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Dynamic Bayesian networks for symbolic

polyphonic pitch modeling
Stanisław A. Raczyński, Emmanuel Vincent and Shigeki Sagayama

Abstract—Symbolic pitch modelling is a way of incorporating
knowledge about relations between pitches into the process of
analysing musical information or signals. In this paper, we pro-
pose a family of probabilistic symbolic polyphonic pitch models,
which account for both the “horizontal” and the “vertical”
pitch structure. These models are formulated as linear or log-
linear interpolations of up to five sub-models, each of which is
responsible for modelling a different type of relation.

The ability of the models to predict symbolic pitch data is
evaluated in terms of their cross-entropy, and of a newly proposed
“contextual cross-entropy” measure. Their performance is then
measured on synthesised polyphonic audio signals in terms of
the accuracy of multiple pitch estimation in combination with a
Nonnegative Matrix Factorisation-based acoustic model. In both
experiments, the log-linear combination of at least one “vertical”
(e.g., harmony) and one “horizontal” (e.g., note duration) sub-
model outperformed a pitch-dependent Bernoulli prior by more
than 60% in relative cross-entropy and 3% in absolute multiple
pitch estimation accuracy. This work provides a proof of concept
of the usefulness of model interpolation, which may be used for
improved symbolic modelling of other aspects of music in the
future.

Index Terms—Dynamic Bayesian Networks, multipitch analy-
sis, symbolic pitch modelling

I. INTRODUCTION

Symbolic music modelling, also known as musicological

modelling [1], [2], [3], is the equivalent of language modelling

in speech processing. It has the potential to improve the perfor-

mance of many Music Information Retrieval (MIR) tasks, such

as multiple pitch estimation [3], chord and key estimation [2],

[4], [5], music structure analysis [1], algorithmic composition

[6], [7] and automatic performance [8], [9], as a part of an

integrated statistical model of music [10].

A particular MIR task, polyphonic pitch transcription, con-

sists of estimating the pitches, the onset times and the du-

rations of each of the musical notes present in a recorded

audio signal. Many techniques have been proposed to this aim:

sparse coding [11], auditory filterbanks [3], [12], harmonic

amplitude summation [13] or Gaussian mixture models [14],

but the most popular methods are based on Nonnegative

Matrix Factorisation (NMF) and its variations [15], [16], [17],

[18], [19], [20]. Except for [14], all these solutions operate

in two subsequent steps (though much of the work focuses

Manuscript received October 31, 2012. This work was conducted while E.
Vincent was with Inria Rennes and was supported by Inria under the Associate
Team Program VERSAMUS (http://versamus.inria.fr/). S. Raczyński is with
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only on the first one). First, the salience of each pitch is

quantified for every spectro-temporal bin by an acoustic model

(sparse coder, filterbank, NMF). The salience values are then

post-processed in order to detect the musical notes. Without

including any prior knowledge about the occurrences of the

notes, or symbolic pitch model P(N), this post-processing can

be considered as a form of maximum likelihood estimation:

N̂ = argmax
N

P(S|N), (1)

where P(S|N) is the salience model. Adding a symbolic

model results in an estimation of the notes in the maximum a

posteriori-like sense:

N̂ = argmax
N

P(S|N)P(N). (2)

While acoustic modelling has been widely studied, symbolic

pitch modelling has been given much less attention so far.

Some researchers have used basic musicological models in

order to overcome the limitations of current state-of-the-art

multiple pitch transcription models: Ryynänen and Klapuri

proposed a melody transcription method that uses a Hidden

Markov Model (HMM) to model note envelopes, together

with a simple musical key model in [21], but their approach

was limited to monophonic note sequences. A polyphonic

extension was later proposed in [3], but it still lacks mod-

elling of the dependencies between concurrent pitches: the

music is treated as a combination of independent and non-

overlapping melodic voices. In other MIR areas, Raphael

and Stoddard have proposed to use an HMM as a symbolic

model for harmonic analysis, i.e., for the estimation of the

chord progression behind a sequence of notes [22]. Similar

HMMs have also been successfully used for harmonic analysis

of audio signals (for a recent paper see, e.g., [4]). These

approaches, however, model only chromatic pitch classes and

discard the octave information, and the temporal dependencies

are modelled between chords, but not between notes.

We propose a family of probabilistic pitch models based

on Dynamic Bayesian Networks (DBNs), which account for

both the “vertical” dependencies between concurrent notes

(harmony) and for the “horizontal” dependencies between

notes and chords. The main challenge when building such a

model is dealing with the high dimensionality of the resulting

distributions that makes training and inference very difficult or

even impossible in practice. In our previous work, we applied a

series of factorisations and approximations to the conditional

note combination distribution and performed inference on a

highly reduced solution space [23]. However, that was still

problematic because that distribution could not be normalised

http://versamus.inria.fr/
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over the entire solution space. The result was not a true proba-

bilistic model and its approximate normalisation was computa-

tionally very expensive. In this paper, we effectively deal with

this challenge by factorising the note combination distribution

into a product of single note distributions, each modelled with

several normalised sub-models that are combined by means

of linear or log-linear interpolation. Bayesian symbolic music

models have been proposed in MIR before: Kashino et el. used

a Bayesian network for music scene analysis [24]. Mauch et

al. proposed a DBN for simultaneous estimation of chords, the

tonality and the metric structure from audio recordings [25].

In their work they have combined two conditional probability

models by multiplying the corresponding probabilities with

equal weight. The combined probability distribution in [25,

eq. 12] is not normalized so as to sum up to 1, however,

which may result in the decoding of erroneous sequences. In

our work, we adopt a rigorous approach and we achieve more

flexible modelling using a different interpolation weight for

each model.

This paper is organised as follows. Section II details the

proposed approach and describes the way of combining sub-

models by means of interpolation. Particular distributions

chosen in this work are discussed in Section III. Section IV

describes then the experimental set-up and the results of

symbolic and audio evaluations. Finally, the conclusion is

given in Section V.

II. GENERAL APPROACH

A. Model structure

We model the distribution of the note sequences P(N)
using a Bayesian network with two layers of nodes: a chord

(harmony) layer C = (C1, C2, . . . , CT ), where Ct is the

underlying chord at time t and T is the number of time

frames in the analysed note sequence, and a note activity layer

N = (N1,N2, . . . ,NT ), where Nt = (Nt,1, . . . , Nt,K) is a

binary vector in which Nt,k = 1 if pitch k is active at time

t and Nt,k = 0 otherwise. Pitches k follow a discrete pitch

scale, such as the chromatic scale, and K is the number of

pitches in the analysed range. Denoting by p : q the set of

indices from p to q, inclusively, each note activity vector Nt

is assumed to depend on all the previous note activity vectors

N1:t−1 and on all the chords up to the current time frame

C1:t:

P(N) =
∑

C

T∏

t=1

P(Nt|N1:t−1, C1:t)P(Ct|C1:t−1). (3)

The note activity distribution can be factorised using the chain

rule:

P(Nt|N1:t−1, C1:t) =

K∏

k=1

P(Nt,k|N1:t−1,Nt,1:k−1, C1:t).

(4)

B. Interpolation

Unfortunately, the note activity probability distribution

P(Nt,k|N1:t−1,Nt,1:k−1,

C1:t) is too highly dimensional to be trained or used for infer-

ence in practice. To deal with this problem, we approximate it

using a combination of several simpler sub-models. They are

combined by means of linear interpolation:

P(Nt,k|N1:t−1,Nt,1:k−1, C1:t) ≈
∑

i

λiPi(Nt,k|X
(i)
t,k ) (5)

with
∑

i λi = 1, or log-linear interpolation:

P(Nt,k|Nt−1,Nt,1:k−1, C1:t) ≈ Z−1
∏

i

Pi(Nt,k|X
(i)
t,k )

λi ,

(6)

where X
(i)
t,k ⊂ {N1:t−1,Nt,1:k−1, C1:t} is a small subset of

the conditioning variables, λ = {λi} are the interpolation

coefficients, Pi are the sub-models and Z is the normalisation

factor, which depends on the values of the conditioning

variables:

Z =

1∑

l=0

∏

i

Pi(Nt,k = l|X
(i)
t,k )

λi . (7)

Note that the coefficients for the log-linear interpolation do

not need to sum up to 1. Each sub-model is responsible

for modelling a different musicological aspect of the note

sequences, such as relation to the current chord X
(i)
t,k = {Ct},

local polyphony X
(i)
t,k = {Nt,1:k−1} or note durations X

(i)
t,k =

{Nt−1,k}.

Linear interpolation of models was first proposed in the

context of spoken language modelling by Jelinek and Mercer

[26], while log-linear interpolation was proposed much later by

Klakow [27]. Due to the focus on spoken language modelling,

most model interpolation studies deal with different temporal

dependencies within a word sequence. For the sake of mod-

elling polyphonic pitches, as well as the underlying harmony,

we extend the concept of model interpolation to arbitrary

dependencies including “vertical” dependencies between the

notes or between the notes and the chords.

C. Training

When training all of the sub-models Pi(Nt,k|X
(i)
t,k ) and

the chord model P(Ct|C1:t−1), a simple, additive smoothing

[28] was used in order to avoid overfitting. This consists of

pretending that every combination of variables occurred at

least αi times:

Pi(Nt,k|X
(i)
t,k ) =

O(Nt,k,X
(i)
t,k ) + αi

O(X
(i)
t,k ) + 2αi

, (8)

where O() is the number of occurrences of a particular

combination of variable values in the training set. This way, the

obtained probability tends to 0.5 if no training data is available

and to the real occurrence probability for large amount of data.

The smoothing parameters αi are optimised for each model

separately to maximise its log-likelihood on the validation data

set, which is disjoint from the training and the test sets. The

same procedure is applied to the chord model:

P(Ct|C1:t−1) =
O(Ct, C1:t−1) + αC

O(C1:t−1) +DαC
, (9)
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Fig. 1: Proposed Dynamic Bayesian Network structure for

polyphonic pitch modelling with three layers of variables: the

hidden chords Ct and note combinations Nt, and the observed

salience St.

where D is the number of chord symbols.

The linear and log-linear interpolation weights λi in (5)

and (6) are then optimised by maximizing their log-likelihood

(regular cross-entropy):

λ̂ = argmax
λ

log P(N|λ), (10)

also calculated on the validation data set. Because the log-

likelihood is convex [27], any optimization algorithm can be

used. In this work, the optimisation is performed using a

non-negatively constrained limited-memory Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method (a quasi-Newton optimisa-

tion), built into the GNU R environment as the optim()

function [29]. The initial values were all set to λi = 1,

i ∈ {1, . . . , 5}.

III. CONSIDERED SUB-MODELS

In this work, we assumed that both the chord and note

combination sequences are first-order Markovian. This is a

common assumption in building models of harmony [4], [5]

and has also been used to build note sequence models in [3].

Investigating the effect of using longer term dependencies is

not the goal of this work and has been studied before, e.g., by

Scholz [30]. The note combination prior is therefore given by

P(N) =
∑

C

P(C1)P(N1|C1)

T∏

t=2

P(Nt|Nt−1, Ct)P(Ct|Ct−1)

(11)

and the corresponding DBN structure is presented in Fig. 1.

We define 5 sub-models as a proof of concept: the harmony

sub-model is responsible for modelling relations between

chords and pitches; the note duration sub-model deals with

note and silence durations; the voice movement sub-model

models melodic intervals in voices; the neighbour sub-model

handles relations between vertically neighbouring pitches;

finally the polyphony sub-model accounts for the degree of

polyphony in each time frame. Other sub-models are naturally

possible, but we believe that the above set covers most of the

aspects of music that are important for multiple pitch analysis.

In addition, the chord model incorporates knowledge about

chord progressions.
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Fig. 2: Chord transition probability P(Ct|Ct−1) when state

tying is not used (top) and when the transition probabilities

are tied (bottom). Darker colour represents higher probability

values. Minor chords are annotated with lower case (m) and

major chords with upper case (M).

We will now describe the chord model and each of these

sub-models in detail and show the corresponding probabilities,

as trained on the data described in Section IV.

A. Chord model

This model is responsible for modelling the progression

of chords. The chord transition probability P(Ct|Ct−1) is

easy to model with a categorical probability distribution. This

approach is common in MIR tasks that deal with chord

progression, e.g., in chord recognition [4]. It is also common
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to assume D = 24, i.e., a 24-word chord dictionary: 12 major

and 12 minor chords. We have adopted this approach as well,

so the chord transition distribution is described in terms of a

24× 24 transition matrix.

The upper part of Fig. 2 shows the chord transition matrix

trained on the entire available data set. Unfortunately, the

obtained transition probabilities are biased, as some keys, and

therefore some chord progressions, are sparsely represented in

our data set, while others dominate. However, we can assume

that the chord transitions have the same distribution in all keys

if observed in relation to the tonic, which is reasonable since

any song can be transposed to an arbitrary key without any

loss in musical correctness. In other words, we assume that the

same probability should be given to, e.g., the transition from

C-major to F-major chord (I→IV transition in C-major key)

and the transition from A♭-major to D♭-major (I→IV transition

in A♭-major key), as in [5]. In that case, the chord transition

probability is a function of the interval between chord roots

and the chord types

P(Ct|Ct−1) ∝P( I{R{Ct}; R{Ct−1}}, M{Ct}, M{Ct−1}),
(12)

where I{} is the chromatic interval operator (disregarding the

octave information), R{} is the root note operator and M{} is

the mode operator, i.e., major or minor. The transition matrix

obtained by tying distributions in the above way is presented

in the lower part of Fig. 2.

Furthermore, because key is not considered in our model,

we assume a uniform distribution of the initial chord P(C1) =
1/24, which in classical Western music is generally the tonic.

B. Harmony sub-model

This sub-model models the relation between the notes and

the underlying chord sequence. Similarly to the chord model,

in order to avoid overfitting, we tie together the probabilities of

notes that share certain musicological functions: we assumed

that notes have identical distribution with respect to the chord’s

root notes. This distribution depends on the chord type:

P1(Nt,k|Nt−1,Nt,1:k−1, C1:t) = P( I{k; R{Ct}}|M{Ct}).
(13)

This approach is similar to the Pitch Class Profiles proposed

by Fujishima [31], which are 12-tone chromatic (disregarding

the octave information) note activity vectors commonly used

in audio-based chord estimation.

The corresponding probability distribution is presented in

Fig. 3. Unsurprisingly, the interval distribution for major

chords peaks at the root (R), the major third (M3) and the

perfect fifth (P5), i.e., the intervals that constitute a major triad,

while the distribution for minor chords peaks at the minor

third (m3), which is the interval that differentiates a minor

triad from a major one.

C. Duration sub-model

This sub-model deals with the durations of individual notes

and silence. The individual note activities are assumed to be
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Fig. 3: The harmony sub-model: M’s mark the pitch

class probability distribution as a function of the in-

terval from the chord’s root note for major chords

P( inter{k; root{Ct}}|major) and m’s the distribution for

minor chords, P( inter{k; root{Ct}}|minor).
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Fig. 4: The duration sub-model: P(Nt,k = 1|Nt−1,k = 1)
(top) and P(Nt,k = 1|Nt−1,k = 0) (bottom). Black and white

bars correspond to black and white piano keys, respectively.

dependent only on the previous state of the same pitch (first-

order Markovian):

P2(Nt,k|Nt−1,Nt,1:k−1, C1:t) = P(Nt,k|Nt−1,k). (14)

Its parameters are presented in Fig. 4. Its upper part shows

the note sustain probabilities P(Nt,k = 1|Nt−1,k = 1) that

seem to decrease almost linearly with increasing frequency,

this property being disturbed only for the very low and the

very high pitches due to sparsity of training data. This means

that the low-frequency notes tend to have longer durations.

The note onset probabilities P(Nt,k = 1|Nt−1,k = 0), shown

on the bottom, exhibit a bell-shaped curve not unlike the note

activity priors from Fig. 8, with black piano keys being less

likely to be played than the white ones.
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Fig. 5: The voice sub-model P(Nt,k = 1|Mt,k). The dashed

line marks the marginal note activity probability P(Nt,k = 1).
Dark grey is used for unison and octave intervals, white colour

marks the simple and compound perfect fifths and the black

bar represents the infinite interval P(Nt,k = 1|Mt,k = +∞).
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Fig. 6: The polyphony sub-model P(Nt,k = 1|Lt,k). The

dashed line marks the marginal note activity probability

P(Nt,k = 1).

D. Voice sub-model

The voice sub-model accounts for voice and melody move-

ments in the music. It assumes that the note activity depends

only on the distance to the closest active pitch in the previous

frame:

P3(Nt,k|Nt−1,Nt,1:k−1, C1:t) = P(Nt,k|Mt,k), (15)

where Mt,k = |k−j| is the interval between the given pitch k
and the closest active pitch j in the previous time frame. If

there was no active pitch in the previous time frame, then

Mt,k = +∞. If the pitch k was active in the previous time

frame, this model acts as a duration model, otherwise it is a

simple voice movement model.

The trained parameter values for this sub-model are de-

picted in Fig. 5. As the distance increases, the probabilities

quickly decrease—but with peaks at, e.g., the perfect fifth and

the octave—then increase again as the training data sparsity

increases, tending to a uniform distribution (0.5) due to the

effect of the smoothing (see Subsection II-C).

E. Polyphony sub-model

The polyphony sub-model models the number of simulta-

neously active notes:

P4(Nt,k|Nt−1,Nt,1:k−1, C1:t) = P(Nt,k|Lt,k), (16)

where Lt,k =
∑k−1

m=1 Nt,m.

The resulting distribution is plotted in Fig. 6. For small

values of Lt,k the activity probability is increased above the

marginal (dashed line) for values 1, 2 and 3 (which correspond

to a local polyphony Lt,k+1 of 2, 3 and 4, respectively) and

then drops below the marginal. This reflects the most common
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Fig. 7: Neighbour model P(Nt,k|Nt,k−1, Nt,k−2). The dashed

line marks the marginal note activity probability P(Nt,k).

polyphony values in the training set, i.e., 2, 3 and 4 that

account for 65% of the data, with the mean value of 3.4.

For larger values of Lt,k, the probabilities increase above the

marginal again, this time due to the sparsity of high-polyphony

data and hence the tendency towards the uniform distribution.

F. Neighbour sub-model

This sub-model captures the note probability given the note

activities directly below it:

P5(Nt,k|Nt−1,Nt,1:k−1, C1:t) = P(Nt,k|Nt,k−1, Nt,k−2).
(17)

It is a binary trigram model designed to help avoiding false

positives at the minor second interval that sometimes occur in

polyphonic pitch transcription due to spectral leakage of note

onsets. Its trained parameter values are presented in Fig. 7. As

expected, sequences of two or more active notes in a row—

(0,1,1) and (1,1,1)—are strongly discouraged by this model.

IV. EXPERIMENTS

We evaluated the pitch models in two different ways: first, in

terms of their modelling power as measured by cross-entropy

and by a newly proposed “contextual cross-entropy” on sym-

bolic data; second, in terms of their multiple pitch estimation

accuracy in combination with an NMF-based acoustic model,

as measured by the F-measure on audio data.

The symbolic experiments were performed for:

• individual note activity sub-models: harmony (H), har-

mony + chord (HC), duration (D), voice (V), polyphony

(P) and neighbour (N) model,

• model tandems that combine one “horizontal” and one

“vertical” model: duration + neighbour (DN) and har-

mony + chord + voice (HCV) models,

• multiple models: HCDPV and HCDVPN,

• two reference models for comparison: an i.i.d. Bernoul-

li model P(Nt,k) ∼ Bernoulli(p) with the parameter

value p = 0.03807 trained on the training set, and an

independent, pitch-dependent Bernoulli model P(Nt,k) ∼
Bernoulli(pk). The values of pk are shown in Fig. 8.

The Bernoulli models are simply probabilistic formulations

of post-processing NMF results with simple thresholding to

detect notes: with a fixed threshold value (Bernoulli) or with

a pitch-dependent threshold value (pitch-dependent Bernoulli).

In the audio experiments, the average F-measure was

obtained for 7 different models: individual models HC, D, V,



6

21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 102 108

MIDI number

P
ro

b
a

b
ili

ty

0
.0

0
0

.0
6

0
.1

2

Fig. 8: Parameters pk of the independent note activity model.

Black and white bars correspond to black and white piano

keys, respectively.

P, N, a tandem HCV and the full model HCVDPN, as well as

the reference pitch-dependent Bernoulli model.

The code for reproducing all our experiments is available

at: http://versamus.inria.fr/software-and-data/multipitch.tar.bz2.

A. Data

Two data sets were used in the experiments: the widely used

RWC Classical Music Database [32] and the Mutopia Project

data set [33]. All symbolic data was score-like (as opposed

to real performance data) and time-quantised so that 1 frame

corresponded to 1/6th of a beat.

The 61 pieces of the RWC Classical Music Database had

been annotated with detailed harmony labels that include: keys

and modulations, and chords with their roots, inversions, types

and various modifications [34]. This data uses abstract, tempo-

independent musical time (measures and beats), and served as

the chord ground-truth for training the harmony and chord

models.

The Mutopia data set contains music played on a variety

of instruments: chordophones (piano, guitar, cello, shamisen,

violin, viola), aerophones (church, rock and reed organs, clar-

inet, oboe, French horn, bassoon, pan flute, recorder, trumpet),

as well as voices singing in chorus. It consists of 1468 files,

that we divided into 3 sub-sets: for training (1268 files),

validation (100 files) and test (100 files). The training set was

used to train all remaining sub-models, while the smoothing

parameters and the interpolation weights from (5) and (6) were

trained on the validation set. The results were assessed on the

test data set.

B. Trained interpolation coefficients

The trained values of the interpolation coefficients λi are

listed in Tables I and II.

Coefficient Model DN HCV HCDPN HCDVPN

λ1 Harmony — 0.939 0.896 0.907
λ2 Duration 0.980 — 0.863 0.272
λ3 Voice — 0.847 — 0.570
λ4 Polyphony — — 0.000 0.000
λ5 Neighbour 0.024 — 0.000 0.000

TABLE I: Trained interpolation coefficients for different com-

binations of the sub-models, obtained for the log-linear inter-

polation.

Coefficient Model DN HCV HCDPN HCDVPN

λ1 Harmony — 0.0000 0.0000 0.0000
λ2 Duration 1.0000 — 0.9998 0.3766
λ3 Voice — 1.0000 — 0.6234
λ4 Polyphony — — 0.0002 0.0000
λ5 Neighbour 0.0000 — 0.0000 0.0000

TABLE II: Trained interpolation coefficients for different

combinations of the sub-models, obtained for the linear in-

terpolation.

From the log-linear interpolation coefficient values we

can see that in each case at least one “vertical” (Harmony,

Polyphony or Neighbour) and one “horizontal” (Duration or

Voice) sub-model were given a non-zero weight. When more

than one vertical sub-model was used, the Polyphony and

Neighbour sub-models would be given very low, or even zero

weights, which means that either the information they hold

overlaps with other used models, or that they were not able to

capture much useful information about the notes.

For the case of linear interpolation, the horizontal sub-

models would dominate the vertical ones completely and only

the Duration and Voice sub-models would acquire non-zero

weights.

C. Symbolic evaluation

We first evaluated the ability of the models to predict the

symbolic test data.

1) Evaluation metrics: The models Λ are compared by

calculating the cross-entropy:

H(Λ) = −
1

KT
log2 P(N|Λ), (18)

which is the negative log-likelihood of the observed note

data normalised by the number of frames T and the number

of pitches K, and therefore expressed in bits per semitone-

frame. It can be interpreted as the average number of bits

needed to encode a single pitch activity (Shannon’s optimal

code length). In other words, the lower the cross-entropy, the

better the model is able to predict pitch data, with 0 meaning

that the model can predict absolutely all pitch activity and 1

meaning that the pitch data is completely random given the

model. Cross-entropy is a common way of evaluating spoken

language models [35] and it is believed that lower cross-

entropy correlates with better performance in applications [28].

If the chord model is not used, we can calculate the cross-

entropy as

H(Λ) = −
1

KT
log2

T∏

t=1

K∏

k=1

P(Nt,k|N1:t−1, Nt,1:k−1)

= −
1

KT

T∑

t=1

K∑

k=1

log2 P(Nt,k|Nt−1, Nt,1:k−1). (19)

If the chord model is used however, we need to integrate over

all possible chord sequences:

H(Λ) = −
1

KT
log2

∑

C

P(N|C,Λ)P(C|Λ). (20)

http://versamus.inria.fr/software-and-data/multipitch.tar.bz2
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This integration is done with the Forward/Backward algorithm

[36]. The forward probability vector ft for frame t is defined

as the joint distribution of all notes observed up to the

current time frame and the chord value Ct at time t: ft,i =
P(N1:t, Ct = i), where i ∈ {1, 2, . . . , 24}. Its normalised

form f̂t is the chord distribution given all previously observed

notes: f̂t,i = P(Ct = i|N1:t). Let us now denote the initial

chord probability as πi = P (C1 = i), the chord transition

probability as Ai,j = P(Ct = i|Ct−1 = j) and the note

posterior as

dt,i = P(Nt|Ct = i,Nt−1)

=

K∏

k=1

P(Nt,k|Nt−1,Nt,1:k−1, Ct = i). (21)

The forward vectors are calculated as

f̂1,i = p−1
1 d1,iπi, (22)

f̂t,i = p−1
t dt,i

24∑

j=1

Ai,j f̂t−1,j , (23)

where pt is the normalising factor:

pt =

24∑

i=1

P(Nt, Ct = i|N1:t−1) = P(Nt|N1:t−1). (24)

Because
∏T

t=1 pt = P (N1:T ), the normalising factors can be

used to calculate the cross-entropy:

H(Λ) = −
1

KT
log2

T∏

t=1

pt. (25)

However, comparing pitch models of different structure

using the regular cross-entropy turns out to be difficult (see

Fig. 9), because the values are biased by the abundance of

silence in the activity matrices. We therefore propose a new

metric to observe the cross-entropy only in specific contexts.

The averaging in (19) can be done over specific pitches in

each time frame, such as active pitches (notes), inactive pitches

(silence), onsets or offsets only, which yields

cH(Λ) = −
1

∑T
t=1 |St|

T∑

t=1

∑

k∈St

log2 P(Nt,k|Nt−1, Nt,1:k−1),

(26)

where St is a set of pitches of interest and |St| denotes its

size. We will refer to this new measure as the contextual cross-

entropy.

When the chord layer is presented, we need to perform

the integration over chords as in (20). For this, we define the

following probabilities:

h̊t,i = P(Nt,k/∈St
, Ct = i|N1:t−1), (27)

rt =

24∑

i=1

h̊t,i = P(Nt,k/∈St
|N1:t−1), (28)

ˆ̊
ht,i = r−1

t h̊t,i = P(Ct = i|N1:t−1,Nt,k/∈St
), (29)

ḣt,i = P(Nt,k∈St
, Ct = i|N1:t−1,Nt,k/∈St

), (30)

qt =

24∑

i=1

ḣt,i = P(Nt,k∈St
|N1:t−1,Nt,k/∈St

). (31)

qt can be obtained from the forward vectors:

ˆ̊
ht,i = r−1

1 d̊t,i

24∑

j=1

Ai,j f̂t−1,j , (32)

qt =

24∑

i=1

ḋt,i
ˆ̊
ht,i, (33)

where d̊t,i =
∏

k/∈St
P(Nt,k|Nt−1,Nt,1:k−1, Ct = i) and

ḋt,i =
∏

k∈St
P(Nt,k|Nt−1,Nt,1:k−1, Ct = i).

If St = ∅ then we assume ḋt,i = 1. Finally, the contextual

cross-entropy is obtained as the product of the normalising

factors qt:

cH(Λ) = −
1

∑T
t=1 |St|

log2

T∏

t=1

qt. (34)

2) Results: Models were combined using either the linear

or the log-linear interpolation. Table III compares the regular

cross-entropies obtained with both interpolation methods. Note

that the contextual cross-entropy is only used to gain more

insight into the results and the interpolation coefficients were

trained using the regular cross-entropy. The log-linear inter-

polation was able to produce lower cross-entropies than the

linear one for all combined models with a difference of 2.7 mb

(milibits) per pitch and per frame for the model consisting of

all sub-models (HCDVPN). For the Duration + Neighbour sub-

model combination (DN), the difference is particularly large

because the Neighbour model is not used in the case of linear

interpolation (see Table II), so the resulting cross-entropy is

identical to that of the Duration model alone. Even though the

Neighbour model does not contain much information about the

pitches, the log-linear combination DN achieves lower cross-

entropy due to the smoothing effect of the non-unit exponential

weight given to the Duration model.

The difference between interpolations is even bigger if the

cross-entropy is measured on the note onsets only, as shown

in Table IV. For the model consisting of all sub-models

(HCDVPN) we have obtained a difference of 93.7 mb per

onset. The only model for which the log-linear interpolation

was not better is the Duration + Neighbour model (DN). In

this case the smoothing effect of the exponential interpolation

weight had a negative effect on the contextual cross-entropy,

as it was optimised to minimise the regular cross-entropy.

The resulting contextual cross-entropy values for log-linear

interpolation are presented in Fig. 9. Comparing the cross-

entropy for all pitches with the contextual cross-entropy for

silence, we immediately see how much the latter dominates

the former and why the contextual cross-entropy calculated

for notes, onsets or offsets is more apt to assess the prediction

capabilities of the models. Compared to the baseline Bernoulli

(220 mb per pitch) and pitch-dependent Bernoulli models

(181 mb per pitch), we have achieved a 68% and 60%

reduction of the regular cross-entropy, respectively, for the log-

linear combination of all sub-models (HCDVPN, 73.1 mb per

pitch).

The harmony model suffers the most from the aforemen-

tioned dominance of silence in the regular cross-entropies.

However, by looking at the contextual cross-entropies obtained
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DN HCV HCDPN HCDVPN

Linear 605.3 76.5 77.2 75.8
Log-linear 77.1 73.4 74.6 73.1

Difference 528.2 3.1 2.6 2.7

TABLE III: Regular cross-entropies (in milibits) and their

difference obtained for linear and log-linear combinations of

several sub-models.

DN HCV HCDPN HCDVPN

Linear 1,560.0 4,042.7 4,058.9 3,963.4
Log-linear 6,022.7 3,886.3 3,969.5 3,869.7

Difference -4462.7 156.4 89.4 93.7

TABLE IV: Contextual cross-entropies (in milibits) for onsets

and their difference obtained for linear and log-linear combi-

nations of several sub-models.

for the onsets, we see the benefit of using the harmony sub-

model: it offers low cross-entropy, while the other models

fail to capture much information about the note onsets and

even perform worse than the baseline Bernoulli models. We

therefore conclude that the harmony models are very important

in multiple pitch estimation, whose sole objective is to detect

note onsets.

A similar comment can be made about the other vertical

sub-models (Neighbour and Polyphony): they perform poorly

in terms of the general cross-entropy, but offer good contextual

cross-entropies for onsets and offsets. On the other hand, it is

the horizontal sub-models (Duration and Voice) that have the

biggest impact in lowering the all-pitch cross-entropy in the

interpolated model: the Voice model alone yields 76.4 mb,

which is then further lowered by only 3.3 mb when all the

other models are used.

D. Audio signal analysis

In the second part of the experimentation, we have used

the developed models to perform multiple pitch estimation on

audio signals. To obtain the note saliences, we have used the

harmonic NMF model proposed in [16], [37] as the acoustic

model, with a tempo-synchronous analysis frame size of 1⁄6th

of a beat.

1) Salience model: The observed note saliences are as-

sumed to be i.i.d. given the note activities:

P(St|Nt) =
K∏

k=1

P(St,k|Nt,k). (35)

The obtained salience distributions P(St,k|Nt,k = 0) and

P(St,k|Nt,k = 1) are presented in Fig. 10. Both were esti-

mated by measuring histograms of the detected salience on the

training data. Before calculating the histograms, the saliences

were non-linearly transformed by applying an exponential

factor χ = 0.5 in order to enhance estimation precision for

low salience values. The number of histogram bins was set to

500.
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Fig. 10: The salience model P(St,k|Nt,k = 0) (red dashed

line) and P(St,k|Nt,k = 1) (black solid line).

2) Salience weighting coefficient: The salience model was

used with an exponential weighting factor κ, balancing its

influence with the symbolic pitch model. Additionally, prelim-

inary experiments showed that the interpolated pitch model

provided very good precision, but poor recall (cf. Fig. 11),

possibly due to the reduction of the search space detailed in the

next subsection. This prompted us to interpolate the full model

P(N) with the pitch-dependent Bernoulli model PB(N) from

Subsection IV-C2 with an interpolation factor µ:

N̂ = argmax
N

P(S|N)κPB(N)µP(N)(1−µ). (36)

3) Decoding: Decoding the most likely sequence of notes

was performed with a Viterbi-like modified forward recursion,

i.e., a generalisation of the Viterbi algorithm to DBNs, first

mentioned by Zweig [38] and Murphy [39] and later formally

stated and analysed by Hu et al. [40].

However, the algorithm is in this case intractable due to the

extremely large size of the solution space: for K = 88 (full

piano range) there are 288 ≈ 3.1×1026 possible values of Nt.

This is dealt with by reducing the search space: only a small

number of most likely notes for every analysis frame are taken

into account. First, at most Q pitches that are most salient in

every frame are selected if their salience is higher than the

threshold calculated as the crossing point of the active-note

and the inactive-note salience models (in our case 0.0069, see

Fig. 10); then, every possible q-combination of the selected

notes is created, where q = 1, . . . , Q and evaluated with

the salience model; finally, the L note combinations with the

highest likelihood according to the salience model are selected

and used in the frontier decoder. The Q and L parameters were

set experimentally to 6 and 64 (26), respectively.

To reduce the effect of short-time salience fluctuations, the

salience matrix was smoothed before selecting the most salient

pitches, by applying a single-pole IIR filter to the salience

sequence for every pitch with the same parameter a. The

optimal value of a was determined experimentally and set to

0.5.

4) Evaluation metric: All multiple pitch estimation results

were evaluated using an onset-based F-measure, similarly to

the MIR Evaluation Exchange (MIREX) [41]. The F-measure

is calculated as the harmonic mean of the precision P (ratio

of the number of correctly detected notes to all detected
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Fig. 9: Contextual cross-entropies (in bits) calculated on the test data set for log-linear interpolation. The contextual entropy

for all pitches is identical to the conventional cross-entropy.

notes) and the recall R (ratio of the number of correctly

detected notes to the number of ground-truth notes). A note

was considered correctly detected if its pitch was exactly

correct and its onset was within 1 frame (93 ms on average) of

the correct onset position. The detected offset was ignored, as

it is generally believed that an accurate estimation of the note

offset is in many cases extremely difficult if not impossible.

5) Results: Due to high computational cost of the pro-

posed algorithm, all audio recordings were cut to 320 frames

(531/3 beats), which corresponds to roughly 30 seconds in our

data set (average tempo of about 108 beats per minute). The

computational requirements for a single cut audio recording

were still on the order of CPU days and gigabytes of memory,

so the test data set was also reduced to 20 audio files.

In preliminary experiments, the average F-measure was

obtained for the values of the salience weighting coefficient

κ between 0.5 and 2. The optimal value of κ was found to

be around 1 for all the models, which suggests that the pitch

models were well trained and properly normalised. The value

of κ was fixed to 1 in further experiments.

The values of the Bernoulli model weight µ were varied

between 0.6 and 1 and the resulting average F-measures

are plotted in Fig. 11. For all models the maximal average

F-measure is reached for µ between 0.8 and 0.9, with the

exception of the Neighbour model, which was “flatter”, with

a peak around 0.7. The full model was not very sensitive to

different µ values and it outperformed the reference pitch-

dependent Bernoulli model for all values between about 0.75

and 1. In all cases decreasing the weight of the Bernoulli

prior improved the note detection precision further, while

at the same time increasing the recall, which suggests that

the proposed pitch models play their role well and remove

the spurious notes that, though plausible given the detected

PB D N P V HC HCV HCDVPN

P 73.0% 82.9% 74.2% 76.0% 83.1% 76.0% 83.4% 83.4%

R 83.6% 78.7% 83.9% 82.7% 77.9% 82.8% 77.9% 78.4%

F 76.1% 79.1% 77.2% 77.7% 78.7% 77.6% 78.9% 79.2%

TABLE V: Precision P , recall R and F-measure values

obtained for the tested models for the optimal values of µ,

compared with the baseline pitch-dependent Bernoulli (PB)

model.

salience and the global note distribution, were unlikely to

appear in the analysed signal in the particular context. This

behaviour is highly desirable, because high precision is more

important in pitch transcription than high recall as the spurious

notes are often dissonant.

The estimation results, obtained for the optimal value of

µ for each model, are summarised in Table V and visualised

in Fig. 12. Every model offered a better performance than

the baseline pitch-dependent Bernoulli model, with a 3.1%

improvement in terms of F-measure for the full HCDVPN

model. It can also be observed that the “horizontal” models—

V and D—had the biggest impact on this betterment, an

observation analogous to that in the symbolic experiments in

Subsection IV-C2. This observation, which, to the best of our

knowledge, had not been made so far, has important implica-

tions for the design of computationally efficient multiple pitch

estimation algorithms. Also, we remind that these experiments

were made as a proof of concept and that increased accuracy

may be achieved in the future using additional or alternative

sub-models.
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V. CONCLUSION

In this paper, we have proposed a probabilistic polyphonic

pitch model that can be used for multiple pitch estimation. The

model is a three-layer dynamic Bayesian network with two

hidden layers corresponding to the chords and the notes. The

notes are efficiently modelled by means of linear and log-linear

interpolation between simpler sub-models, each of which is

responsible for modelling a different property of pitch.

The proposed framework was first evaluated in purely sym-

bolic experiments, where we observed the modelling power

quantified in terms of the cross-entropy and the contextual

cross-entropy; in the acoustic experiments we have performed

actual multiple pitch estimation with our proposed model,

using a harmonic NMF model as the acoustic model. In both

experiments the proposed model offered an improvement over

the baseline technique, i.e., a pitch-dependent Bernoulli model

(equivalent to thresholding of the salience). Analysing the

cross-entropies also showed that it is beneficial to combine

sub-models by means of interpolation, as adding models

decreases the cross-entropy, especially the contextual cross-

entropy for note onsets. Log-linear interpolation, although

computationally more demanding due to the need of re-

PB D N P V HC HCV HCDVPN

P
, 
R

, 
F

 [
%

]

−
1
0

−
5

0
5

PB D N P V HC HCV HCDVPN

P
, 
R

, 
F

 [
%

]

−
1
0

−
5

0
5

Precision

Recall

F−measure

Fig. 12: Precision, recall and F-measure obtained for the

tested models, relative to the results of the full HCDVPN

model, obtained for a model-dependent optimal value of µ
and κ = 1.

normalisation of the composite model, offered higher perfor-

mance than linear interpolation. The improvement of model

interpolation was confirmed in the multiple pitch estimation

experiments, where all sub-models performed better than the

reference Bernoulli model, while their combinations offered

even higher performance, as measured by the note detection

F-measure.

This work provides a proof of concept of the usefulness of

model interpolation and the models were chosen for their good

modelling potential, but also their simplicity. The proposed

framework is more general however and we believe that better

models must be found and evaluated in the future. Defining

and using such models in a way that remains computationally

tractable is a significant challenge that lies beyond the scope

of this paper. The interpolation of n-gram models with n > 2
has already been studied in the context of spoken language

processing, which suggests it will also be applicable in the

context of music. The use of even longer term models (rhythm

history, structure, etc.) and additional “vertical” models (key,

simultaneous onsets, etc.) is currently an open research issue.

In the future work, we will apply our methodology to

address the dimensionality issues posed by other symbolic

music modelling tasks [10]. Such issues arise when multiple

musical variables are jointly modelled when estimating another

variable (such as in this work), or when modelling dependen-

cies with infinite-domain variables, e.g., music tags and genres.

The latter can also be dealt with by means of interpolating

between a finite number of genre-specific models, effectively

allowing for an infinite number of possible mixtures of genres.
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