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A Vector Quantized Variational Autoencoder
(VQ-VAE) Autoregressive Neural F0 Model
for Statistical Parametric Speech Synthesis

Xin Wang, Member, IEEE, Shinji Takaki, Member, IEEE, Junichi Yamagishi, Senior Member, IEEE
Simon King, Fellow, IEEE, Keiichi Tokuda, Fellow, IEEE

Abstract—Recurrent neural networks (RNNs) can predict fun-
damental frequency (F0) for statistical parametric speech syn-
thesis systems, given linguistic features as input. However, these
models assume conditional independence between consecutive F0

values, given the RNN state. In a previous study, we proposed
autoregressive (AR) neural F0 models to capture the causal
dependency of successive F0 values. In subjective evaluations,
a deep AR model (DAR) outperformed an RNN.

Here, we propose a Vector Quantized Variational Autoencoder
(VQ-VAE) neural F0 model that is both more efficient and more
interpretable than the DAR. This model has two stages: one
uses the VQ-VAE framework to learn a latent code for the F0

contour of each linguistic unit, and other learns to map from
linguistic features to latent codes. In contrast to the DAR and
RNN, which process the input linguistic features frame-by-frame,
the new model converts one linguistic feature vector into one
latent code for each linguistic unit. The new model achieves better
objective scores than the DAR, has a smaller memory footprint
and is computationally faster. Visualization of the latent codes
for phones and moras reveals that each latent code represents
an F0 shape for a linguistic unit.

Index Terms—fundamental frequency, speech synthesis, neural
network, variational auto-encoder

I. INTRODUCTION

The fundamental frequency (F0) is the frequency of vi-
bration of the vocal folds during voiced speech sounds.
The perceptual consequence of the F0 is pitch. The F0

carries phonological information in tonal languages and supra-
segmental information in all languages [1]. For example: in
Japanese which is a pitch-accent language, the change of F0
height at the lexical level differentiates ‘alcohol’ (/sake/) from
‘salmon’ (/sa’ke/) [2]; in English, the F0 is used to make a
particular word more prominent, or to differentiate a statement
from a question. In text-to-speech synthesis (TTS), where the
achievable segmental quality is now very high [3], the F0 of
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the generated waveform is arguably the most important place
to look for improvements in naturalness.

Although some recent TTS systems [4], [5] predict (Mel)
spectrograms, in which the F0 is implicit, many other systems
still represent the F0 explicitly as a separate acoustic feature
[6], [7]. In most statistical parametric speech synthesis (SPSS)
systems [8], [9], the F0 contour is predicted from a sequence
of linguistic features that have been extracted from input text
using the front-end text processor. Given the predicted F0 and
spectral features, SPSS systems generate a speech waveform
using a deterministic or neural vocoder [10], [11].

We focus on the task of F0 prediction for SPSS. We assume
a traditional SPSS approach as the baseline in which the
input linguistic feature and output acoustic feature sequences
are equal in length and aligned in time; each time step in
these sequences is a speech frame. In such a framework,
F0 prediction can be achieved using a neural network (NN),
such as a recurrent NN (RNN) with long-short-term memory
(LSTM) units [12]. Although such a model is straightforward
to use and performs reasonably well, conditional independence
is assumed between the F0 at different frames. To alleviate this
incorrect assumption, we previously proposed autoregressive
(AR) F0 models that can capture the causal dependency of
each value in the F0 sequence (i.e., the F0 contour). A
subjective evaluation demonstrated that one of our AR F0

models – the deep AR F0 model (DAR) – outperformed an
RNN [13].

Although the DAR models the probability distribution of F0

contours better than an RNN, it still processes input linguistic
features frame by frame. However, most values in a frame-
rate linguistic feature vector sequence have a constant value
from one frame to the next because they change only every
segment, syllable, word, etc. When operating at the frame rate,
the recurrent layer(s) must propagate information across many
frames before it can be used to predict the F0 of the next
segment. If the model uses a convolutional layer, however, it
has to use a large convolution receptive field.

In this paper, we improved both the efficiency and in-
terpretability of the DAR and developed a two-stage Vector
Quantized Variational Autoencoder (VQ-VAE)-based AR F0

model. During F0 generation in a TTS system, the proposed
model uses a linguistic linker to convert the linguistic features
of one linguistic unit into a latent code vector. The model
then uses a DAR-based F0 contour generator to output an
F0 contour conditioned on the latent vector and duration of
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the unit. In contrast to the DAR and to conventional RNN
F0 models, the linker in the proposed model operates at the
segment rate rather than the frame rate. It processes only one
input linguistic feature vector and produces one latent code for
each segment, which reduces processing time and facilitates
the use of wider context.

The training algorithm has two steps. We first use the VQ-
VAE framework [14] and train the DAR-based F0 contour
generator (i.e., the VQ-VAE’s decoder) jointly with the VQ-
VAE’s encoder and VQ codebook. We then use the trained
VQ-VAE encoder and codebook to extract the quantized latent
codes from the training data and train the linker to predict
the latent codes from the input linguistic features. The trained
model only uses the linker, VQ-VAE codebook, and decoder
for F0 generation, leaving the VQ-VAE encoder unused.

We conducted experiments in which the linguistic unit was
defined as a phone, syllable, or word. We also combined latent
codes from linguistic units at multiple levels. The experiments
demonstrated that the model using the phone and syllable
levels provided objective and subjective results no worse than
the DAR, even though the proposed model is smaller. More
interestingly, the learned latent codes encode the F0 shape and
average height of the phone and syllable. The latent code of
the phone also encodes the voicing status.

Section II gives an overview of related neural F0 models,
then Section III explains the proposed model, including its
implementation. Section IV presents the experimental evalu-
ation, Section V discusses remaining issues and Section VI
concludes the paper.

II. BRIEF REVIEW OF RELATED F0 MODELS

We consider the F0 modeling as a task to learn the mapping
from the input linguistic features to the output F0 sequence.
At each time step, the target F0 datum encodes the voicing
status and the F0 value if the frame is voiced.

A. Classical models

For SPSS-based TTS systems, hidden Markov models
(HMMs) plus decision-trees have been widely used to model
the F0 and other spectral features. Specifically, multi-space
probability distribution HMMs directly model the raw F0 con-
tours that may contain unvoiced frames [15], whereas HMM-
based continuous F0 models use interpolated F0 contours and
the voicing status as the target [16]. Based on these two
models, many other models or methods have been proposed.
For example, some F0 models generate the F0 contour by
adding F0 components at different linguistic levels [17], [18],
[19]; some other models use an alternative F0 representation
rather than the raw or interpolated F0 contour [20], [21].

Recently, researchers have used NNs as alternatives to
HMMs to jointly model the F0 and other spectral features
[22], [23], [24]. Some researchers use NNs exclusively for
F0 modeling [25], [12], which may be reasonable because
it was recently found that NNs may prioritize the spectral
features over the F0 [26]. In fact, many NN-based F0 models
have been proposed before the advent of SPSS-based TTS
systems [27], [28], [29]. Some of the NN-based models may

SAR DAR
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Fig. 1. RMDN and AR F0 models. ct and ot denote interpolated continuous-
valued F0 (iF0) and un-interpolated quantized F0 (qF0), respectively.

only predict F0s for a few target points per linguistic unit [30].
Many other models generate the F0 for each frame, but they
only use simple input features and limited network size due
to the limitation of computation resources at that time.

B. Autoregressive neural F0 models

We focused on recent NN-based F0 models because they
are straightforward to use and perform well. The goal with an
NN-based F0 model is to convert a linguistic feature sequence
of T frames x1:T = {x1, · · · ,xT } into an F0 sequence
c1:T = {c1, · · · , cT }, where ct ∈ R is the F0 value at the
t-th frame of an interpolated continuous-valued F0 contour
(iF0) 1. For an RNN-based F0 model, its output at the t-th
frame can be written as ĉt = HΘ(x1:T , t), where HΘ(·)
and Θ denote the non-linear transformation conducted by the
network and the network’s weights, respectively. Usually, Θ
can be learned by minimizing a mean square error (MSE)
E =

∑T
t=1 ||HΘ(x1:T , t)−ct||2 over a training data set. After

training, the RNN can produce ĉ1:T̃ for a new input sequence
x̃1:T̃ by generating ĉt = HΘ∗(x̃1:T̃ , t), ∀t ∈ {1, · · · , T̃}.

The above method implicitly treats the RNN as a proba-
bilistic model [31] with a distribution of c1:T as2

p(c1:T |x1:T ;Θ)

=

T∏

t=1

p(ct|x1:T ;Θ) =

T∏

t=1

N (ct;HΘ(x1:T , t), βI),
(1)

where N (·) is the Gaussian distribution, I is an identity
matrix, and β is a variance parameter. Training the RNN
using the MSE criterion is equivalent to a maximum-likelihood
training on the probabilistic model; using HΘ∗(x̃1:T̃ , t) as the
generated F0 is equivalent to taking the mean of the Gaussian
distribution as the output. This probabilistic interpretation also
allows the RNN to be extended as a recurrent mixture density
network (RMDN) [32], [33] where the Gaussian distribution
is replaced with a Gaussian mixture model (GMM).

An RNN-based F0 model has been demonstrated to be
better than those based on feedforward NNs [12]. However,
as Equation (1) shows, a conditional independency between
ct1 and ct2 , ∀t2 6= t1 is assumed with an RNN (and RMND),

1The interpolated F0 contour is modeled jointly with a sequence of voicing
statuses [16]. The voicing status is omitted here for the purpose of explanation.

2In this paper, we use p(·) and P (·) to denote the probability density
function for a continuous random variable and probability mass function for
a discrete random variable, respectively.
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which is incompatible with the fact that F0 values in neighbor-
ing frames may be highly correlated. We recently proposed AR
neural F0 models that learn the causal temporal dependency
of F0 contours [13]. One of these models, the shallow AR
model (SAR), defines the distribution of c1:T as

p(c1:T |x1:T ;Θ,Ψ) =

T∏

t=1

p(ct|ct−K:t−1,x1:T ;Θ,Ψ)

=

T∏

t=1

N (ct;HΘ(x1:T , t) +

K∑

k=1

akct−k + b, βI)

, (2)

where Ψ = {a1, · · · , aK , b}. In contrast to an RNN, the
distribution of ct is assumed with SAR to be dependent not
only on x1:T but also on the observations ct−K:t−1 in the
previous K frames. Note that the SAR can also be defined on
the basis of the RMDN [13].

Although the SAR is theoretically better, it fails to outper-
form an RNN-based model for F0 modeling because the SAR
only models the local dependency [13]. A more powerful of
our previous models is the DAR [13], which defines:

P (o1:T |x1:T ;Θ) =

T∏

t=1

P (ot|o1:t−1,x1:T ;Θ), (3)

To avoid the impact of the interpolated F0 curves, the DAR
uses quantized F0s (qF0s) rather than interpolated continuous-
valued F0s as the target. The quantized F0 of the t-th frame
is represented as a one-hot vector ot = [o

t,0
, o

t,1, · · · , ot,N
],

where N is the number of quantization levels. For exam-
ple, ot = [1, 0, · · · , 0] denotes an unvoiced frame, while
ot = [0, 0, · · · , ot,n = 1, · · · , 0] means an F0 value at
the n-th quantization level. The DAR then uses a hierar-
chical softmax layer to calculate a categorical distribution
for each quantized F0 datum. Suppose that the j-dimension
of ot is 1, the probability of ot can then be written as
P (ot|o1:t−1,x1:T ;Θ) , Pt(J = j), where

Pt(J = j) =





eht,0

1 + eht,0

, j ∈ {0}

1

1 + eht,0

eht,j

∑N
k=1 e

h
t,k

, j ∈ [1, N ]

. (4)

Here, ht,j is the j-th dimension of the input vector ht to
the softmax layer. In implementation, the hierarchical soft-
max uses a sigmoid function to compute the probability of
being unvoiced, i.e., Pt(unvoiced) , Pt(J = 0) = e

ht,0

1+e
ht,0

.
It then uses a normal softmax to compute the conditional
probability of each quantized F0 level as Pt(J = j|voiced) =

e
h
t,j∑N

k=1 e
h
t,k
, j ∈ [1, N ].

More importantly, the DAR introduces the links that feed
the previous observation into a uni-directional recurrent layer,
which is plotted in Figure 1. The feedback datum is trans-
formed non-linearly and propagated to the rest of the ut-
terances, which theoretically enables the distribution of ot

to depend on o1:t−1. Compared with the SAR, the DAR
theoretically models non-linear temporal dependency in a
longer time-span. Our previous experiments demonstrated that
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Fig. 2. Illustration of conventional F0 model (left) and proposed F0 model
(right) that both output an F0 contour of T frames. Subscripts 1p and 2p
denote 1st and 2nd phone, respectively. t2p indexes first frame of 2nd phone.
Linguistic features with different values are displayed in different colors.

the DAR outperformed the SAR and an RNN-based model
with a statistically significant difference for F0 modeling [13].

III. PROPOSED VQ-VAE-BASED AR F0 MODEL

A. Shortcomings of conventional NN-based F0 models

The input linguistic features x1:T to an F0 model mainly
contain the linguistic properties of phone, syllable, and other
high-level segments. When a TTS front-end generates x1:T ,
it simply replicates the features of the n-th segment to
{xtn ,xtn+1, · · · ,xt(n+1)−1}, where tn and t(n+1)−1 denote
the first and last frames of that segment. Although the frame
index t may be added, most dimensions of the linguistic
feature vectors remain the same within one segment. An
example is illustrated on the left side of Figure 2.

It is inefficient for the DAR and other conventional NN-
based F0 models to convert x1:T into the F0 contour o1:T

frame by frame. First, the input layers spend much time pro-
cessing replicated linguistic features in one segment. Further-
more, they cannot easily retrieve the features of neighboring
segments. In a recurrent layer, the features of the surrounding
segments may be attenuated when they are propagated across
frames. If a convolutional layer is used, its receptive field must
be sufficiently large to cover surrounding segments.

Another shortcoming is that the hidden features of conven-
tional NN-based F0 models cannot be easily interpreted. In
some classical F0 modeling frameworks, such as the combi-
nation of decision trees and the Tilt model [34], the linguistic
features are converted into meaningful discretized F0 events
(e.g., Tilt events) then transformed into an F0 contour. If an
NN-based F0 model provides meaningful hidden features, it
would facilitate theoretical research on speech prosody.

B. Introducing latent variables to NN-based F0 models

As the right side of Figure 2 illustrates, a more efficient and
interpretable model may only need to process a short input
sequence x1:Np , where Np is the number of segments such as
phones in the utterance. To convert x1:Np into o1:T (or c1:T ),
the F0 model may introduce an intermediate feature sequence
e1:Np

that satisfies the following three conditions:
• e1:Np can be easily predicted from x1:Np ;
• e1:Np

can be easily converted to a frame-level e1:T then
o1:T , given the duration of each phone;

• e1:Np
is interpretable.
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Fig. 3. Framework of proposed VQ-VAE-based F0 model. Note that example utterance contains two phones and T frames. z, e, and l denote raw latent
code, codeword vector (centroid of code cell), and code index in codebook, respectively. Subscripts 1p and 2p denote first and second phones, respectively.

One potential implementation for the above idea is to
replace the hidden layer near the input side of the DAR
with a clockwork recurrent layer [35], which extracts e1:Np

from x1:Np and replicates e1:Np into e1:T given the duration
of each phone. However, such a clockwork DAR model did
not outperform the normal DAR in our pilot experiments.
Furthermore, the clockwork recurrent layer did not produce
meaningful hidden features.

Another approach is to treat e1:Np
as latent variables and

formulate a two-staged F0 model as

P (o1:T |x1:Np ;Θ)

=

∫

e1:Np

P (o1:T |e1:Np
;Φ)p(e1:Np

|x1:Np
;Ω)de1:Np

,
(5)

where p(e1:Np
|x1:Np

;Ω) converts x1:Np
into e1:Np

,
P (o1:T |e1:Np ;Φ) generates the F0 contour given e1:Np ,
and Θ = {Φ,Ω} 3. Such a model can be trained under the
framework of a conditional variational autoencoder (VAE) by
maximizing an evidence lower bound (ELBO) [37]

logP (o1:T |x1:Np)

≥Eq(e1:Np |o1:T ,x1:Np ;Γ) logP (o1:T |e1:Np ;Φ)

− KLD
[
q(e1:Np

|o1:T ,x1:Np
;Γ)||p(e1:Np

|x1:Np
;Ω)

]
,

(6)

where P (o|e;Φ), q(e|o,x;Γ), and p(e|x;Ω) denote the
decoder, encoder, and prior distribution of the latent variables,
respectively, and KLD is the Kullback-Leibler divergence.

As an implementation, the encoder q(e|o,x;Γ) may use
a linguistic-boundary-based pooling strategy to summarize
the F0 features from o1:T for each of the Np phones (see
Section III-C1) and generate the latent variables e1:Np . The
decoder P (o|e;Φ) can be a DAR that receives the replicated
latent variables e1:T as input.

However, our pilot experiments showed that the KLD de-
creased to zero after only two training epochs, and the decoder
ignored the latent variables. The resulting model became

3With Equation (5), it is assumed that o is conditionally independent from
x given e. Another definition is to assume o depends on both x and e,
i.e., p(o1:T |e1:Np ,x1:Np ;Φ). In this case e only encodes o’s variation that
cannot be explained by x [36]. We used the definition in Equation (5) because
we hope that e can fully encode the F0 variation in a meaningful manner.

similar to the DAR and the latent variables became useless.
The above phenomenon has been reported in VAE-based text
and image generation models under the name of ‘posterior
collapse’ [38], [39]. One possible reason is that, without using
latent variables, the DAR-based decoder has found sufficient
information from the feedback data o1:t−1 to predict ot.

C. Proposed model and implementation

To avoid ‘posterior collapse’, we define the proposed F0

model on the basis of the VQ-VAE framework [14]:

P (o1:T |x1:Np ;Θ)

=
∑

e1:Np∈Φ2

P (o1:T |e1:Np
;Φ1)P (e1:Np

|x1:Np
;Ω), (7)

where the latent vectors e1:Np
are assumed to be selected from

a codebook Φ2 using a vector quantization process.
Although other frameworks, such as the annealing trick

[38], may also alleviate the ‘posterior collapse’, we chose the
VQ-VAE framework because the quantized latent codes are
more compatible with the linguistic assumption that F0 can be
abstracted as discretized prosodic events [40], [41]. Another
motivation is that the VQ-VAE framework has not been used
for F0 modeling. A probabilistic interpretation on the VQ-VAE
and its relationship with a conventional VAE are reported in
another of our studies [36].

We list the steps to train and use the proposed VQ-VAE-
based F0 model based on the definition in Equation (7):

1) Train the decoder P (o1:T |e1:Np
;Φ1) with the codebook

Φ2 and an encoder q(e1:Np
|o1:T ;Φ3) using the standard

VQ-VAE training method;
2) Use the trained encoder and codebook to extract the

quantized codes e1:Np
from the F0 training data and

train a model P (l1:Np
|x1:Np

;Ω) to predict the indices
l1:Np

of the quantized codes e1:Np
from the input

linguistic features x1:Np . Because P (l1:Np |x1:Np ;Ω)
links the latent F0 space with the linguistic feature space,
it is referred to as a linguistic linker.

3) Combine the linker, VQ-VAE codebook, and decoder
as a full-fledged model for F0 generation, leaving the
VQ-VAE encoder unused.
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Fig. 4. Example of phone-mora VQ-VAE encoder that extracts latent codes
from utterance with T frames. This utterance contains single mora that
consists of two phones. Phone and mora latent codes are equal in dimension.

These three steps are illustrated in Figure 3. Details of the
three steps are explained in the following sections. Note that,
because e1:Np

are quantized, the combination of the codebook
and linker is equivalent to P (e1:Np

|x1:Np
;Ω) in Equation (7).

The VQ-VAE part is trained in an almost-unsupervised manner
since it only requires the F0 and linguistic boundary of
linguistic segments.

1) VQ-VAE: The first step is to use the VQ-VAE frame-
work and learn the parameter of p(o1:T |e1:Np

;Φ1) together
with the codebook and encoder. The three components are
trained by minimizing

L(Φ) = − log p(o1:T |e1:Np
;Φ1)

+
∥∥e1:Np

− sg[z1:Np
]
∥∥2
2
+ β

∥∥z1:Np
− sg[e1:Np

]
∥∥2
2
,

(8)

where the quantized code vectors e1:Np
(i.e., centroid of code

cell) and raw latent vectors z1:Np
are given by

e1:Np
= Vector quantizationΦ2

(z1:Np
), (9)

z1:Np
= EncoderΦ3

(o1:T ), (10)

and Φ = {Φ1,Φ2,Φ3}. The first term in Equation (8)
measures the reconstruction loss; the second term drives the
quantized vectors towards the raw latent vectors; the third term
is a ‘commitment loss’ that prevents the output of the encoder
from growing arbitrarily large [14]. The hyper-parameter β
scales the commitment loss and is set to 0.25 as in the original
paper [14]. The operator sg[·] zeros out the gradient back
propagated to the argument.

Training the VQ-VAE is not straightforward because the
gradients of z1:Np

w.r.t the reconstruction loss is undefined due
to the undifferentiable VQ process in Equation (9). Following
the original paper [14], we use the straight-through estimator
[42] to copy the gradients from e1:Np to z1:Np during the back-
propagation on Equation (9). Accordingly, the encoder Φ3 is
trained by minimizing the first and third terms of Equation (8),
while the codebook Φ2 and decoder Φ1 are updated based on
the second and first terms, respectively.

Remember that we only use a single code enp
to encode

the F0 curve for the n-th segment. This is implemented using
a linguistic-boundary-based pooling strategy. As step 1 in
Figure 3 shows, the encoder uses a bi-directional recurrent
layer to process o1:T and extracts znp

for the n-th phone by
concatenating the hidden features of the first and last frames
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Fig. 5. Example of naive linker (top) and multi-time-resolution linker (bottom)
that predict mora-level code indices {lm1m , lm2m} and phone-level code indices
{lp1p , · · · , l

p
4p
}. Subscripts np and nm index phone and mora, respectively.

Feedback links are not plotted for this example.

of that phone. After that, the centroid vector enp
closest

to znp is retrieved from the codebook. Given the quantized
code sequence {e1, · · · , eNp}, the decoder simply replicates
each code to all the frames in the corresponding phone and
reconstructs o1:T frame by frame. Note that the decoder uses
a similar structure to the DAR.

The explanation above only concerns the latent codes for the
phone. However, it is straightforward to extract latent codes of
other linguistic units using additional encoders. In Figure 4,
for example, the mora encoder is added to extract the mora
latent codes 4. This mora encoder has a similar structure to
the phone encoder except that it outputs one code per mora.
Each mora code is replicated to every phone within that mora,
and the sum of the phone and mora codes is used as the latent
representation for the phone. Note that the latent codes of
different linguistic layers are equal in dimension. The latent
vectors can also be concatenated. However, summing the latent
vectors was found to be slightly better in our pilot experiments.

Encoders of multiple linguistic levels should be trained in a
top-down manner. For the case in Figure 4, the mora encoder
and codebook are first trained, after which the phone part is
updated with the mora encoder and codebook fixed. The single
decoder, however, is always updated. Such a training approach
prevents the VQ-VAE from ignoring the latent codes provided
by a high-level encoder.

2) Linguistic linker: After the VQ-VAE is trained and
the latent codes are extracted from the training F0 data, the
linguistic linker learns to map the linguistic features into the
latent codes. Because the latent codes are codewords in a
codebook, the task of the linker is equivalent to a sequential
classification task, in which case the input is the sequence of

4A Japanese mora is a phonological unit that determines the timing of
speech. For example, the word ‘Japan’ in Japanese has two pronunciations:
Ni-ho-n (3 moras) and Ni-p-po-n (4 moras).
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linguistic features x1:N = {x1, · · · ,xN} and the target is the
code index sequence l1:N = {l1, · · · , lN}, where ln is the
index of the code en for the n-th segment. Such a linker can
be implemented using an RMDN with a softmax output layer.
Other techniques for classification models can also be applied,
for example the skip-connection [43] and dropout [44].

When the VQ-VAE uses latent codes at multiple linguistic
levels, the linker must predict multiple code index sequences.
However, the index sequences may differ in length because the
number of linguistic segments may differ at different levels.
A naive implementation is to replicate the higher-level indices
to the segments at the lowest level. In the example plotted
at the top of Figure 5, the mora level indices {lm1m , lm2m} are
replicated to the phones, and the linker predicts the mora and
phone code indices simultaneously for every phone. Note that
the alignment between different linguistic levels can be easily
retrieved from the linguistic features.

By replicating the mora code indices to the phones, the
naive linker treats the replicated indices as the values of
different random variables and may assign them different
probabilities. This model assumption is against the fact that the
replicated indices should have the same emitting probability.
A statistically better linker may adopt a multi-time-resolution
architecture similar to a clockwork RNN [35]. Suppose the
mora and phone levels are used and their code indices are
denoted as lm1:Nm

and lp1:Np
, respectively. The idea is to emit

a hidden state and output index for a mora only when the
current time step hits the first phone in the mora. Such a linker
is plotted at the bottom of Figure 5.

3) F0 generation: Once the linker is trained, the pro-
posed F0 model can be built by concatenating the linker,
codebook, and VQ-VAE decoder. During F0 generation,
the linker can generate a sequence of probability vectors
P1:N = {P1, · · · ,PN}, where the vector Pn = [P (ln =
1|x1:N ), · · · , P (ln = L|x1:N )] contains the probabilities of
emitting each of the L code vectors at the n-th step. After that,
a soft code vector can be computed as ên =

∑L
l=1 P (ln =

l|x1:N )el, where el is the code with the index l. This soft
code can be fed to the decoder for F0 generation, which
approximates the summation in Equation (7).

IV. EXPERIMENTS

Following the explanation on the proposed VQ-VAE-based
F0 model, we now discuss the experiments. After describing
the data and model configuration in Sections IV-A and IV-B,
we describe the evaluation of the VQ-VAE part and linker of
the proposed model in Sections IV-C and IV-D, respectively.
We then show the results of comparing the proposed model
with other NN-based F0 models in Section IV-E.

A. Corpus and data

The experiments were conducted using the same speech
corpus and configuration as in our previous study on the DAR
[13]. Among the speakers in the corpus [45], we used fifty
hours of recordings from a female speaker (F009). This subset
contained 30,016 news-reading utterances, among which 500

were randomly selected as the validation set and another 500
as the test set. The waveform sampling rate was 48 kHz.

Natural F0 data were extracted using an ensemble of
multiple F0 trackers with a frame shift of 5 ms [46]. The
raw F0 data were transformed to the Mel scale using m =
1127 log(1+F0/700). The interpolated continuous-valued F0s
(iF0s) were obtained after interpolating the unvoiced frames.
In the case of the quantized F0 (qF0), the Mel-scale F0 values
were quantized into 255 levels between 66 and 529 on the
Mel scale, the same recipe as in our previous study [13]. The
quantized F0 values and an unvoiced symbol were encoded as
a one-hot vector ot ∈ {0, 1}256 for each frame. The F0 delta
and delta-delta components were not used.

Linguistic features were extracted from the text using a
Japanese TTS front-end called OpenJTalk [47]. The basic
linguistic unit is the phone, above which there are mora, word,
and phrase levels. A linguistic feature vector for a phone has
386 dimensions and encodes the quin-phone identity, word
part-of-speech, phase accent type, and so on [48]. To create
the input linguistic feature sequences for conventional NN-
based F0 models, the linguistic features were replicated to
each frame in the phone and augmented with three additional
features: the frame position in the utterance (forward and
backward) and the total number of frames.

Speech waveforms for listening tests were synthesized us-
ing the WORLD vocoder [49] given natural Mel-generalized
cepstral coefficients [50] (60 coefficients per frame) and band
aperiodicity features (25 dimensions per frame). Natural du-
ration was used for both model training and testing.

B. Model configuration, training, and testing

We evaluated the proposed VQ-VAE-based F0 model with
different configurations on the VQ-VAE part and linker5.
Some of the configurations are plotted in Figures 6, and other
configurations are explained in Sections IV-C and IV-D. Given
the best configuration, we then compared the proposed VQ-
VAE-based model with baseline NN-based F0 models.

Specifically, Figure 6 plots two configurations of the VQ-
VAE part, one using only the phone level latent codes and the
other using both the phone and mora levels. Due to the limited
space, configurations using the latent codes of other linguistic
levels are not plotted. In all the VQ-VAE configurations, the
codebooks contained 128 code words of 64 dimensions 6, and
the decoder used the same structure as the upper part of DAR
in Figure 7. The ‘extractor’ layers executed the linguistic-
boundary-based pooling and generated the latent vectors for
each linguistic unit. The ‘code summation’ layer summed
the codes of different linguistic levels, as Figure 4 shows.
The dropout rate of 50% in the feedback link was identical
to that used in DAR. The VQ-VAE part was trained using

5All models were implemented using CURRENNT [51]. The toolkit and
training recipes will be available online (https://nii-yamagishilab.github.io).

6We chose the number of codes based on how frequently each code was
used in the validation set. While the phone-level codebook used around 128
codes, high-level codebooks used fewer codes. However, it is harmless to leave
unused codes in the codebook. We also tried to increase code dimensions
from 64 to 128 but found that the performance of TTS F0 modeling did not
improve.

https://nii-yamagishilab.github.io
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Fig. 6. Example components of proposed VQ-VAE-based F0 model, including two VQ-VAEs in Table II and six linkers in Table III. VQ-p-qF0 and VQ-mp
denote phone-level and mora-phone-level VQ-VAEs, respectively. LK-p-* and LK-mp-* are linkers designed for VQ-p-qF0 and VQ-mp, respectively.
LK-mp-3 is identical to LK-mp-2 except that LK-mp-3 used dropout in every hidden layer. Numbers near hidden layer denote layer size. Subscripts T ,
Np, and Nm denote number of frames, phones, and moras, respectively. FF, H-softmax, bi-LSTM, and un-LSTM denote feedforward, hierarchical-softmax,
bi-directional, and uni-directional LSTM layer, respectively. × denotes dropout in feedback link.
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Fig. 7. Network structure of three baseline experimental F0 models

the top-down training strategy explained in Section III-C1
and the Adam optimizer with default configuration (learning
rate= 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8) [52].

Figure 6 also plots some of the linker configurations. In all
the configurations, each highway block contained five layers
that converts the input vector x into y = (1− g)� x+ g �
ReLU(Wx + b), where g = sigmoid(Wgx + bg), and � is
the element-wise product. The dropout rate in the feedback
links was set to 25% based on a pilot test. The linker was
trained using conventional gradient descent with early stopping
(learning rate = 10−5) and further tuned using AdaGrad
(learning rate = 0.001) with early stopping.

Two baseline NN-based F0 models SAR and DAR were
trained in our previous study [13]. The SAR used a GMM
with two mixture components to model iF0 and a binomial
distribution to model the voicing status. It was initialized
using a trained RMDN and fine-tuned after adding the AR
dependency of order K = 1. The DAR modeled qF0 and used
a dropout rate of 50% in the feedback link. It was initialized
using the layer-size-dependent strategy [53] and trained from
scratch.

Because both SAR and DAR are based on RNNs, we
included a convolution NN (CNN) as a reference system.
Specifically, we used the WaveNet [3] to model the F0
(WaveNet-F0) since its dilated convolution architecture is
reported to be able to cover contexts in a long range. This
WaveNet-F0 uses a similar structure and training recipe
to the WaveNet vocoder in another of our studies [54]. It

TABLE I
MEDIAN DURATION OF LINGUISTIC UNIT

Phrase Word Mora Phone
Median duration (frames) 95 51 25 13

contained 40 dilated CNN blocks with the dilation size of
the n-th block as 2mod(n−1,10), n ∈ [1, 40]. The sizes of the
residual- and skip- channels were 64 and 256, respectively.
Different from the WaveNet vocoder, the WaveNet-F0 used
a hierarchical softmax output layer and modeled qF0 frame
by frame.

Subjective and objective tests were conducted on the test
set to evaluate model performance. For the objective test,
several metrics were calculated on the generated F0 given
the natural duration information, including a root mean
square error (RMSE), correlation coefficient (CORR), and
unvoiced/voiced (U/V) classification error rate (U/V err.). The
RMSE and CORR were calculated on frames where both
natural and generated F0s were voiced. The subjective test is
discussed in Section IV-E.

C. Pilot test I: F0 encoding-decoding using VQ-VAE

This pilot test compared VQ-VAEs at the phone, mora,
word, and phrase levels. Each VQ-VAE was trained on the
training set and evaluated on the test set given the natural
duration of linguistic units.

Table I lists the median duration of the linguistic units at
each level, which can be used to compute the ‘bit rate’ of a
VQ-VAE. For example, since 13 is the median duration of the
phone in frames, a phone-level VQ-VAE extracts 1/13 code
per frame on average. Because the codebook size is 128 =
27, the bit rate of this VQ-VAE is 7/13 = 0.538 bit/frame.
For reference, the bit rate of the natural quantized F0 is 8
bit/frame since each frame encodes 255 quantized F0 levels
and an unvoiced flag.

1) VQ-VAEs using single linguistic level: This test in-
volved seven VQ-VAEs with a single linguistic level. The first
four VQ-VAEs modeled the qF0 and operated on the phone,



ACCEPTED MANUSCRIPT 8

190

390

F0
(H

z)
Natural VQ-h-qF0 Natural VQ-h-iqF0

190

390

F0
(H

z)

Natural VQ-w-qF0 Natural VQ-w-iqF0

190

390

F0
(H

z)

Natural VQ-m-qF0 Natural VQ-m-iqF0

100 200 300 400 500 600
Frame index (ATR Ximera F009 AOZORAR 03372 T01)

190

390

F0
(H

z)

Natural VQ-p-qF0

100 200 300 400 500 600
Frame index (ATR Ximera F009 AOZORAR 03372 T01)

Natural VQ-mp VQ-wmp VQ-hwmp

Fig. 8. F0 contour reconstructed with each VQ-VAE model through encoding and decoding one test utterance. Dotted lines denote linguistic unit boundary.

TABLE II
OBJECTIVE RESULTS OF F0 ENCODING-CODING USING VQ-VAES.

Bit rate
(bit/frame) RMSE CORR U/V err.

Quantized F0 8 01.19 0.999 0.00%
VQ-h-qF0 0.074 (7/95) 61.87 0.425 28.78%
VQ-w-qF0 0.137 (7/51) 41.81 0.739 22.94%
VQ-m-qF0 0.280 (7/25) 22.27 0.919 14.55%
VQ-p-qF0 0.538 (7/13) 13.60 0.972 6.88%

VQ-h-iqF0 0.074 58.83 0.469 -
VQ-w-iqF0 0.137 37.05 0.796 -
VQ-m-iqF0 0.280 21.57 0.934 -

VQ-hwmp 1.029 11.46 0.982 4.58%
VQ-wmp 0.956 11.54 0.982 4.27%
VQ-mp 0.818 12.11 0.981 4.60%

Note: ‘qF0’ and ‘iqF0’ denote quantized F0 and interpolated quantized
F0 , respectively. ’VQ-hwmp’, ’VQ-wmp’, and ’VQ-mp’ use phrase (h)
+ word (w) + mora (m) + phone (p), word + mora + phone, and mora
+ phone levels, respectively.

mora, word, and phrase levels, respectively. They are referred
to as VQ-p-qF0, VQ-m-qF0, VQ-w-qF0, and VQ-h-qF0.
The network structure of VQ-p-qF0 is plotted in Figure 6,
and the other three VQ-VAEs used similar structures except
the linguistic level to extract latent codes.

Because the qF0 contains the voicing status, it may be inap-
propriate to model it at the linguistic levels above the phone.
Therefore, three additional VQ-VAEs were added to model the
interpolated quantized F0 (iqF0): VQ-h-iqF0, VQ-w-iqF0,
and VQ-m-iqF0. An iqF0 contour was quantized from an
interpolated F0 contour using the same F0 quantization recipe
as the qF0.

After training, these VQ-VAEs were evaluated by encoding
and decoding the F0 data in the test set, and the objective
results are listed in Table II. If we compare the results of using
the iqF0 and qF0, we can see that it is better for high-level VQ-
VAEs to model the iqF0 rather than qF0. As Figure 8 shows,
the voicing status of natural speech may change multiple times
within a phrase or word. It was difficult for a phrase- or word-

level VQ-VAE to encode both the F0 shape and location where
the voicing status changes. Only VQ-p-qF0 performed well
on the qF0, which is reasonable because the voicing status is
a mainly phonetic property.

Even using the iqF0, VQ-h-iqF0 failed to encode and
decode the F0 using one code per phrase. One hypothesis
may be that the model is incapable of modeling the F0 curve
of roughly 95 frames in length. Another hypothesis is that
the shape of the artificially interpolated F0 curves may have
interfered with the model learning. When a VQ-VAE generated
latent codes at the mora or phone level, the F0 was encoded
and reconstructed with high accuracy. Particularly, VQ-p-qF0
achieved a correlation score of 0.97, and the reconstructed F0

was very close to the natural one.

These results are reasonable because VQ-p-qF0 used more
bits to encode the F0 contours. However, VQ-p-qF0 was still
imperfect because its bit rate is only 7/13 bit/frame, which is
much lower than the 8 bits/frame of the qF0. This is the trade-
off with a VQ-VAE as it attempts to use a single quantized
latent code to describe the F0 curve of one linguistic unit.

2) VQ-VAEs using multiple linguistic levels: Based on
the above results, the second experiment involved three VQ-
VAEs using multiple linguistic levels: phrase + word + mora
+ phone (VQ-hwmp), word + mora + phone (VQ-wmp), and
mora + phone (VQ-mp). The structure of VQ-mp is plotted in
Figure 6, and VQ-hwmp and VQ-wmp had similar structures.
The three VQ-VAEs were trained in a top-down manner, as
explained in Section III-C1. The encoders at the phrase, word,
and mora levels took the iqF0 as input. The results in Table II
indicate that the VQ-VAEs using multiple levels improved the
objective performance compared with VQ-p-qF0, especially
on the U/V. However, the improvement due to high-level latent
codes seems to be limited because most of the variation was
encoded by the phone-level latent codes.
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TABLE III
OBJECTIVE RESULTS COMPARING DIFFERENT LINKERS

Linker (s/epoch) VQ-VAE RMSE CORR U/V err.
LK-p-1 (1300)

VQ-p-qF0
32.79 0.856 7.61%

LK-p-2 (54) 27.11 0.906 6.36%
LK-p-3 (61) 26.74 0.908 6.36%
LK-mp-1 (59)

VQ-mp
27.35 0.907 6.22%

LK-mp-2 (63) 26.46 0.912 6.24%
LK-mp-3 (65) 25.55 0.916 4.87%
LK-wmp (70) VQ-wmp 26.72 0.909 5.04%
LK-hwmp (76) VQ-hwmp 26.18 0.909 4.81%

Note: the numbers inside the brackets denote the time to train the
linker for one epoch.

D. Pilot test II: linguistic linkers

The second pilot test focused on the linguistic linker. With
a trained VQ-VAE, the latent codes were extracted from the
training and validation sets and used to train a linker. The
trained linker was then combined with the VQ-VAE’s decoder
and codebook into a full-fledged VQ-VAE-based F0 model.
The linker’s performance, or equivalently the performance of
the proposed VQ-VAE-based F0 model, was evaluated after
generating F0 contours from linguistics features on the test
set.

1) Phone-level experiment: Given the phone-level VQ-
VAE model VQ-p-qF0, we compared three linguistic linkers
(LK-p-1, LK-p-2, and LK-p-3 plotted in Figure 6). In the
case of LK-p-1, the phone code indices lp1:Np

in the training
set were replicated to the frame-level as lp1:T . LK-p-1 was
then trained to convert the linguistic features x1:T into lp1:T
frame by frame in the same manner as conventional NN-based
F0 models. LK-p-2, however, directly converted x1:Np to
lp1:Np

phone by phone. LK-p-3 was identical to LK-p-2
except that LK-p-3 replaced the second feedforward layer
with a bi-directional LSTM. The objective results are listed in
the first three rows of Table III.

First, LK-p-1 performed worse than LK-p-2 and required
much more time in training (and of course generation). As
argued in Section III-A, LK-p-1 is inefficient because it
processes redundant linguistic features frame by frame. In
contrast, LK-p-2 operates phone by phone and can easily
access the linguistic features of multiple phones. This may be
the main reason for the different performances of LK-p-1
and LK-p-2. As the median duration of the phone is around
13 frames (see Table I), the time LK-p-2 spends in both
forward and backward computation is only 1

13 of LK-p-1.
The LK-p-3 further improved the performance of LK-p-2
by replacing a feedforward layer with a recurrent layer. Since
the length of the input/output sequence is short, a recurrent
layer would not increase the training or generation time too
much compared with a feedforward layer.

2) Multiple-level experiment: Three linkers (LK-mp-1,
LK-mp-2, and LK-mp-3) were evaluated given the phone-
mora VQ-VAE (VQ-mp). The three linkers operated phone by
phone. While LK-mp-1 predicted the mora and phone code
indices using the naive implementation in Figure 5, LK-mp-2
and LK-mp-3 used the mora clock. Based on LK-mp-2,
LK-mp-3 used dropout (rate 5%) in all the hidden layers.

The results are listed in the middle of Table III. First,

TABLE IV
OBJECTIVE RESULTS OF NN-BASED F0 MODELS.

Time cost
RMSE CORR U/V

err.#. Para. Train Gen.
million h/epoch ms/frame

SAR 1.30 0.528 0.141 34.57 0.897 3.85%
DAR 1.48 0.555 0.205 28.30 0.903 3.46%

WaveNet-F0 3.28 1.194 4.109 28.04 0.903 3.52%
VQ-VAE(MP3) 1.11 0.435 0.147 25.55 0.916 4.87%

LK-mp-2 performed better than LK-mp-1 in terms of RMSE
and CORR. This result supports the use of the mora clock,
even though this improvement was small since one mora
in Japanese usually contains one or two phones. LK-mp-3
further improved in performance over LK-mp-2, especially
regarding the U/V err. This result suggests the importance of
dropout for the linker. Because the number of training samples
for the linker was equal to that of phones, which was only 1/13
the number of frames in the corpus, dropout may regularize
the network during training.

For more linguistic levels, LK-wmp and LK-hwmp were
built for VQ-wmp and VQ-hwmp. Their network structures
were the same as LK-mp-3 except additional branches to pre-
dict the word and phrase code indices. They also used dropout
in hidden layers as LK-mp-3 did. However, the results in
Table III indicate that using the phrase and word levels did
not improve F0 modeling performance. This result may be
reasonable because the word and phrase latent codes were not
informative, as suggested from pilot test I in Section IV-C.

E. Comparing proposed VQ-VAE-based F0 model with base-
line models

The results of the pilot tests indicate that VQ-mp with
LK-mp-3 performed the best among different configurations.
We refer to the proposed VQ-VAE-based model using this
configuration as VQ-VAE(MP3) and compared it with the
baseline NN-based F0 models. As the results in Table IV
indicate, VQ-VAE(MP3) achieved better RMSE and CORR
scores even though the U/V err. increased. The improved
RMSE and CORR scores may be the result of the unit-by-
unit processing of linguistic features in the linker. The U/V
err. increased because VQ-VAE(MP3) tended to treat a whole
unit as either being voiced or unvoiced, which is shown in
the analysis of latent codes in Section IV-F. This phone-
level U/V classification caused more errors around the phone
boundaries than the frame-level U/V classification conducted
using conventional NN-based F0 models.

A mean-opinion-score (MOS) test was conducted to com-
pare the perceptual quality of the generated F0. This test
involved 109 paid native Japanese speakers. Each partici-
pant listened to the samples and evaluated their quality in
terms of intonation using a score from 1 (unnatural) to 5
(natural). In each testing round, one vocoded speech sample
and the synthetic samples from each model were played
in a randomly shuffled order. In total, 1702 testing rounds
were conducted. The results plotted in Figure 9 indicate
that VQ-VAE(MP3) slightly outperformed the DAR, even
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Fig. 9. Results of subjective evaluation. Numbers in table denote p−values
calculated using two-sided Mann-Whitney U test.

190

390

F0
(H

z)

Natural SAR

190

390

F0
(H

z)

Natural DAR

190

390

F0
(H

z)

Natural WaveNet-F0

100 200 300 400 500 600
Frame index (ATR Ximera F009 AOZORAR 03372 T01)

190

390

F0
(H

z)

Natural VQ-VAE(MP3)
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though the difference is not statistically significant. The results
also indicate that WaveNet-F0 and SAR performed worse
than VQ-VAE(MP3). The performance of SAR was expected
because it only modeled local F0 dependency [13].

The reader may wonder whether VQ-VAE(MP3) performed
well because of its large and deep network structures, particu-
larly the linker. In fact, VQ-VAE(MP3) had a smaller number
of model parameters (1.11M = VQ-VAE 0.44 + linker 0.67).
Since the VQ-VAE encoder is not used during F0 generation,
the parameter of VQ-VAE(MP3) becomes smaller when it is
used for F0 generation (0.93M = VQ-VAE decoder&codebook
0.26 + linker 0.67). The results also suggest that the mapping
between linguistic features and F0 patterns may be more
difficult than F0 encoding-decoding. It may be better to assign
more parameters to the linker.

Even though the linker is larger and deeper than the VQ-
VAE part, it operates at the segment rate rather than frame
rate. It is easier for the linker to cover a large linguistic
context, as we argued before. Furthermore, the linker would

not significantly increase the training and generation time
because the number of segments in one utterance is much
smaller that the number of frames. In our implementation, the
linker part LK-mp-3 only costs 0.019 ms out of the 0.147 ms
that VQ-VAE(MP3) costs in generating one frame of F0.

A conventional F0 model such as DAR is less efficient
because it spends extra time processing the redundant linguis-
tic features frame by frame. Neither does it factorize the F0

modeling task nor use a specific network structure to process
the linguistic features. This may be the reason it used more
parameters but did not outperform VQ-VAE(MP3) 7.

F. Visualization of latent F0 code space

Since the proposed VQ-VAE-based F0 model has shown
promising results, it is interesting to investigate the ‘meaning’
of the latent codes learned using the VQ-VAE. For this
analysis, the codewords from the phone or mora codebooks of
VQ-VAE (MP3) were compressed to two dimensions using
t-SNE [55]. Its VQ-VAE encoder was then used to extract the
code indices from an F0 contour in the test set. The results are
plotted in Figure 11 (a), where the top and bottom sub-figures
show the results of the phone and mora codes, respectively.

At the mora level, the code indices assigned to the first
part of the F0 contour were {108, 119, 59, 13, 97, 20, 53}. The
location of these codes generally reflects the average F0 height
of the corresponding linguistic unit. For example, the mora
with the code 108 contained an F0 peak, and the following
moras contained a decreasing F0 curve. Accordingly, the
code sequence 108 → 59 → 13 → 20 → 53 formed a
line starting from the right-bottom corner of the code space
and ending at the left-top corner, except code 97 where the
F0 curve slightly increased. On the second part of the F0

contour, we can observe that the F0 curve increased at first,
reached a plateau, and finally decreased. The corresponding
code sequence {114, 110, 8, 40, 4, 123} started at the center of
the code space, reached the right-bottom corner, and moved
to the left-top corner.

Similar to the case at the mora level, the phone-level
codes generally learned the average F0 height of phones.
More interestingly, some of the codes seemed to also encode
the unvoiced status and were found in the right-hand side
manifold in the phone-code space, e.g., the code indices
{114, 46, 126, 119, 102} in the phone-code space of Figure 11.

The above results indicate that the VQ-VAE encoder at
the phone or mora level mainly encodes the skeleton of the
F0 contour, e.g., average F0 height and voicing status, while
the decoder fills in the detailed F0 variations. The average
F0 height may be a general representation to encode the F0

contour at the phone or mora levels.
Analysis on the latent space at the word or higher levels did

not show patterns as regular as those observed at the phone
and mora levels. For example, Figure 11 (b) plots the results
for the word-level latent space in VQ-wmp, which is difficult
to see meaningful patterns. One hypothesis is that the latent

7We also trained a smaller DAR with a number of parameters equal to 1.08
million. However, while the generation speed was still around 0.185 ms/frame,
the RMSE and CORR degraded to 30.01 and 0.890, respectively.
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Fig. 11. Latent code indices (integer numbers) assigned to linguistic unit and their locations in 2D latent code space. Left column shows F0 contours with
linguistic unit boundaries (grey dot lines) and code indices. Right column shows codes used in left figure (colored dots) and other codes (grey dots)

space may be affected by the artificially interpolated F0 curves
in unvoiced regions, for example the first word unit with the
code 111 and that with code 46.

V. DISCUSSION

The proposed VQ-VAE-based F0 model resembles the
classical two-step F0 modeling approaches [56], [57], [58],
in which the first step uses an F0 parametric model, such as
the Fujisaki model, to extract F0 parameters for each linguistic
unit, and the second step learns the mapping from linguistic
features to the F0 parameters of each linguistic unit. However,
these classical approaches rely on deterministic and expert-
designed F0 parametric models. In contrast, our proposed
model avoids any assumption about the F0 shape.

Some recent studies also used a VAE [59] or auto-encoder
[60] for F0 modeling. However, the VAE-based model still
relied on the constraints of the Fujisaki model. More impor-
tantly, how a VAE-based F0 model performs for TTS has not
yet been reported. The F0 auto-encoder only handles fixed-
length F0 contours [60]. Its performance for TTS tasks has
not been reported either. Compared with these models, our
proposed model is more flexible and has performed well for
TTS.

The linker in the proposed model may be extended to jointly
predict the duration and latent F0 codes for each linguistic
unit, which may potentially model the dependency between
these two acoustic cues of speech prosody. It is also possible
to jointly train the linker with the VQ-VAE decoder before F0

generation, which will be explored in future work.

Our proposed model is by no means the only model to
avoid the frame-by-frame processing of linguistic features.
Sequence-to-sequence models [61], [62] may also be used for
the F0-modeling task. Compared with a sequence-to-sequence
F0 model, however, our proposed model can explicitly use
the linguistic boundaries rather than learning the alignment
from scratch, which may ease the learning process. It is also
interesting to introduce sequence-to-sequence models in the
linker part of the proposed model.

VI. CONCLUSION

We investigated the issue of model efficiency for NN-
based F0 models in TTS systems. Although we previously
proposed the DAR, which outperformed an RNN-based F0

model, this DAR processes the linguistic features frame by
frame in the same manner as the RNN-based model. Because
frames within the same linguistic unit carry the same input
linguistic features, the frame-by-frame processing of linguistic
features is unnecessary. It also prevents the model from easily
retrieving linguistic features of the neighboring units.

To improve model efficiency, we proposed a VQ-VAE-
based F0 model that consists of two components. The first
component is an F0 contour model that generates the F0

contour based on sparse latent codes of linguistic units. To
jointly learn this component and latent codes, we proposed to
use the VQ-VAE framework and estimate the model parameter
and codebooks together with additional encoders. Experiments
showed that the meaningful latent codes can be learned at the
phone and mora levels, and these codes can be used to encode
and decode the F0 contours quite accurately.
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Given the latent codes extracted using the VQ-VAE encoder
on the training set, the second component of the proposed
model, which is referred to as the linker, can be easily
trained as a sequential classification model. This linker only
converts the linguistic features into a latent code for each
linguistic unit. It operates much faster than the layers of a
conventional NN-based F0 model that processes the linguistic
feature frame by frame. By combining a linker that predicts
mora and phone latent codes and the corresponding VQ-
VAE decoder and codebooks, the proposed VQ-VAE-based F0

model outperformed the DAR in objective tests and performed
equally well in subjective tests. The proposed VQ-VAE-based
F0 model is also smaller in model size and faster in training
and F0 contour generation.
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