstream approaches can be
divided into two categories, which are traditional machine
learning based methods that take the feature engineering
work apart from the classification, and deep neural net-
works based methods that unified the feature engineering
and classification task.

Ashwin et al. [12] constructed a behavioral modeling
framework using the behavioral and psychological features.
They used the user’s historical tweets as behavioral intrinsic
traits, and evaluated the framework on sarcastic tweets.
Aditya et al. [13] targeted at using sequential features of a
scene to predict sarcasm for each utterance in conversations.
The proposed sequence labeling algorithms (SVM-HMM
and SEARN) outperformed three traditional classification-
based algorithms.
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As deep learning based architectures cast off the fetters
of feature engineering, they usually achieve better perfor-
mance. Leveraging the multi-modal sentiment and emotion
information, Chauhan et al. [4] used a segment-wise inter-
modal attention based framework for sarcasm detection.
Zhang et al. [14] first used the stance information to detect
sarcasm, and proposed a new sub-task, i.e., stance based
sarcasm detection.

2.3 Emotion Recognition

Emotion recognition is treated as a complicated and fine-
grained classification task in affective computing. Hu et
al. [3] dealt with conversational emotion recognition task
via a fused graph convolutional network, which could ef-
fectively utilize dependencies and leverage speaker infor-
mation. Xie et al. [15] proposed a knowledge interactive
network via the paradigm of multi-task learning, namely
KI-Net. KI-Net could apply both commonsense knowledge
and sentiment lexicon to enrich semantic information. Sun
and Yu [16] leveraged the discourse structures in multi-
party conversation, and proposed a discourse-aware graph
neural network to recognize emotion. Focusing on the multi-
label emotion detection in a multi-modal scenario, Zhang et
al. [17] designed a multi-modal sequence-to-set approach to
model label dependency and modality dependency.

2.4 Summary

In summary, remarkable progress has been made in the
three relevant areas, and motivated our work. However,
these three areas have been studied separately. Different
from the previous studies, we take sarcasm detection, sen-
timent analysis and emotion recognition into consideration
via a multi-task learning framework. In addition, we aim
to model the inter-modality interference and the correla-
tion between sarcasm, sentiment, and emotion, from the
cognitive perspective. QP has been proven to provide a
generalized and unified formalism for the task. Specifically,
we propose a QP inspired end-to-end multi-task learning
framework for joint sarcasm, sentiment, and emotion analy-
sis over multi-modal conversations.

The difference from previous QP based model. Our
work is quite different from other QP based models. We
are the first to introduce quantum interference to perform
three modal fusion. Moreover, we propose a new quantum
incompatible measurement approach to model the cross-
affect correlation. Detailed discussion has been provided in
Sec.6.8.

3 Quantum Probability Preliminaries
QP offers us a mathematical and conceptual framework
on capturing the intrinsically uncertain microscopic particle
behaviours. Recently it has shown to be effective in model-
ing human fundamentally uncertain cognitive and decision
making processes. In this Section, we will briefly introduce
the key concepts of QP, followed by Section 4 showing how
QP is suitable to model a few typical problems in human
affect understanding, and thus inspires us to propose a
multi-task framework.

Quantum Superposition and Density Matrix. Quantum
probability, which can be regard as a generalization of
the classical probability theory. The mathematical base of
quantum probability is established on a complex Hilbert
Space, denote as H. A quantum state vector u is expressed
as a ket |u⟩ , its transpose is expressed as a bra ⟨u|. The
inner product and outer product of two state vectors |u⟩ and
|v⟩ are denoted as ⟨u|v⟩ and |u⟩⟨v|. Quantum superposition
states that a pure quantum state can be in multiple mutually
exclusive basis states simultaneously with a probability
distribution until it is measured. A quantum mixture of
states gives rise to a mixed state represented by a density
matrix, ρ =

∑
i pi|u⟩⟨u|, where pi denotes the probability

distribution of each pure state.
Quantum Interference.1 In the double-slit experiment, a

microscopic particle starts from the initial point to get to the
screen through two slits at the same time or through one
slit. The path difference causes a phase shift of the quantum
states and produces the interference phenomena.

In the double-slit experiment, two paths interfering with
each other affects the probability distribution of the particle
reaching the final position on the detection screen, and
forms the interference pattern. This phenomenon cannot be
explained sufficiently with classical theory. We use the wave
function φ(x) to interpret this behavior. The wave function
represents the probability amplitude of a particle be at a
position x, and the square of the wave function represents
the possibility. The state of the photon is in a quantum
superposition of the state of path 1 and path 2, which could
be formulated as: φp(x) = αφ1(x) + βφ2(x), where φ1(x)
and φ2(x) are the wave functions of path1 and path2. α
and β are complex numbers, satisfying α2 + β2 = 1. α2, β2

represent the probability of the particle passing through the
path1 or path2. The probability for a particle be at the state
φp can be calculated as:

P (x) = |φp(x)|2 = |αφ1(x) + βφ2(x)|2

= |αφ1(x)|2 + |βφ2(x)|2

+ 2|αβφ1(x)φ2(x)| cosϕ
(1)

where ϕ is the interference angle. I =
2|αφ1(x)βφ2(x)| cosϕ is the interference term, which
describes the interaction between two paths.

Quantum Measurement. Measurement in the classical
theory is considered to has no influence on the measured
object. However, measurement in QP has an impact on the
system to be measured, such as changing its state. Quantum
measurement is described by a set of measurement oper-
ators, denoted as {Mm}, acting on the state space of the
system being measured, where m represents the possible
measurement outcomes. Suppose the quantum system is in
a state of |u⟩, then the probability to obtain the outcome
m after the measurement is p (m) = ⟨u|M†

mMm|u⟩. The
Gleason’s Theorem has proven the existence of a mapping
function M (|u⟩⟨u|) = tr (ρ|u⟩⟨u|) for any event |u⟩⟨u|.
Quantum measurement describes the interaction (coupling)
between a quantum system and the measurement device,
where the coupling system can be represented by the tensor

1. A detailed introduction of the double-slit experiment is given in
the appendix.
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product of two systems, e.g., M ⊗ |u⟩. Quantum measure-
ment subjects to two rules: (1) for an elementary event
|u⟩⟨u|, M(|u⟩⟨u|) ∈ [0, 1]. (2) for any orthogonal basis {|ei⟩},∑n
i M(|ei⟩⟨ei|) = 1.

4 Theoretical Justification of QP in Our Task

In this work, we target at dealing with three correlated
tasks (sarcasm detection, sentiment analysis and emotion
recognition) simultaneously. Without losing generality, we
focus on utterance-level analysis of multi-modal conversa-
tion data, where each conversation consists of a sequence
of multi-modal utterances. For each utterance, the determi-
nation of its sarcasm, sentiment, and emotion is inherently
complex and uncertain, influenced by three key factors:
its context (e.g., the historical utterances), the interaction
between modalities and the correlation between the tasks.
Next, we will illustrate how QP is more suitable to model
such influences via theoretical justifications. We clarify that
the reasons we provide such justifications are: (1) providing
theoretical evidence and solid foundation; (2) letting our
motivation be easy to follow. We also argue that one can also
understand our proposed model even though overlooking
such justifications.

4.1 Quantum probability is more general to capture the
uncertainty in human affect

Let z(x) = reiθ be a quantum complex probability ampli-
tude of event x. Using the definition of quantum probability,
we get the classical probability of event x

p(x) = |z(x)|2 = r2 (2)

that means

r =
√
p(x) (3)

where r ∈ R, θ ∈ (−π, π). Given p(x), the complex
probability amplitude will satisfy

z(x) =
√
p(x)× (cos θ + i sin θ) = reiθ (4)

This defines a many-to-one relationship between com-
plex probability amplitude and probability.

Explanation. We have known that there is a many-to-
one mapping between quantum probability amplitude and
classical probability. Different quantum probability ampli-
tude can get the same classical probability. For example, the
probability of a word w is 0.5, i.e., p (x = w) = 1

2 , then the
quantum probability amplitude may be z (x = w) =

√
2
2 ei

π
4

or z (x = w) = −
√
2
2 ei

3π
5 , etc. This shows that quantum

probability is more general than classic probability. The am-
plitude r links to the probability, while the phase θ may be
associated with hidden sentiment or sarcasm orientations.
An utterance thus could be represented in an amplitude-
phase manner. These proofs supports our first argument that
QP is advantageous in modeling the uncertainty in human
language, and also answer the research question, i.e., why
use quantum theory to development a multi-modal sarcasm,
sentiment, and emotion model.

4.2 Quantum interference embodies a non-linear multi-
modal fusion

Let z1(w1) and z2(w2) be the complex probability ampli-
tudes of two basis words w1, w2 respectively 2, where
z1(w1), z2(w2) ∈ Hlt×dt . Let a compound term be c ∝
(w1, w2), we obtain

z3(c) = αz1(w1) + βz2(w2)

s.t α2 + β2 = 1,

α, β ∈ C
(5)

where z3(c) ∈ Hlt×dt . Based on justification in Section 4.1 ,
we have

p(w1) = |α|2|z1(w1)|2, p(w2) = |β|2|z2(w2)|2

s.t p(w1), p(w2) ∈ [0, 1]
(6)

We can derive the probability of the compound term:

p(c) = |z3(c)|2 = |αz1(w1) + βz2(w2)|2

= (αz1(w1) + βz2(w2)) · (αz1(w1) + βz2(w2))†
= αz1(w1) · (αz1(w1)) †+βz2(w2) · (βz2(w2))†
+ αz1(w1) · (βz2(w2)) †+(αz1(w1) · (βz2(w2))†)†
= |αz1(w1)|2 + |βz2(w2)|2

+ 2Re(αz1(w1) · (βz2(w2))†)
= |αz1(w1)|2 + |βz2(w2)|2 + 2|αz1(w1)βz2(w2)| cos θ

= p(w1) + p(w2) + 2
√
p(w1)p(w2) cos θ

(7)
Hence, the probability of multi-modality is a non-linear

combination of the two probabilities, with an interference
term determined by the relative phase.

Explanation. The probability of the compound term is
the non-linear superposition of the probabilities of the basis
words, with an interference term determined by the relative
phase θ. This provides a higher level of abstraction. It is
well known that sarcastic/sentiment/emotion expression
in human language also exposes the non-linearity. For ex-
ample, “Jack leg”, which is the combination of the word
“jack” and “leg”, expresses an incompetent human, rather
than “jack’s leg”. The linear combination of “jack” and “leg”
cannot capture such abstract meaning. However, quantum
interference inspired approach is able to learn the non-linear
fusion. These proofs answer the research question, i.e., why
use quantum interference to capture multi-modal fusion.
In equation 7, z1(w1) and z2(w2) are complex probability
amplitudes of two basis words w1, w2. Here w1 and w2
represent basis word from different modalities, e.g., w1 rep-
resent basis word in textual modality, and w2 represent basis
word in acoustic modality. And to fuse all three modalities,
we apply three quantum interference inspired multi-modal
fusion component (t+v, t+a, v+a), after having three bi-
modal representations, we concatenate them together to get
tri-modal representation.

2. w1 and w2 are from different modalities, e.g., w1 is a basis word
from the textual modality and w2 is a basis word from acoustic
modality.
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4.3 Quantum composition captures the contextuality
between utterances
Let ui and uj represent two adjacent utterances with the
help of Dirac notation, we obtain

|ui⟩ = α1 |w1⟩+ β1 |w2⟩
|uj⟩ = α2 |w1⟩+ β2 |w2⟩
s.t α2

1 + β2
1 = 1,

α2
2 + β2

2 = 1,

α1, α2, β1, β2 ∈ C

(8)

here α1, α2, β1, β2 are probability amplitudes expressed in
the complex polar form. State space of a composite system
Hui,uj

, constructed from two utterances ui and uj is written
as a tensor product of individual state spaces |ui⟩ and |uj⟩:

Hui,uj
= |ui⟩ ⊗ |uj⟩
= (α1 |w1⟩+ β1 |w2⟩)⊗ (α2 |w1⟩+ β2 |w2⟩)
= α1 |w1⟩ ⊗ (α2 |w1⟩+ β2 |w2⟩)
+ β1 |w2⟩ ⊗ (α2 |w1⟩+ β2 |w2⟩)
= α1α2 |w1w1⟩+ α1β2 |w1w2⟩
+ β1α2 |w2w1⟩+ β1β2 |w2w2⟩

(9)

Let |w1⟩ = (x1, x2)
T ,|w2⟩ = (y2, y2)

T , then

Hui,uj
= α1α2

[
x2
1 x1x2

x2x1 x2
2

]
+ α1β2

[
x1y1 x1y2
x2y1 x2y2

]
+ β1α2

[
y1x1 y1x2

y2x1 y2x2

]
+ β1β2

[
y21 y1y2
y2y1 y22

] (10)

where Hui,uj
is controlled by the basis words.

Explanation. We observe that quantum composition
treats the contextuality between utterances as the contex-
tuality between words, which inspires us to model the
contextuality by a “global to local” way. Our proposed
approach is quite distinct from the existing context mod-
eling approaches (e.g., adding, concatenation, etc.), which
leverages the advantage of tensor to model the interaction
across adjacent utterances.

4.4 Quantum incompatible measurement describes the
correlations across multi-tasks
Let us have two observables Sen and Sar, represented by Me

and Ma. Let |kn⟩ be a complete set of common eigenkets of
the two compatible obervables Sen and Sar, corresponding
to the sets en and an. Then,

MeMa |kn⟩ = Mean |kn⟩ = enan |kn⟩
= anen |kn⟩ = MaMe |kn⟩

(11)

Based on this, we obtain

(MeMa −MaMe) |kn⟩ = 0 (12)

This implies [Me,Ma] = 0 3, which means two operators
are compatible. Otherwise, if [Me,Ma] ̸= 0 we say two
operators are incompatible. In other words, they do not
satisfy the mutation rule.

Explanation. These proofs can be used to clarify a fact
that one’s sentiment judgement toward an utterance after

3. The mutation rule means [Me,Ma] = MeMa −MaMe = 0

his/her sarcasm judgement may be different from his/her
sentiment judgment before sarcasm judgment. The order of
judgment indeed affect the sarcasm and sentiment under-
standing. Quantum incompatibility help one understand the
correlation across different tasks by providing a quantified
metric of incompatibility measuring.

To sum up, we argue that the above-mentioned proofs
provide solid foundation of our proposed model. Knowing
this will deepen the understanding of our motivation and
multi-affective joint analysis. This also gives a good answer
to many readers’ question: why use quantum theory to
design a macro NLP model?

5 The Proposed QUIET Model
In this section, we detail the proposed QUIET model which
leverages textual, visual and acoustic information.

5.1 Task Definition
This paper aims to detect sarcasm, sentiment, and emotion
simultaneously in multi-modal conversations, via a quan-
tum probability inspired multi-task learning framework.
Assume that the dataset has M samples, the ith sample
Xi is represented as

{
Xi = (Ci, T i), Y i

}
, where Ci, T i,

Y i respectively denote the contextual utterances, the ith

target utterance and the sarcasm/sentiment/emotion label.
Each utterance consists of three modalities, i.e., textual,
visual and acoustic modalities. Suppose there are R contexts
for the ith sample, then the f th contextual utterance is
represented as Ci

f = (Ci
t , C

i
v, C

i
a), the ith target utterance

is denoted as T i = (T it , T
i
v, T

i
a), where i ∈ [1, 2, ...,M ],

f ∈ [1, 2, ..., R]. The labels of ith target utterance are
Y i = (yisar, y

i
sent, y

i
emo), describing the results for sarcasm

detection, sentiment analysis and emotion recognition.
Based on the above description, the task could be formu-

lated as:

ζ =
∏
i

p
(
Y i|Ci, T i,Θ

)
(13)

where Θ represents the parameter set in the model.

5.2 Overall Network
The architecture of the QUIET framework is shown in Fig-
ure 1. It is composed of five building blocks, i.e., a complex-
valued multi-modal encoder, a quantum composition layer,
a quantum interference-like inter-modal fusion layer, a
quantum incompatible measurement layer and a dense
layer. The framework works in the following procedure. (1)
The kth textual utterance, video clip and acoustic segment
are represented by complex-valued embeddings, e.g.,

∣∣T kt 〉,∣∣T kv 〉 and
∣∣T ka 〉. The technical details on initialization of these

embedding vectors are provided in Section 6.1. (2) Then,∣∣T kt 〉,
∣∣T kv 〉 and

∣∣T ka 〉 are fed into the quantum composition
layer to calculate the intra-modality contextuality, where the
results are encapsulated in three density matrices ρtext, ρimg
and ρauc. (3) We then fuse any two density matrices from
ρtext, ρimg and ρauc, to obtain the bi-modal representations
via quantum interference. The tri-modal representation is
obtained by merging them together. (4) We extract the final
sarcastic, sentimental and emotional features via quantum



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, XX-XX 6

Fig. 1: The architecture of the QUIET framework. ⊛ denotes an outer production to a vector. ⊙ denotes point-wise
multiplication.⊕ refers to a element-wise addition. M⃝ refers to the quantum measurement operation.

incompatible measurement, and finally (5) we feed such
features into the fully connected softmax layers to yield
sarcasm, sentiment, and emotion predictions respectively.

5.3 Complex-valued Multi-Modal Encoder
Motivated by Wang and Li’s work [7], we seek inspira-
tions from QP, and design a complex-valued multi-modal
encoder. For text, we assume that the textual Hilbert space
Ht is spanned by a set of orthogonal basis states {|wjt ⟩}nj=1.
But different from their assumption that treats the sememes
as basis states, we treat words in the textual counterpart as
basis states. In this way, the jth word wjt is a basis state |wjt ⟩
in the textual Hilbert space, and is described using an one-
hot encoding, which means the jth position is 1 while other

positions are 0, i.e., |wjt ⟩ =

(
0, 0, ..., 0

j−1
, 1
j
, 0
j+1

, ..., 0

)T
.

Then, the kth target utterance T kt is a superposition of a set
of unit words {|w1

t ⟩, |w2
t ⟩, ..., |wnt ⟩}, the superposition state

of T kt is formulated as:

|T k
t ⟩ =

n∑
j=1

zjt |w
j
t ⟩, zjt = rjt e

iθ
j
t (14)

where n is number of words in the kth target utterance. zjt
is the probability amplitude expressed in the complex polar

form. In QP, the complex probability amplitude depicts the
position of a particle. i in the probability amplitude is the
imaginary number satisfying i2 = −1 , rjt and θjt ∈ [−π, π]
represent amplitude and phase of zjt . We associate the
amplitude R and phase Θ with specific linguistic meanings.
The amplitude is analogous to the semantic knowledge. As
for the phase, it is linked with the preassigned sentiment
orientation of the utterance. The detailed explanation is
provided in Appendix A.

Now, we obtain the complex-valued representa-
tion of the kth target utterance, namely |T kt ⟩ =(
r1t e

iθ1t , r2t e
iθ2t , ..., rnt e

iθnt

)T
.

For video, the low level visual features, e.g., visual sub-
regions, can be seen as the basis units, which construct
the visual Hilbert space Hv . Thus, the visual counterpart
of the kth utterance could be represented as: |T kv ⟩ =(
r1ve

iθ1v , r2ve
iθ2v , ..., rnv e

iθnv

)T
.

For speech, we adopt the similar manner to treat the
low level acoustic features, e.g., volume, frequency, as the
basic units. We assume that the acoustic Hilbert space Ha

is spanned by a set of orthogonal basis audio features
{|wja⟩}nj=1, where the target speech can be written as:
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|T ka ⟩ =
(
r1ae

iθ1a , r2ae
iθ2a , ..., rnae

iθna

)T
.

Contextual utterance representation. The textual, visual
and acoustic representations, i.e. |Ck

t ⟩ , |Ck
v ⟩, |Ck

a ⟩, of the ith

context for the kth target utterance could be also calculated
in the same way, i.e., Eq. 14.

5.4 Learning Intra-modality Contextuality with the
Quantum Composition Layer
Quantum composition describes the interaction between a
quantum system and their surrounding environments. We
treat the target utterance (or video, speech) as a quantum
system, its context as the surrounding environment. We
thus design a quantum composition layer to learn the intra-
modality contextuality.

For text, given that the target utterance |T kt ⟩ and its con-
texts {|C1

t ⟩, |C2
t ⟩, ..., |Cn

t ⟩}, a conversation sequence could
be obtained as

{
Qk = |C1

t ⟩, |C2
t ⟩, ..., |Cn

t ⟩, |T kt ⟩
}

. We feed
these n+1 vectors in sequence Qk into a gate recurrent unit
(GRU) network to produce their short contextual representa-
tions, we use hidden state generated at every step as current
contextual feature, then we get {H1

t , H
2
t , ...,H

n
t , H

n+1
t }.

In order to capture both long and short range contextual
interactions, we represent the target utterance as a textual
density matrix ρtext, by encapsulating the outer product
of each contextual representation. The density matrix has
encoded all the information and interactions of utterance,
which is computed as:

ρtext =

n+1∑
λ=1

pλ|Hλ
t ⟩⟨Hλ

t | (15)

where pλ denotes the weight of interaction of each con-
textual representation. The density matrix ρtext encodes all
information from the target utterance and its contexts.

For video and speech, two kinds of contextual
representations are obtained via two separate GRUs,
i.e., {H1

v , H
2
v , ...,H

n
v , H

n+1
v } and {H1

a , H
2
a , ...,H

n
a , H

n+1
a }.

Thus, two density matrices ρimg and ρauc are also calculated
using Eq. 15.

We obtain three density matrices ρtext, ρimg and ρauc for
the target multi-modal sample. We feed them into the quan-
tum interference-like inter-modal fusion layer for multi-
modal fusion.

5.5 Quantum Interference-like Fusion Layer
We elaborate an analogy to quantum interference phe-
nomenon in multi-modal fusion. The subjective attitude of
the author is uncertain, which can be analogized as the
particle’s state. Two modalities, e.g., textual/visual, tex-
tual/acoustic and visual/acoustic are analogized as two
paths. Bi-modal fused features could be seen as the prob-
ability distribution of the particle going through two paths.
The information from each modality contributes to the final
bi-modal features contemporaneously. Then we can model
the modality interference via quantum interference.

Based on Eq. 5, Eq. 6 and Eq. 7, we argue that the subjec-
tive attitude of the speaker is in a quantum superposition-
like of bi-modal representation, which can be expressed as:

zp(x) = αza(x) + βzb(x) (16)

where za(x)&zb(x) denotes the complex probability am-
plitudes of text-video, text-audio and video-audio pairs,

Fig. 2: Quantum interference-like fusion component. ⊙ de-
notes point-wise multiplication. ⊕ refers to a element-wise
addition. ⊚ is the matrix multiplication. √⃝ refers to the
square root operation.

e.g., t&v, a&t, v&a respectively. zp(x) denotes the complex
probability amplitude of bi-modality. fa(x) = |α|2|za(x)|2
and fb(x) = |β|2|zb(x)|2 represent the corresponding proba-
bility distributions. The probability distribution of bi-modal
representation of the target document is written as:

fp(xk) = fa(xk) + fb(xk) + 2
√

fa(xk)fb(xk) cosϕi (17)

where xk represents the kth feature component of the bi-
modal representation |fp⟩, I = 2

√
fa(x)fb(x) cosϕi is the

interference item, capturing the non-linear interaction be-
tween different modalities, as shown in Figure 2.

We could get three bi-modal representations from t&v,
a&t, v&a, i.e., |ftv⟩, |fta⟩ and |fva⟩. The final tri-modal
representation |ftva⟩ is obtained by merging them together:

|ftva⟩ = [|ftv⟩; |fva⟩; |fta⟩] (18)

5.6 Quantum Incompatible Measurement

In QP, the information and property of a system (e.g.,
the author’s sarcastic attitude) could be depicted by the
probability distribution from the measurement outcomes.
We perform a sequence of quantum incompatible measure-
ments on tri-modal representation |ftva⟩, for obtaining the
final sarcastic, sentimental and emotional features m⃗sar =
(msar

1 ,msar
2 , ...,msar

G ), m⃗sen = (msen
1 ,msen

2 , ...,msen
G ) and

m⃗emo = (memo
1 ,memo

2 , ...,memo
G ).

Three sets of measurement operators Msar =
{Msar

ψ }Gψ=1, Msen = {Msen
ψ }Gψ=1 and Memo = {Memo

ψ }Gψ=1

are constructed by performing the outer product of corre-
sponding measurement vector |Dψ⟩, |Aψ⟩ and |Rψ⟩, that is
Msar
ψ = |Dψ⟩⟨Dψ|, Msen

ψ = |Aψ⟩⟨Aψ|, Memo
ψ = |Rψ⟩⟨Rψ|.

The probability distribution after the measurement is writ-
ten as:

m⃗s = tr
(
(Ms)† Ms|ftva⟩⟨ftva|

)
(19)

where s ∈ {sar, sen, emo}.
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Dataset Task Classes No. of Utter. RC(%)

MUStARDext

Sarcasm Sar. 345 50.00
Non. 345 50.00

Sentiment
Pos. 210 30.43
Neg. 391 56.67
Neu. 89 12.90

Emotion

An. 97 14.05
Ex. 18 2.61
Fr. 14 2.03
Sd. 121 17.54
Sp. 29 4.20
Fs. 57 8.26
Hp. 143 20.72
Neu. 198 28.70
Dg. 39 5.65

MELD

Sentiment
Pos. 3088 22.53
Neg. 4194 30.52
Neu. 6436 46.95

Emotion

An. 1607 11.72
Dg. 361 2.63
Fr. 358 2.61
Jy. 2308 16.84

Neu. 6436 46.95
Sd. 1002 7.31
Sp. 1636 11.94

TABLE 1: Dataset statistics.In MUStARDext emotions in-
cluding, An: Anger, Ex: Excited, Fr: Funny, Fr: Fear, Sd: Sad,
Sp: Surprised, Fs: Frustrated, Hp: Happy, Neu: Neutral, Dg:
Disgust. In MELD emotions including, An: Anger, Dg: Dis-
gust, Fr: Fear, Jy: Joy, Neu: Neutral, Sd: Sad, Sp: Surprised.
In MUStARDext we count the labels of the last utterance, in
MELD we count labels for every utterance.

5.7 Dense Layer
The sarcastic, sentimental and emotional features m⃗sar,
m⃗sen, m⃗emo are passed to the fully connected layer for
each task respectively. The outputs are forwarded through
the softmax functions to yield the sarcasm, sentiment, and
emotion labels. We use cross entropy with L2 regularization
as the loss functions ζsar , ζsen and ζemo for training each
task.

ζγ = −1/N
∑
i

E∑
n=1

yilog(pi) (20)

where ζγ ∈ {ζsar, ζsen, ζemo}, N is the number of samples
in the dataset, E denotes the number of classes, in this work
Esar = 2, Esen = 3, Eemo = 9, yi is the ground truth and pi
is the prediction.

We jointly optimize three loss functions with different
weights, which is written as:

ζ = wsarζsar + wsenζsen + wemoζemo (21)

where wsar, wsent and wemo satisfying wsar + wsen +
wemo = 1. The dropout strategy is applied in the training
stage to avoid overfitting.

6 Experiments and Analysis

6.1 Experiment Settings
Dataset. To carry out an empirical evaluation, we need to
choose benchmark datasets that have textual, visual and
acoustic modalities with all sentiment, emotion and sarcasm
labels. To this end, only the extended version of MUStARD
(MUStARDext for short) meet these criteria. The original

Dataset Partition Count of Dialogues

MUStARDext

Train 550 (2297 utterances)
Dev. 70 (319 utterances)
Test 70 (336 utterances)

MELD
Train 1039 (9989 utterances)
Dev. 114 (1109 utterances)
Test 280 (2610 utterances)

TABLE 2: Partition of the MUStARDext dataset and the
MELD dataset.

MUStARD dataset is made up of 3.68 hours conversational
video, which consists of 690 samples total of 3,000 utter-
ances. Each sample is a conversation consisting of several
utterances. The samples are collected from 4 TV Series
i.e., Friends, The Big Bang Theory, The Golden Girls, and
Sarcasmaholics Anonymous, and are manually annotated.
Chauhan et al. [4] extended this dataset to sentiment and
emotion scenario and re-annotated sentiment and emotion
labels.

In addition, in order to evaluate the robustness of the
proposed model, we also applied it to bi-modal bi-task
scenarios. We conduct experiments on another large scale
dataset that only contains the sentiment and emotion labels,
i.e., MELD [18]. MELD contains 13,708 utterances from 1433
dialogues of the Friends TV series. The utterances in each
dialogue are annotated with one of three sentiments (posi-
tive, negative or neutral) and one of seven emotions (anger,
disgust, fear, joy, neutral, sadness or surprise). Table 1 shows
detailed statistics.

In Table 2 we show the partition of two dataset, we split
datasets at the granularity of dialogues, count of dialogues
for Train set, Dev. set and Test set are listed in the table. 4

Evaluation metrics. We adopt precision (P), recall (R)
and micro− F1 (Mi-F1) as evaluation metrics in our exper-
iments.

Pre-processing. For textual information, we first clean all
the texts by checking for illegible characters and correcting
spelling mistakes automatically.

Hyper-parameters. As TensorFlow used to build the
model does not support the complex representation, we
take the real part and the imaginary part of a complex
number as two separative inputs. The real parts of tex-
tual, visual and acoustic counterparts are initialized with
BERT, EfficientNet and VGGish respectively. The phases in
the imaginary parts are initialized with the pre-assigned
sentiments using BERT. Based on the sentiment polarity
result from BERT, we initialize every position in the phase
part with a random number in (-pi,0) when the sentiment
polarity is negative. While, when the sentiment polarity
is positive, every position in the phase part is initialized
with a random number in (0,pi). The quantum measurement
operators are randomly initialized with the unit vector and
are set to be trainable. We evaluate the model by trying
different combinations of hyper-parameters, and the finally
selected hyper-parameters lead to the best performance. The
optimal hyper-parameters are listed in Table 3 5.

To obtain the optimal experiment results, we use the
early-stop strategy, which will stop training when the per-

4. Access code via https://github.com/codeofquiet/QUIET.git
5. Hyper-parameters pools are shown in the Appendix D
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Hyper-parameters MUStARDext

Text Embedding size 768
Image Embedding size 2048
Audio Embedding size 128
Phase Embedding size 128
Phase initialation range −π − π
Activations Relu
Batch size 64
Learning rate 0.0075
No. of measurement 1000
Dropout rate 0.2
Epochs 100 (with early-stop)
Interference item cosϕi -0.3
Interference coefficient (α2, β2) (0.5,0.5)
No. GRU cells (128)

TABLE 3: Model configurations.

Experiment Environment
Operating system Ubuntu 16.04.6
GPU GeForce RTX 2080ti
GPU driver CUDA 11.2
Memory size 10GB
Deep-learning framework keras v2.2.5

tensorflow-gpu v1.14.0

TABLE 4: Hardware devices and software environment.

formance no longer increases. The self-adjusted learning
rate changes as the training process goes. We conduct our
experiments via Keras v2.2.5 open library. The detailed
experimental environment is shown in Table 4.

6.2 Baselines
In this work, we treat sarcasm detection task as the main
task, and select sentiment analysis and emotion recognition
as the auxiliary tasks. We compare our QUIET model with a
range of state-of-the-art baselines. They are listed as follows:

SVM+BERT [19]: It uses BERT to represent textual utter-
ances with the standard hyper-parameter settings. Besides,
the kernel function for SVM is set to “RBF”. We also con-
catenate the contextual features.

RCNN-RoBERTa [20]: It utilizes pre-trained RoBERTa
vectors as textual representation, and combines with a
RCNN to capture contextual information.

EfficientNet [21]: It uses a compound scaling method to
create different models, which has achieved state-of-the-art
performance on the ImageNet challenge.

UPB-MTL [22]: It is a multi-modal multi-task learning
architecture that combines ALBERT for text encoding with
VGG-16 for image representation.

QMSA [2]: It first extracts visual and textual features us-
ing density matrices, and feeds them into the SVM classifier.

A-MTL framework [4]: It proposes an attention based
multi-task model to simultaneously analyse sentiment, emo-
tion and detect sarcasm.

LF-DNN [23]: It proposes a a multi-modal fusion model
with residual connections based on late fusion.

ConAttSD [24]: It constructs a contrastive-attention-
based sarcasm detection (ConAttSD) model, and uses an
inter-modality contrastive attention mechanism to extract
the contrastive features for an utterance.

Hybrid [25]: Designs a LSTM network based acoustic
encoder and a CNN network based textual encoder to
extract corresponding features. Two features are combined
and then the hybrid feature is send into a SVM model to get
classification result.

Dataset Method Sarcasm Detection
P R Mi-F1

MUStARDext

SVM+BERT 65.14 64.61 64.68
SVM+BERT (+context) 65.53 65.11 65.06
RCNN-RoBERTa 68.70 64.33 65.16
EfficientNet 63.58 64.19 63.77
UPB-MTL 65.12 65.41 65.41
QMSA 70.23 70.04 70.00
Hybrid 75.11 66.28 70.35
LF-DNN 73.82 73.77 73.75
ConAttSD 74.46 74.01 73.97
A-MTL 77.09 76.67 76.57
Text-QUIET 72.44 71.45 72.13
Image-QUIET 71.89 71.33 70.89
Audio-QUIET 78.91 77.50 78.14
QUIET 83.74 82.93 83.70
△SOTA (+6.7%) (+6.3%) (+7.1%)

Dataset Method Sentiment Analysis
P R Mi-F1

MUStARDext

SVM+BERT 57.17 57.10 57.23
SVM+BERT (+context) 58.44 58.21 58.41
RCNN-RoBERTa 59.45 59.74 59.28
EfficientNet 59.12 58.87 59.19
UPB-MTL 59.81 59.72 59.36
QMSA 59.67 60.05 59.78
A-MTL 60.56 60.69 61.17
Text-QUIET 73.24 73.39 73.55
Image-QUIET 66.52 66.81 66.70
Audio-QUIET 63.72 63.63 63.89
QUIET 74.37 74.56 74.89
△SOTA (+13.8%) (+13.9%) (+13.7%)

Dataset Method Emotion Recognition
P R Mi-F1

MUStARDext

SVM+BERT 25.64 25.71 25.67
SVM+BERT (+context) 26.39 26.39 26.39
RCNN-RoBERTa 32.61 32.70 32.65
EfficientNet 31.43 31.47 31.44
UPB-MTL 33.55 33.64 33.60
QMSA 24.14 24.53 25.10
A-MTL 33.12 33.07 33.10
KAMT 33.72 33.80 33.80
Text-QUIET 34.23 34.17 34.20
Image-QUIET 36.14 36.10 36.15
Audio-QUIET 31.90 31.62 31.76
QUIET 37.64 37.71 37.69
△SOTA (+4.5%) (+4.6%) (+4.6%)

TABLE 5: Comparison of different baseline models on three
tasks on MUStARDext dataset.

KAMT [26]: It designs an external knowledge enhanced
multi-task representation learning network, termed KAMT,
for emotion recognition.

Parameters analysis and complexity. In Appendix Ta-
ble.1, we present and compare the number of parameters
from thirteen models, including the proposed QUIET and
its variant QUIET-Double-Real, eight baseline models and
other three pre-trained language models.

From Table.1 in Appendix, we notice that all baseline
models have fewer parameters than pre-trained language
models (i.e., ALBERT-base, BERT-base, BERT-large). And
among the proposed model and all baseline models, UPB-
MTL and EfficientNet have more parameters than QUIET,
this is because they have the most complex structures
among all baselines. Compared with ConAttSD, A-MTL and
RCNN-RoBERTa, QUIET has about twice numbers of pa-
rameters. As for Hybrid and QMSA, QUIET has about four
times the number of parameters. The main reason QUIET
has more parameters is that it is based on the complex rep-
resentation which contains real-part and complex-part thus
makes the quantity of parameters doubled. However, our
proposed model outperforms other baselines on three tasks
with a considerable training time. We argue that our QUIET
model make a good balance between time complexity and
the classification performance.
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Dataset Method Sentiment Analysis
P R Mi-F1

MELD

SVM+BERT (+context) 63.79 62.41 63.12
EfficientNet 62.87 62.36 62.52
UPB-MTL 60.94 61.47 61.04
RCNN-RoBERTa 62.48 60.32 61.42
QMSA 65.21 65.87 65.33
QUIET 67.93 67.31 67.41
△SOTA (+2.72%) (+1.44%) (+2.08%)

Dataset Method Emotion Recognition
P R Mi-F1

MELD

SVM+BERT (+context) 33.09 33.31 33.20
EfficientNet 34.43 33.97 34.13
UPB-MTL 33.21 33.54 33.38
RCNN-RoBERTa 34.53 33.91 33.69
QMSA 36.01 37.37 36.56
QUIET 42.56 41.67 41.88
△SOTA (+2.13%) (+1.7%) (+1.74%)

TABLE 6: Comparison of different baseline models on two
tasks on MELD dataset.

6.3 Comparative Analysis

The experimental results are summarized in Table 5. We can
notice that in the cases of sarcasm detection, the two popular
pre-trained language models, EfficentNet and SVM+BERT
perform poorly among all baselines, and get the worst
results. The reason is that we only fine-tune both models
instead of improving their architectures. Through taking
the conversational context into consideration, SVM+BERT
(context) slightly outperforms the above-mentioned models
for all three tasks, indicating that the conversation context
would affect the sarcasm polarity of the target utterance. It is
necessary to model the context. RCNN-RoBERTa performs
better than SVM+BERT and EfficentNet. The major reasons
are: (1) RNN could learn effective contextual information;
and (2) RoBERTa is trained on a much larger dataset. How-
ever, it is only designed for text, which is not inapplicable to
multi-modal learning. UPB-MTL outperforms SVM+BERT
and other above-mentioned baselines for all three tasks.
Because UPB-MTL is built on the top of two pre-trained
models, e.g., BERT and ResNet, it can leverage the comple-
mentary information from the two models.

QMSA performs well for the tasks of sentiment analysis
and sarcasm detection, while performs poorly in the case of
emotion recognition. The performance of it varies largely
for different tasks. This may be due to the instability of
quantum density matrix. Our QUIET model will improve
the shortcomings of QMSA by designing an end-to-end
quantum probability inspired framework. Hybrid obtains
comparable results against QMSA. The reason is that Hy-
brid only adopts a simple fusion architecture. LF-DNN and
ConAttSD outperform the above-mentioned baselines sig-
nificantly. The reasons are: (1) the residual connection based
late fusion prevents the degeneration; (2) the contrastive
attention module could learn more complementary knowl-
edge from multiple modalities. However, both of them are
weaker than A-MTL, because A-MTL models the interaction
across different tasks.

A-MTL performs well and achieves the best classification
performance among all baselines for the tasks of sarcasm
and sentiment analysis, and gets comparable results against
UPB-MTL for the task of emotion recognition. Compared
with UPB-MTL, the micro-f1 scores increase by 15.1% and

3.7%. Because it unifies pre-trained language models (PLM),
multi-task learning and two attention mechanisms into a
framework, which could better combine the information
across the modalities to effectively classify sarcasm, senti-
ment, and emotion.

Text-QUIET, Image-QUIET and Audio-QUIET surpass
SVM+BERT, RCNN-RoBERTa and UPB-MTL, but under-
performs A-MTL. This result shows that the uni-modal
setup of the proposed QUIET model can still achieve compa-
rable performance against strong baselines. In this work, we
will not treat them independently. Meanwhile, Text-QUIET
has shown its best robustness against another two uni-
modal setups. Finally, the proposed QUIET model achieves
the best micro-F1 scores of 83.7%, 74.89%, 37.69% against
micro-F1 scores of 76.57%, 61.17%, 33.1% of the state-of-the-
art baselines. This empirically proves the effectiveness and
feasibility of QUIET, and its great potential in human affect
analysis. We will conduct detailed analysis of QUIET from
other aspects in the following sections.

In Table 6, classification results on MELD dataset are
listed. Among all tested baseline models, QMSA, which
is a QP based baseline model, got the best result on both
tasks. Comparing with QMSA, QUIET got improvement on
both task. On sentiment analysis task, it is 2.72%, 1.44%,
2.08% for precision, recall, and micro-f1 score. On emotion
recognition task, improvements are 2.13%, 1.7%, and 1.74%
for three metrics. On the MELD dataset, our model shows
the best result, which shows the effectiveness and great
generalization of the proposed model.

In these experiments, emotion recognition is the most
complex task in comparison to sentiment analysis and
sarcasm detection. This is because sarcasm detection task
is a binary classification task, and sentiment analysis is
a ternary classification task. For emotion recognition, the
class number expends from 2/3 to 9. Having such many
categories is a direct reason for emotion recognition being
such a complex task (The average probability of correctly
predicting a label has increased from 1/2 or 1/3 to 1/9).
Multi-class classification task is more difficult than binary
class task. In addition, from the cognition perspective, it
is difficult to distinguish the specific emotion from similar
emotions, e.g., distinguishing the disgust from anger, since
such different emotions do not have clear boundary. From
the quantum theory perspective, emotion state is under a
superposition state composed by 9 different basis states, this
leads to a smaller probability of collapsing into each emotion
state compared to sarcasm and sentiment.

Significance test. We have employed the paired t-test to
perform significance test on baseline models and ablation
models. Results (p-value) are shown in Appendix Table.2
and Table.3. We observe that the performance improvement
in the proposed models over the state-of-the-art systems is
significant with 95% confidence (i.e., p-value< 0.05). In ad-
dition, we notice that the p-values of sarcasm detection task
on tri-task-va v/s bi-task(sar+sent)-va, QUIET(sar) v/s uni-
task(sar)-tri-modal are larger than 0.05. For the first case, we
argue that decision on emotion recognition affects decisions
on sentiment analysis and sarcasm, because both result in
tri-task-va is lower than task(sar+sent)-va. And acoustic pre-
trained model is not as efficient as textual and visual pre-
trained model (the vggish model was transformed from the
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Setup Task T A V
Mi-F1 Mi-F1 Mi-F1

Single task Sarcasm 70.33 68.97 74.44
Single task Sentiment 71.97 66.73 72.01
Single task Emotion 31.13 30.90 31 .00

Sar+Emo (bi-task) Sarcasm 71.25 69.28 77.33
Emotion 30.49 30.13 30.76

Emo+Sent (bi-task) Emotion 32.25 29.32 31.11
Sentiment 70.27 71.87 71.21

Sent+Sar (bi-task) Sentiment 70.77 65.47 71.20
Sarcasm 71.18 69.56 77.56

Sar+Sent+Emo (tri-task)
Sarcasm 71.98 72.36 78.98
Sentiment 73.55 63.89 66.70
Emotion 34.20 31.76 36.15

TABLE 7: Comparison with single-task learning (STL)
and multi-task (MTL) learning frameworks on three single
modalities. T: Text, V: Visual, A: Audio

visual pre-trained model), this is also one of the reasons for
this case. For the second case, QUIET(sar) works better than
uni-task(sar)-tri-modal, however p-value is a little higher
than 0.05, which is 0.06346. We argue this is because the
distribution of predicted labels is more similar compared to
the results of other models.

6.4 Single-Task vs. Multi-Task Learning

In order to analyze the role of multi-task learning, we de-
pict the comparison results between the multi-task learning
(MTL) and single-task learning (STL) frameworks in Table 7.
We compare the single task setup with bi-task and tri-task
learning.

We can observe that the best F1 scores for single task
setup are 74.44%, 72.01% and 31.13% for sarcasm, sentiment,
and emotion respectively. In a bi-task setup, the best scores
for sarcasm, sentiment, and emotion are 77.56%, 71.87% and
32.25%. We see that the performance of sarcasm detection
and emotion recognition has improved via bi-task learning,
while the performance of sentiment analysis is compara-
ble. We also conclude that both sentimental and emotional
knowledge help sarcasm detection, especially the former.
The sentimental knowledge facilitates the identification of
emotion. In a tri-task setup, the best F1 scores for sarcasm,
sentiment, and emotion are 78.98%, 73.55% and 36.15%
respectively, which significantly outperform the results of all
single task and bi-task setups. This shows the effectiveness
of multi-task learning.

We have also performed another experiment to explore
the impact of multi-modality on single task and multi-task
setups. The experimental results are shown in Table 8 and
Table 9. We can observe that all F1 scores of multi-modal
cases for all setups (including single task, bi-task and tri-
task learning) significantly outperform that of uni-modality
(e.g., Text, Video, Audio). For example, the F1 scores for the
tri-modality case in the tri-task setting are 83.74%, 74.89%
and 37.69%, as compared to the best F1 scores of uni-
modality, i.e., 78.98% (with V), 73.55% (using T) and 36.15%
(using V). The above results implicate that the importance
of multi-task learning and multi-modal modeling, and our
QUIET model has incorporated both of them into a unified
framework.

Setup Task T+A V+T V+A
Mi-F1 Mi-F1 Mi-F1

Single task Sarcasm 73.24 75.88 74.87
Single task Sentiment 72.12 73.45 72.23
Single task Emotion 33.49 33.64 33.07

Sar+Emo (bi-task) Sarcasm 74.29 79.79 74.97
Emotion 34.14 33.41 34.23

Emo+Sen (bi-task) Emotion 33.48 34.33 30.76
Sentiment 72.74 73.26 72.06

Sen+Sar (bi-task) Sentiment 70.94 73.56 72.08
Sarcasm 71.98 78.04 82.98

Sar+Sen+Emo (tri-task)
Sarcasm 75.85 81.52 76.99
Sentiment 73.33 70.64 71.10
Emotion 34.65 34.83 33.37

TABLE 8: Comparison with single-task learning (STL) and
multi-task (MTL) learning frameworks on combination of
two modalities. T: Text, V: Visual, A: Audio

Task Setups T+A+V
Mi-F1

Sarcasm Single task 79.96
Sentiment Single task 73.65
Emotion Single task 34.13

Sar+Emo Sarcasm 76.81
Emotion 33.63

Emo+Sent Emotion 32.05
Sentiment 72.44

Sent+Sar Sentiment 72.10
Sarcasm 82.17

Sar+Sent+Emo
Sarcasm 83.74
Sentiment 74.89
Emotion 37.69

TABLE 9: Comparison with single-task learning (STL) and
multi-task (MTL) learning frameworks on combination of
all three modalities. T: Text, V: Visual, A: Audio

6.5 Ablation Study
To study the effectiveness of different components of the
QUIET model, we perform the ablation study. We choose
to remove only one component at each time and evaluate
its impact on the overall performance. Four sub-models are
designed: (1) QUIET − Real that does not consider the
complex embedding, i,e., replacing utterance embeddings
with their real counterparts only; (2) QUIET − Real −
Double − Para that doubles the real part of the complex
representation to make the parameter quantity equals to the
proposed model; (3) QUIET −No−Context that does not
model the contextuality; (4) QUIET −Concat that replaces
quantum interference fusion with a feature concatenation
operation; (5) QUIET − Trad that replaces quantum in-
compatible measurement with a traditional softmax layer.

The experimental results are shown in Table 10. We can
see that all the sub-models under-perform the QUIET model
for all of the three tasks. Among the sub-models, QUIET-No-
Context performs the poorest for the task of sarcasm detec-
tion. The reason is that sarcasm understanding is more de-
pendent on the context. For sentiment analysis and emotion
recognition, QUIET-Real achieves the worst performance,
which shows that the imaginary part of the complex-valued
representation is quite crucial in term of leveraging the
prior knowledge to improve the efficiency of representation
learning. QUIET-No-Context gets a better classification per-
formance over the other sub-models in the case of sentiment
analysis. One possible reason is that detecting sentiment ori-
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Task Models Metrics
Mi-F1

Sarcasm

QUIET-Real 74.13
QUIET-Real-Double-Para 77.21
QUIET-No-Context 64.92
QUIET-Concat 75.87
QUIET-Trad 78.51
QUIET-Sarcasm 83.74

Sentiment

QUIET-Real 48.97
QUIET-Real-Double-Para 55.42
QUIET-No-Context 69.81
QUIET-Concat 61.50
QUIET-Trad 65.76
QUIET-Sentiment 77.53

Emotion

QUIET-Real 22.87
QUIET-Real-Double-Para 30.33
QUIET-No-Context 26.14
QUIET-Concat 26.87
QUIET-Trad 35.16
QUIET-Emotion 37.69

TABLE 10: Ablation experiment results.

entation mainly relies on the current utterance. For emotion
recognition, QUIET-Trad obtains the best F1 score among all
the sub-models, which shows that quantum incompatible
measurement contributes less to emotion recognition than
to sarcasm and sentiment. We design QUIET-Real-Double-
Para, which doubles the real part of the complex represen-
tation to ensure that the amount of parameters equals to
the QUIET model. Results show that the expansion on the
parameters benefits to the performance, especially on the
sentiment analysis and emotion recognition tasks. QUIET-
Real-Double-Para overcomes QUIET-Real because of the
increase in the dimension of real part vectors. However, it
under-performs than QUIET-Trad and the standard QUIET
model for three tasks. This shows that the single increase in
the dimension of vectors is not a good way to improve the
performance. The improvement of the model mainly comes
from our proposed QP framework rather than the expansion
of parameters. In summary, all baselines are weaker than
the proposed QUIET model, which proves all quantum
components have their contributions.

6.6 Context Range Study

In order to analyze the effect of context range, we calculate
the distribution of different context ranges in the dataset,
where detailed statistics are shown in Table 11. We notice
a fact that 65% utterances have less than three contextual
utterances. Hence, we empirically set the upper limit of the
context to three, and study the impact of different context
ranges on the performance.

The results are reported in Tables 12 with different con-
text scopes. Zero context means that we only use the target
utterance, ignoring the contextuality. One context utterance
denotes that we use one history utterance before the target
utterance to construct the density matrix. Two contexts
mean that we use the previous two history utterances. And
all context means we use all three previous contexts.

From Table 12, we observe that performance of all three
tasks steadily increased, as context ranges increase. For ex-
ample, the F1 scores are 64.92%, 73.01%, 80.23% and 83.74%
respectively. This shows the important role of conversation
contexts. QUIET with zero context expectantly performs

Context Range No. of Utterance
1-3 445
4-7 197

8-12 48
total 690

TABLE 11: Counts of different context ranges.

Task Context Range Metrics
Mi-F1

Sarcasm

Zero 64.92
One 73.01
Two 80.23
All 83.74

Sentiment

Zero 68.81
One 69.45
Two 71.64
All 77.53

Emotion

Zero 26.14
One 34.76
Two 35.98
All 37.69

TABLE 12: Effect of context range.

the worst. QUIET with all contexts setup achieves the best
F1 scores for all three tasks, which implies that taking all
conversation contexts into consideration may be the best
way to reach optimal performance.

6.7 Error Analysis

We perform an error analysis and show several typical mis-
classification cases (textual utterance plus image), including
the cases that MTL predicts correctly while STL fails, and
that both setups fails to predict correctly. These cases are
shown in Table 13 and Fig. 3 .

From Table 13 and Figure 3, we found that mis-
classification often happens in the situation where the
speaker uses a few positive words to express his/her sarcas-
tic attitude. In this case, QUIET first mistakenly treats it as a
positive sentiment utterance, and thus feeds this wrong sen-
timent identification into the complex-valued embedding,
then makes a wrong decision. Further, we also notice that
few errors occur when an utterance expresses very negative
sentiment. QUIET may mix up the negative sentiment or
anger emotion with the sarcasm polarity. This is due to the
subtle difference between sarcasm, sentiment, and emotion.
Discriminating irony attitude from negative sentiment is a
tricky and complex problem, which is still an open area of
research.

6.8 Discussion on Inter-Task Incompatibility

For a more detailed exploration of the incompatible mea-
surement, we train 800 pairs of sentiment and sarcasm
measurement operators, and calculate the commutation re-
lation for each pair. The results are visualized in Figure 4a.
We can notice a violation of the commutation law, i.e.,[
Msar
γ ,Msen

δ

]
̸= 0 for all pairs, implying sentiment and sar-

casm are incompatible. To further validate this observation,
we introduce quantum relative entropy6, which is a kind
of “distance” measure between quantum states, the smaller

6. D(σ||ρ) = Trσlogσ−Trσlogρ. Here σ and ρ are two measurement
operators, Tr means the trace operation.
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No. Utterances Sarcasm (T+V)
Actual STL MTL

1 Good idea, sit with her. Hold her, comfort her. And if the moment feels right, see if you can cop a feel. S NS NS
2 Just the latest copy of Applied Particle Physics quarterly. S NS NS
3 Oh my god, you almost gave me a heart attack! S NS NS
4 I’m sorry, I am not going back to the Renaissance fair. NS S NS
5 And I just won a million dollars! NS S NS

TABLE 13: Few error cases where MTL framework performs better than the STL framework.

No.1

No.2

No.3

No.4

No.5

Fig. 3: Misclassified utterances with corresponding video
frames. Each line denotes an individual conversation cor-
responding the text in Table 13.

(a) (b)

Fig. 4: Visualization of the commutation relation and quan-
tum relative entropy.

quantum relative entropy show the closer correlation be-
tween sentiment and sarcasm operators. Average correlation
and sample correlation scores are presented in Table 14
and Figure 4a, 4b, showing the two tasks are correlated.
The result justifies the need of incompatible measurement
and explains its effectiveness against traditional multi-task
learning setting in Table 10.

Furthermore, an analysis of data shows that 84% of sar-
casm samples in MUStARD express explicit sentiments. In
MUStARD, 38% of ironic utterances are also positive. These
results support our hypothesis that sarcasm and sentiment
are closely related.

Dataset Avg. Sample Correlation Scores
MUStARD 0.484 0.517 0.422 0.448 0.461 0.437 0.494

TABLE 14: The correlation between sentiment, and sarcasm
tasks.

case a case b case c case d

Fig. 5: Figures for cases in Table 15

6.9 Case Study

We present a few classical cases in Table 15. We can notice
that sarcasm detection reaps the greatest benefit from the
other two tasks. Through incorporating the sentiment and
emotion information, QUIET often makes correct decision
on sarcasm detection. One possible reason is that sarcasm
involves a higher level of abstraction and more subjectivity.
By comparing (a)(b) and (c)(d), we see that sentiment anal-
ysis offers the greatest help to emotion recognition while
emotion recognition may benefits sarcasm detection more.
The reason is that the facial expression and the gesture
may help detect sarcasm. In contrast, emotion also helps
sentiment. But sarcasm detection plays the least role in un-
derstanding emotion. Hence, it may be a reasonable choice
to place sarcasm detection as the main task, as we did.

6.10 Comparison with Previous Works

We argue that our proposed model is quite different from all
of the previous QP based models (including our previous
works) [27], [28]. In this work we make the first attempt
to introduce three modalities (textual, visual and acous-
tic modality) under a unified QP driven framework. The
experiment results in Table 7, Table 8 and Table 9 show
the improvement by introducing new modality in to the
framework. What’s more, under the inspiration from work
[27] that quantum incompatible measurement can handle
the interaction between different tasks and under the multi-
task learning framework, one task can benefit others. Thus
we introduce the emotion recognition as the third task. In
the quantum composition layer, we use GRU to learn local
contextual interaction which are then encapsulate into a
density matrix to represent both long and short contexts.

We elaborately design the quantum multi-modal fusion
layer. In this framework, we have information from three
modalities. However, the double-slit experiment only in-
volves two propagation paths. So we propose three single
quantum interference-like fusion component for three dif-
ferent combinations of modalities (tv,ta,va).
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No. Utterances Sar. Sent. Emo.
a Well, my beer isn’t flat and my rack’s not saggy. So far, the future’s great. True Pos. Hp.
b Boy, when you meet Bernadette, the field of robotics really took a hit. True Pos. Hp.
c Wow, he really went where no man has gone before. False Pos. Sp.
d No, but last year, at Magic Mountain, he got such a bad sunburn, we had to cut him out of it. False Neg. Sd.

TABLE 15: Some cases that showing the interactions among sentiment, sarcasm, and emotion.

Model Sar. Sent. Emo.
triple-slit model 72.43 62.71 32.44

double-slit model 83.70 74.89 37.69
△ (+11.27%) (+12.18%) (+5.25%)

TABLE 16: Comparison of results on double-slit model and
triple-slit model. Compared by micro-F1 scores.

In addition, we also test the triple-slit interference com-
ponent. However, the triple-slit model performs not very
well, and does not outperform the double-slit model, where
the experimental results are 0.72, 0.62 and 0.32 on micro-
F1 for sarcasm detection, sentiment analysis and emotion
recognition tasks respectively. However, results on double-
slit model are 0.83, 0.74, and 0.37, double-slit model over-
come triple-slit model on all three tasks, result are shown
in Table 16. Hence, the triple-slit inspired model is not
as good as double-slit inspired model. The reason is that
simply extend the quantum interference fusion approach to
triple-slit scenario will introduce more noisy information.
The interaction across three modalities is more complex.
In addition, the triple-slit interference experiment does not
exist in quantum physics, where such attempts would com-
promise the theoretical interpretability of our model. Hence,
we choose to keep the current bi-modal fusion approach due
to the above-mentioned reasons.

After multi-modal fusion, the quantum imcompatible
measurement layer is used to measure three tasks simulta-
neously. Modeling the correlation across three tasks is more
difficult than modeling the bi-task correlation. The inno-
vation lies on how to design the number of measurement
operators and how to extend the commutation relation to
measure the correlation across three tasks.

Additionally, we conduct detailed experiments. We list
the result on all three tasks and study the influence caused
by different task combinations, component combinations,
context ranges and modalities. We also make the error anal-
ysis and case study. The experimental results can strongly
prove the reliability of the theory and the effectiveness of
the proposed model.

7 Conclusions and Future Work
Joint multi-modal sarcasm, sentiment, and emotion analysis
is a relatively unexplored task in NLP and affective com-
puting. Inspired by the recent success of QP in modeling
human cognition and decision making, we take the first
step to introduce QP into the task. We thus propose a
quantum probability driven framework for multi-modal
sarcasm, sentiment, and emotion analysis, namely QUIET.
It consists of a complex-valued multi-modal encoder, a
quantum composition layer, a quantum interference-like
inter-modal fusion layer and a quantum measurement layer.

The main idea is to represent each multi-modal utterance in
a conversation as a complex-valued vector and then per-
form multi-modal fusion via quantum interference. Finally,
quantum incompatible measurements are performed on the
multi-modal representation to yield the probabilistic out-
comes of sarcasm, sentiment, and emotion recognition. We
empirically prove the effectiveness of the proposed model
by outperforming the state-of-the-art baselines.

Given the limited availability of multi-modal datasets
providing labels for sarcasm, sentiment, and emotion at
the same time, we evaluated the proposed model on a
benchmark dataset that is the only one currently satisfying
the above requirement. The effectiveness of QUIET needs to
be further tapped. To this end, we plan to create a larger
scale multi-modal multi-task conversational affect dataset
to advance the development of multi-modal sarcasm, senti-
ment, and emotion joint analysis. Moreover, the GRU-based
structure used in the proposed model takes sequential data
as input. It can only calculates from left to right or from
right to left, limiting the parallel computing ability of the
model. To alleviate the problem, we plan to investigate a
quantum inspired transformer structure to better capture
the correlations among utterances and improve the model’s
parallel computing ability.
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