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Topological Rearrangements and Local Search
Method for Tandem Duplication Trees

Denis Bertrand and Olivier Gascuel

Abstract—The problem of reconstructing the duplication history of a set of tandemly repeated sequences was first introduced by Fitch

[4]. Many recent studies deal with this problem, showing the validity of the unequal recombination model proposed by Fitch, describing

numerous inference algorithms, and exploring the combinatorial properties of these new mathematical objects, which are duplication

trees. In this paper, we deal with the topological rearrangement of these trees. Classical rearrangements used in phylogeny (NNI, SPR,

TBR, ...) cannot be applied directly on duplication trees. We show that restricting the neighborhood defined by the SPR (Subtree

Pruning and Regrafting) rearrangement to valid duplication trees, allows exploring the whole duplication tree space. We use these

restricted rearrangements in a local search method which improves an initial tree via successive rearrangements. This method is

applied to the optimization of parsimony and minimum evolution criteria. We show through simulations that this method improves all

existing programs for both reconstructing the topology of the true tree and recovering its duplication events. We apply this approach to

tandemly repeated human Zinc finger genes and observe that a much better duplication tree is obtained by our method than using any

other program.

Index Terms—Tandem duplication trees, phylogeny, topological rearrangements, local search, parsimony, minimum evolution, Zinc

finger genes.
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1 INTRODUCTION

REPEATED sequences constitute an important fraction of

most genomes, from the well-studied Escherichia coli

bacterial genome [1] to the Human genome [2]. For

example, it is estimated that more than 50 percent of the

Human genome consists of repeated sequences [2], [3].

There exist three major types of repeated sequences:

transposon-derived repeats, micro or minisatellites, and

large duplicated sequences, the last often containing one or

several RNA or protein-coding genes. Micro or minisatel-

lites arise through a mechanism called slipped-strand

mispairing, and are always arranged in tandem: copies of

a same basic unit are linearly ordered on the chromosome.

Large duplicated sequences are also often found in tandem

and, when this is the case, unequal recombination is widely

assumed to be responsible for their formation.

Both the linear order among tandemly repeated se-

quences, and the knowledge of the biological mechanisms

responsible for their generation, suggest a simple model of

evolution by duplication. This model, first described by

Fitch in 1977 [4], introduces tandem duplication trees as

phylogenies constrained by the unequal recombination

mechanism. Although being a completely different biologi-

cal mechanism, slipped-strand mispairing leads to the same

duplication model [5]. A formal recursive definition of this

model is provided in Section 2, but its main features can be

grasped from the examples of Fig. 1. Fig. 1a shows the

duplication history of the 13 Antennapedia-class homeobox

genes from the cognate group [6]. In this history, the

ancestral locus has undergone a series of simple duplica-

tion eventswhere one of the genes has been duplicated into

two adjacent copies. Starting from the unique ancestral

gene, this series of events has produced the extant locus

containing the 13 linearly ordered contemporary genes. It is

easily seen [7] that trees only containing simple duplication

events are equivalent to binary search trees with labeled

leaves. They differ from standard phylogenies in that node

children have left/right orientation. Fig. 1b shows another

example corresponding to the nine variable genes of the

human T cell receptor Gamma (TRGV) locus [8]. In this

history, the most recent event involves a double duplica-

tion where two adjacent genes have been simultaneously

duplicated to produce four adjacent copies. Duplication

trees containing multiple duplication events differ from

binary search trees, but are less general than phylogenies.

The model proposed by Fitch [4] covers both simple and

multiple duplication trees.

Fitch’s paper [4] received relatively little attention at the

time of its publication probably due to the lack of available

sequence data. Rediscovered by Benson and Dong [9],

Tang et al. [10], and Elemento et al. [8], tandemly repeated

sequences and their suggested duplication model have

recently received much interest, providing several new

computational biology problems and challenges [11], [12].

The main challenge consists of creating algorithms

incorporating the model constraints to reconstruct the
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duplication history of tandemly repeated sequences.

Indeed, accurate reconstruction of duplication histories

will be useful to elucidate various aspects of genome

evolution. They will provide new insights into the

mechanisms and determinants of gene and protein domain

duplication, often recognized as major generators of

novelty [13]. Several important gene families, such as

immunity-related genes, are arranged in tandem; better

understanding their evolution should provide new insights

into their duplication dynamics and clues about their

functional specialization. Studying the evolution of micro

and minisatellites could resolve unanswered biological

questions regarding human migrations or the evolution of

bacterial diseases [14].

Given a set of aligned and ordered sequences (DNA or

proteins), the aim is to find the duplication tree that best

explains these sequences, according to usual criteria in

phylogenetics, e.g., parsimony or minimum evolution. Few

studies have focused on the computational hardness of this

problem, and all of these studies only deal with the

restricted version where simultaneous duplication of multi-

ple adjacent segments is not allowed. In this context, Jaitly

et al. [15] shows that finding the optimal single copy

duplication tree with parsimony is NP-Hard and that this

problem has a PTAS (Polynomial Time Approximation

Scheme). Another closely related PTAS is given by Tang

et al. [10] for the same problem. On the other hand,

Elemento et al. [7] describes a polynomial distance-based

algorithm that reconstructs optimal single copy tandem

duplication trees with minimum evolution.

However, it is commonly believed, as in phylogeny, that

most (especially multiple) duplication tree inference pro-

blems are NP-Hard. This explains the development of

heuristic approaches. Benson and Dong [9] provides various

parsimony-based heuristic reconstruction algorithms to infer

duplication trees, especially from minisatellites. Elemento

et al. [8] present an enumerative algorithm that computes the

most parsimonious duplication tree; this algorithm (by its

exhaustive approach) is limited to datasets of less than 15

repeats. Several distance-based methods have also been

described.TheWINDOWmethod [10]uses anagglomeration

scheme similar to UPGMA [16] and NJ [17], but the cost

function used to judge potential duplication is based on the

assumption that the sequences followamolecular clockmode

of evolution. The DTSCORE method [18] uses the same

schemebut corrects this limitationusing a score criterion [19],

like ADDTREE [20]. DTSCORE can be used with sequences

that do not follow themolecular clock, which is, for example,

essential when dealing with gene families containing

pseudogenes that evolve much faster than functional genes.

Finally, GREEDY SEARCH [21] corresponds to a different

approach divided into two steps: First, a phylogeny is

computed with a classical reconstruction method (NJ), then,

with nearest neighbor interchange (NNI) rearrangements, a

duplication tree close to this phylogeny is computed. This

approach is noteworthy since it implements topological

rearrangements which are highly useful in phylogenetics

[22], but it works blindly and does not ensure that good

duplication trees will be found (cf. Section 5.2).

Topological rearrangements have an essential function in

phylogenetic inference, where they are used to improve an

initial phylogeny by subtree movement or exchange.

Rearrangements are very useful for all common criteria

(parsimony, distance, maximum likelihood) and are inte-

grated into all classical programs like PAUP* [23] or

PHYLIP [24]. Furthermore, they are used to define various

distances between phylogenies and are the foundation of

much mathematical work [25]. Unfortunately, they cannot

be directly used here, as shown by a simple example given
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Fig. 1. (a) Rooted duplication tree describing the evolutionary history of the 13 Antennapedia-class homeobox genes from the cognate group [6].

(b) Rooted duplication tree describing the evolutionary history of the nine variable genes of the human T cell receptor Gamma (TRGV) locus [8]. In

both examples, the contemporary genes are adjacent and linearly ordered along the extant locus.



later. Indeed, when applied to a duplication tree, they do

not guarantee that another valid duplication tree will be

produced.

In this paper, we describe a set of topological rearrange-

ments to stay inside the duplication tree space and explore

the whole space from any of its elements. We then show the

advantages of this approach for duplication tree inference

from sequences. In Section 2, we describe the duplication

model introduced by [4], [8], [10], as well as an algorithm to

recognize duplication trees in linear time. Thanks to this

algorithm, we restrict the neighborhoods defined by

classical phylogeny rearrangements, namely, nearest neigh-

bor interchange (NNI) and subtree pruning and regrafting

(SPR), to valid duplication trees. We demonstrate (Section 3)

that for NNI moves this restricted neighborhood does not

allow the exploration of the whole duplication tree space.

On the other hand, we demonstrate that the restricted

neighborhood of SPR rearrangement allows the whole

space to be explored. In this way, we define a local search

method, applied here to parsimony and minimum evolu-

tion (Section 4). We compare this method to other existing

approaches using simulated and real data sets (Section 5).

We conclude by discussing the positive results obtained by

our method, and indicate directions for further research

(Section 6).

2 MODEL

2.1 Duplication History and Duplication Tree

The tandem duplication model used in this article was first

introduced by Fitch [4] then studied independently by [8],

[10]. It is based on unequal recombination which is assumed

to be the sole evolution mechanism (except point mutations)

acting on sequences. Although it is a completely different

biological mechanism, slipped-strand mispairing leads to

the same duplication model [5], [9].

Let O ¼ ð1; 2; . . . ; nÞ be the ordered set of sequences

representing the extant locus. Initially containing a single

copy, the locus grew through a series of consecutive

duplications. As shown in Fig. 2a, a duplication history

may contain simple duplication events. When the dupli-

cated fragment contains two, three, or k repeats, we say that

it involves a multiple duplication event. Under this

duplication model, a duplication history is a rooted tree

with n labeled and ordered leaves, in which internal nodes

of degree 3 correspond to duplication events. In a real

duplication history (Fig. 2a), the time intervals between

consecutive duplications are completely known, and the

internal nodes are ordered from top to bottom according to

the moment they occurred in the course of evolution. Any

ordered segment set of the same height then represents an

ancestral state of the locus. We call such a set a floor, and

we say that two nodes i; j are adjacent (i � j) if there is a

floor where i and j are consecutive and i is on the left of j.

However, in the absence of a molecular clock mode of

evolution (a typical problem), it is impossible to recover the

order between the duplication events of two different

lineages from the sequences. In this case, we are only able to

infer a duplication tree (DT) (Fig. 2b) or a rooted

duplication tree (RDT) (Fig. 2c).

A duplication tree is an unrooted phylogeny with

ordered leaves, whose topology is compatible with at least

one duplication history. Also, internal nodes of duplication

trees are partitioned into events (or “blocks” following

[10]), each containing one or more (ordered) nodes. We

distinguish “simple” duplication events that contain a

unique internal node (e.g., b and f in Fig. 2c) and “multiple”

duplication events which group a series of adjacent and

simultaneous duplications (e.g., c, d, and e in Fig. 2c). Let

E ¼ ðsi; siþ1; . . . ; skÞ denote an event containing internal

nodes si; siþ1; . . . ; sk in left to right order. We say that two

consecutive nodes of the same event are adjacent (sj � sjþ1)

just like in histories, as any event belongs to a floor in all of
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Fig. 2. (a) Duplication history; each segment represents a copy; extant segments are numbered. (b) Duplication tree (DT); the black points show the

possible root locations. (c) Rooted duplication tree (RDT) corresponding to history (a) and root position �1 on (b).



the histories that are compatible with the DT being

considered. The same notation will also be used for leaves

to express the segment order in the extant locus. When the

tree is rooted, every internal node sj is unambiguously

associated to one parent and two child nodes; moreover,

one child of sj is “left” and the other one is “right,” which is

denoted as lj and rj, respectively. In this case, for any

duplication history that is compatible with this tree, child

nodes of an event, si; siþ1; . . . ; sk are organized as follows:

li � liþ1 � . . . � lk � ri � riþ1 � . . . � rk:

In [8], [26], [27], it was shown that rooting a

duplication tree is different than rooting a phylogeny:

the root of a duplication tree necessarily lies on the tree

path between the most distant repeats on the locus, i.e., 1

and n; moreover, the root is always located ”above” all

multiple duplications, e.g., Fig. 1b shows that there are

only three valid root positions, the root cannot be a direct

ancestor of 12.

2.2 Recursive Definition of Rooted and Unrooted
Duplication Trees

A duplication tree is compatible with at least one duplica-

tion history. This suggests a recursive definition, which

progressively reconstructs a possible history, given a

phylogeny T and a leaf ordering O. We define a cherry

ðl; s; rÞ as a pair of leaves (l and r) separated by a single

node s in T , and we call CðT Þ the set of cherries of T . This

recursive definition reverses evolution: It searches for a

“visible duplication event,” “agglomerates” this event, and

checks whether the “reduced” tree is a duplication tree. In

case of rooted trees, we have:

ðT;OÞ defines a duplication tree with root � if and only if:

1. ðT;OÞ only contains �, or

2. there is in CðT Þ a series of cherries

ðli; si; riÞ; ðliþ1; siþ1; riþ1Þ; . . . ; ðlk; sk; rkÞ
with k � i and

li � liþ1 � . . . � lk � ri � riþ1 � . . . � rk in O, such
that ðT 0; O0Þ defines a duplication tree with root �,

where T 0 is obtained from T by removing

li; liþ1; . . . ; lk; ri; riþ1; . . . ; rk, and O0 is obtained by

replacing ðli; liþ1; . . . ; lk; ri; riþ1; . . . ; rkÞ by
ðsi; siþ1; . . . ; skÞ in O.

The definition for unrooted trees is quite similar:

ðT;OÞ defines an unrooted duplication tree if and only if:

1. ðT;OÞ contains 1 segment, or

2. same as for rooted trees with ðT 0; O0Þ now defining an
unrooted duplication tree.

Those definitions provide a recursive algorithm, RADT

(Recognition Algorithm for Duplication Trees), to check

whether any given phylogeny with ordered leaves is a

duplication tree. In case of success, this algorithm can also

be used to reconstruct duplication events: At each step, the

series of internal nodes above denoted as ðsi; siþ1; . . . ; skÞ is
a duplication event. When the tree is rooted, lj is the left

child of sj and rj its right child, for every j; i � j � k. This

algorithm can be implemented in OðnÞ [26] where n is the

number of leaves. Another linear algorithm is proposed by

Zhang et al. [21] using a top down approach instead of a

bottom-up one, but applies only to rooted duplication trees.

3 TOPOLOGICAL REARRANGEMENTS FOR

DUPLICATION TREES

This section shows how to explore the DT space using SPR

rearrangements. First, we describe some NNI, SPR, and

TBR rearrangement properties with standard phylogenies.

But, these rearrangements cannot be directly used to

explore the DT space. Indeed, when applied to a duplica-

tion tree, they do not guarantee that another valid

duplication tree will be produced. So, we have decided to

restrict the neighborhood defined by those rearrangements

to duplication trees. If we only used NNI rearrangements,

the neighborhood would be too restricted (as shown by a

simple example) and would not allow the whole DT space

to be explored. On the other hand, we can distinguish two

types of SPR rearrangements which, when applied to a

rooted duplication tree guarantee that another valid

duplication tree will be produced. Thanks to these specific

rearrangements, we demonstrate that restricting the neigh-

borhood of SPR rearrangements allows the whole space of

duplication trees to be explored.
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Fig. 3. The tree obtained by applying an NNI move to a DT is not always a valid DT: T whose RT is a rooted version; T 0 is obtained by

applying NNI(5,4) around the bold edge; none of the possible root positions of T 0 (a, b, c, and d) leads to a valid RDT, cf. tree (b) which

corresponds to root b in T 0.



3.1 Topological Rearrangements for Phylogeny

There are many ways of carrying out topological rearrange-

ments on phylogeny [22]. We only describe NNI (Nearest

Neighbor Interchange), SPR (Subtree Pruning Regrafting),

and TBR (Tree Bisection and Reconnection) rearrangements.

The NNI move is a simple rearrangement which

exchanges two subtrees adjacent to the same internal edge

(Figs. 3 and 4). There are two possible NNIs for each

internal edge, so 2ðn� 3Þ neighboring trees for one tree

with n leaves. This rearrangement allows the whole space of

phylogeny to be explored; i.e., there is a succession of NNI

moves making it possible to transform any phylogeny P1

into any phylogeny P2 [28].

The SPR move consists of pruning a subtree and

regrafting it, by its root, to an edge of the resulting tree

(Figs. 6 and 7). We note that the neighborhood of a tree

defined by the NNI rearrangements is included in the

neighborhood defined by SPRs. The latter rearrangement

defines a neighborhood of size 2ðn� 3Þð2n� 7Þ [25].
Finally, TBR generalizes SPR by allowing the pruned

subtree to be reconnected by any of its edges to the resulting

tree. These three rearrangements (NNI, SPR, and TBR) are

reversible, that is, if T 0 is obtained from T by a particular

rearrangement, then T can be obtained from T 0 using the

same type of rearrangement.

3.2 NNI Rearrangements Do Not Stay in DT Space

The classical phylogenetic rearrangements (NNI, SPR,

TBR,...) do not always stay in DT space. So, if we apply

an NNI to a DT (e.g., Fig. 3), the resulting tree is not always

a valid DT. This property is also true for SPR and TBR

rearrangements since NNI rearrangements are included in

these two rearrangement classes.

3.3 Restricted NNI Does Not Allow the Whole DT
Space to Be Explored

To restrict the neighborhood defined by NNI rearrange-

ments to duplication trees, each element of the neighbor-

hood is filtered thanks to the recognition algorithm (RADT).

But, this restricted neighborhood does not allow the whole

DT space to be explored. Fig. 4 gives an example of a

duplication tree, T , the neighborhood of which does not

contain any DT. So, its restricted neighborhood is empty,

and there is no succession of restricted NNIs allowing T to

be transformed into any other DT.

3.4 Restricted SPR Allows the Whole DT Space to
Be Explored

As before, we restrict (using RADT) the neighborhood

defined by SPR rearrangements to duplication trees. We

name restricted SPR, SPR moves that, starting from a

duplication tree, lead to another duplication tree.

Main Theorem. Let T1 and T2 be any given duplication trees; T1

can be transformed into T2 via a succession of restricted SPRs.

Proof. To demonstrate the Main Theorem, we define two

types of special SPR that ensure staying within the space

of rooted duplication trees (RDT). Given these two types

of SPRs, we demonstrate that it is possible to transform

any rooted duplication tree into a caterpillar, i.e., a

rooted tree in which all internal nodes belong to the tree

path between the leaf 1 and the tree root � (cf. Fig. 5).

This result demonstrates the theorem. Indeed, let T1

and T2 be two RDTs. We can transform T1 and T2 into a

caterpillar by a succession of restricted SPRs. So, it is

possible to transform T1 into T2 by a succession of

restricted SPRs, with (possibly) a caterpillar as inter-

mediate tree. This property holds since the reciprocal

movement of an SPR is an SPR. As the two SPR types

proposed ensure that we stay within the RDTs space, we

have the desired result for rooted duplication trees. And,

this result extends to unrooted duplications trees since

two DTs can be arbitrarily rooted, transformed from one

to the other using restricted SPRs, then unrooted. tu
The first special SPR allows multiple duplication

events to be destroyed. Let E ¼ ðsi; siþ1; . . . ; skÞ be a

duplication event, ri and lk respectively right child of si
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Fig. 5. A six-leaf caterpillar.

Fig. 4. The NNI neighborhood of a duplication tree does not always contain duplication trees: T whose RT is a rooted version; T 0 is obtained by

exchanging subtrees 1 and (2 5); none of the possible root positions of T 0 (a, b, and c) leads to a valid duplication tree, cf. tree (b) which corresponds

to root b in T 0; and the same holds for every neighbor of T being obtained by NNI.



and left child of sk, and let pi be the father of si. The

DELETE rearrangement consists of pruning the subtree of

root ri and grafting this subtree on the edge ðsk; lkÞ, while

li is renamed si and the edge ðli; siÞ is deleted. Fig. 6

demonstrates this rearrangement.

Lemma 1. DELETE preserves the RDT property.

Proof. Let T be the initial tree (Fig. 6a), E ¼ ðsi; siþ1; . . . ; skÞ
be an event of T , and T 0 be the tree obtained from T by

applying DELETE to E (Fig. 6b). Children of any node sj
(i � j � k) are denoted lj and rj.

By definition, for any duplication history compatible

with T we have

li � liþ1 � . . . � lk � ri � riþ1 � . . . � rk:

Thus, there is a way to partially agglomerate T (using an

RADT-like procedure) such that these nodes becomes

leaves. The same agglomeration can be applied to T 0 as

only ancestors of the ljs and rjs are affected by DELETE.

Now, 1) agglomerate the event E of T , and 2) reduce T 0

by agglomerating the cherry ðlk; riÞ and then agglomer-

ating the event ðsiþ1; . . . ; skÞ. Two identical trees follow,

which concludes the proof. tu
By successively applying DELETE to any duplication

tree, we remove all multiple duplication events. The

following SPR rearrangement allows duplications to be

moved within simple RDT, i.e., any RDT containing only

simple duplications. Let p be a node of a simple RDT T , l its

left child, r its right child, and x the left child of r. This

rearrangement consists of pruning the subtree of root x and

regrafting it to the edge ðl; pÞ (Fig. 7). This rearrangement is

an SPR (in fact an NNI); we name it LEFT as it moves the

subtree root towards the left. It is obvious that the tree

obtained by applying such a rearrangement to a simple

RDT, is a simple RDT. We now establish the following

lemma which shows that any simple tree can be trans-

formed into a caterpillar.

Lemma 2. Let T be a simple RDT; T can be transformed into a

caterpillar by a succession of LEFT rearrangements.

Proof. In a caterpillar all internal nodes are ancestors of 1. If

T is not a caterpillar, there is an internal node r that is not

an ancestor of 1. If r is the right child of its father, we can

apply LEFT to the left child of r (Fig. 7). If r is the left

child of its father, we consider its father: It cannot be an

ancestor of 1 since its children are r and a node on the

right of r. So, we can apply the same argument: Either

the father of r is adequate for performing LEFT, or we

consider its father again. In this way, we necessarily

obtain a node for which the rearrangement is possible. T

is then transformed into a caterpillar by successively

applying the LEFT rearrangement to nodes which are not

on the path between 1 and �. After a finite number of

steps, all internal nodes are ancestors of 1 and T has been

transformed into a caterpillar. This concludes the proof

of Lemma 2 and, therefore, of our Main Theorem. tu

4 LOCAL SEARCH METHOD

We consider data consisting of an alignment of n segments

with length k, and of the ordering O of the segments along

the locus. This alignment has been created before tree

construction and the problem is not to build simultaneously

the alignment and the tree, a much more complicated task

[29]. The aim is to find a (nearly) optimal duplication tree,

where “optimal” is defined by some usual phylogenetic

criterion and the ordered and aligned segments at hand.

Topological rearrangements described in the previous

section naturally lead to a local search method for this

purpose. We discuss its use to optimize the usual Wagner

parsimony [22] and the distance-based balanced minimum

evolution criterion (BME) [30], [31]. First, we describe our

local search method, then we define briefly these two

criteria and explain how to compute them during local

search.
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Fig. 7. LEFT rearrangement.

Fig. 6. DELETE rearrangement.



4.1 The LSDT Method

Our method, LSDT (Local Search for Duplication Trees),

follows a classical local search procedure in which, at each

step, we try to strictly improve the current tree. This

approach can be used to optimize various criteria. In this

study, we restrict ourselves to parsimony and balanced

minimum evolution; fðT Þ represents the value (to be

minimized) of one of these criteria for the duplication tree

T and the sequence set.

Algorithm 1 summarizes LSDT. The neighborhood of the

current DT, Tcurrent, is computed using SPR. As we

explained earlier, we use the RADT procedure to restrict

this neighborhood to valid DTs. When a tree is a valid DT,

its f criterion value is computed. That way, we select the

best neighbor of Tcurrent. If this DT improves the value

obtained so far (i.e., fðTbestÞ), the local search restarts with

this new topology. If no neighbor of Tcurrent improves Tbest,

the local search is stopped and returns Tbest.

To analyze the time complexity of one LSDT step, we

have to consider the size of the neighborhood defined by

the restricted SPR. In the worst case, this size is of the same

order as the size of an unrestricted SPR neighborhood, i.e.,

Oðn2Þ. Indeed for the “double caterpillar” (Fig. 8), it is

possible to move any subtree being rooted on the path

between n=2 and � towards any edge of the path between

ðnþ 1Þ=2 and �; and inversely. Thus, for this tree, Oðn2Þ
restricted SPRs can be performed. In the worst case,

restricting the neighborhood defined by SPR to duplication

trees does not significantly decrease the neighborhood size.

However, on average the diminution is quite significant;

e.g., with n ¼ 48, only 5 percent of the neighborhood

corresponds to a valid DTs, assuming DTs are uniformly

distributed [26].

Since the time complexity of the recognition algorithm

(RADT) is OðnÞ, computing the neighborhood defined by

restricted SPR requires Oðn3Þ. The calculation of the

criterion value is done for each tree of the restricted

neighborhood. Thus one local search step basically requires

Oðn3 þ n2gÞ, where g represents the time complexity of

computing the criterion value. However, preprocessing

allows this time complexity to be lowered, both for

parsimony and minimum evolution, as we shall explain in

the following sections.

4.2 The Maximum Parsimony Criterion

Parsimony is commonly acknowledged [22] to be a good

criterion when dealing with slightly divergent sequences,

which is usually the case with tandemly duplicated genes

[8]. The parsimony criterion involves selecting the tree

which minimizes the number of substitutions needed to

explain the evolution of the given sequences. Finding the

most parsimonious tree [22] or duplication tree [15] is

NP-hard, but we can find the optimal labeling of the

internal nodes and the parsimony score of a given tree T in

polynomial time using the Fitch-Hartigan algorithm [32],

[33]. The parsimony score and optimal labeling of internal

nodes is independently computed for each position within

sequences, using a postorder depth-first search algorithm

that requires OðnÞ time [32], [33]. Thus, computing the

parsimony score of n sequences of length k requires OðknÞ
time. Hence, if we use this algorithm during our local

search method, one local search step is computed in Oðkn3Þ,
which is relatively high.

To speed up this process, we adapted techniques

commonly used in phylogeny for fast calculation of

parsimony. Our implementation uses a data structure

implemented (among others) in DNAPARS [24] and

described in [34], [35]. Let Tp be the pruned subtree and

Tr be the resulting tree. A preprocessing stage computes

the parsimony vector (i.e., the optimal score and optimal

labeling of all sequence positions) of every rooted subtree

of Tr using a double depth-first search [36] (Fig. 9a); the

first search is postordered and computes the parsimony

vector of down-subtrees; the second search is preordered

and computes the parsimony vector of up-subtrees. Each

search requires OðnkÞ time. Thanks to this data structure,

the parsimony score of the tree obtained by regrafting Tp

on any given edge of Tr is computed in OðkÞ (Fig. 9b).

Hence, computing the SPR neighbor with minimum

parsimony of any given duplication tree is achieved in

Oðn3 þ n� nkþ n2kÞ ¼ Oðn3 þ n2kÞ; the first term ðn3Þ
represents the neighborhood computation; the second

term ðn� nkÞ corresponds to the time required by the n
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Fig. 8. A simple rooted duplication tree with a double caterpillar

structure.



preprocessing stages; the third term ðn2kÞ is the time to

test the n subtrees and the n possible insertion edges.

4.3 The Distance-Based Balanced Minimum
Evolution Principle

As in any distance-based approach, we first estimate the

matrix of pairwise evolutionary distances between the

segments, using some standard distance estimator [22],

e.g., the Kimura two-parameter estimator [37] in case of

DNA or the JTT method with proteins [38]. Let � be this

matrix and �ij be the distance between segments i and j.

The � matrix plus the segment order is the input of the

reconstruction method.

The minimum evolution principle (ME) [39], [40]

involves selecting the shortest tree to be the tree which

best explains the observed sequences. The tree length is

equal to the sum of all the edge lengths, and the edge

lengths are estimated by minimizing a least squares fit

criterion. The problem of inferring optimal phylogenies

within ME is commonly assumed to be NP-hard, as are

many other distance-based phylogeny inference problems

[41]. Nonetheless, ME forms the basis of several phyloge-

netic reconstruction methods, generally based on greedy

heuristics. Among them is the popular Neighbor-Joining

(NJ) algorithm [17]. Starting from a star tree, NJ iteratively

agglomerates external pairs of taxa so as to minimize the

tree length at each step.
Recently, Pauplin [30] proposed a new simple formula to

estimate the tree length LðT Þ of tree T :

LðT Þ ¼
X

i < j

21�T ij �ij;

where T ij is the topological distance (number of edges) in T

between segments i and j. The correctness of this formula

was shown by Semple and Steel [42], while Desper and

Gascuel [31] showed that this formula is a special case of

weighted-least squares tree fitting. Moreover, Desper and

Gascuel demonstrated that selecting the shortest tree (as

computed from above formula) is statistically consistent and

well suited for phylogenetic inference. They called this new

version of ME “balanced minimum evolution” (BME) [31].

Using the above formula, the length of any given tree is

computed in Oðn2Þ, so computing one LSDT local search

step can be achieved in Oðn4Þ. However, a faster imple-

mentation is possible using a straightforward modification

of our BME addition algorithm [43]. This involves:

1. pruning a rooted subtree Tp from tree T ,
2. computing the average distance between all non-

intersecting subtree pairs in the remaining tree Tr,
3. computing the average distance between Tp and any

subtree of Tr in T , and
4. using formula (10) from [43] and RADT to find the

best allowed edge to regraft Tp.

Steps 2 and 3 are based on algorithms described in [43],

which follow the same approach as the double depth-first

search described in the previous section. These two steps

require Oðn2Þ, just as Step 4. As there are OðnÞ subtrees to

prune and regraft, this implementation requires Oðn3Þ to

perform one search step.

5 RESULTS

5.1 Simulation Protocol

We applied our method and other existing methods to

simulated datasets obtained using the procedure described

in [18]. We uniformly randomly generated rooted tandem

duplication trees (see [26]) with 12, 24, and 48 leaves and

assigned lengths to the edges of these trees using the

coalescent model [44]. We then obtained molecular clock

trees (MC), which might be unrealistic in numerous cases,

e.g., when the sequences being studied contain pseudo-

genes which evolve much faster than functional genes.

Then, we generated nonmolecular clock trees (NO-MC)

from the previous trees by independently multiplying
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Fig. 9. (a) Every edge defines one down-subtree and one up-subtree; e.g., A represents the down-subtree (2 3) defined by the edge e while D
corresponds to the up-subtree (1 (4 5)). Moreover, only the parsimony vector of the five leaves is known before the preprocessing stage. The
postorder search computes the parsimony vector of down-subtrees: A is computed from 2 and 3, B from 4 and 5, C from A and B. The preorder
search computes the parsimony vector of up-subtrees: D is obtained from 1 and B, E is obtained from D and 3, etc. (b) When the parsimony vector
of every subtree in Tr is known, regrafting Tp on any given edge and computing the parsimony score of the resulting tree only requires analyzing the
parsimony vector of three subtrees and is done in OðkÞ time.



every edge length by 1þ 0:8X, where X was drawn from

an exponential distribution with parameter 1. MC trees

were rescaled by multiplying every edge length by 1.8.

The trees thus obtained (MC and NO-MC) have a

maximum leaf-to-leaf divergence in the range ½0:1; 0:7�,
and in NO-MC trees the ratio between the longest and

shortest root-to-leaf lineages is about 3.0 on average. Both

values are in accordance with real data, e.g., gene families

[8] or repeated protein domains [10].

SEQGEN [45] was used to produce a 1,000 bp-long

nucleotide multiple alignment from each of the generated

trees using the Kimura two-parameter model of substitution

[46], and a distance matrix was computed by DNADIST [24]

from this alignment using the same substitution model. For

MC andNO-MC cases, 1,000 trees (and, then, 1,000 sequence

sets and 1,000 distance matrices) were generated per tree

size. These data sets were used to compare the ability of the

various methods to recover the original trees from the

sequences or from the distance matrices, depending on the

method being tested. We measured the percentage of trees

(out of 1,000) being correctly reconstructed (%tr). For the

phylogeny reconstruction methods, we also kept the

percentage of duplication trees among the set of inferred

trees. Due to the random process used for generating these

trees and datasets, some short branches might not have

undergone any substitution (as during Evolution) and, thus,

are unobtainable, except by chance. When n and, thus, the

branch number is high, it becomes hard or impossible to

find the entire tree. So, we also measured the percentage of

duplication events in the true tree recovered by the inferred

tree (%ev). A duplication event involves one or more

internal nodes and is the lowest common ancestor of a set

of leaves; we say it “covers” its descendent leaves. However,

the leaves covered by a simple duplication event can change

when the root position changes. As regards the true tree, the

root is known and each event is defined by the set of leaves

which it covers. But, the inferred tree is unrooted. To avoid

ambiguity, we then tested all possible root positions and

chose the one which gave the highest proximity in number

of events detected between the true tree and the inferred

tree, where two events are identical if they cover the same

leaves. Finally, we kept the average parsimony value of each

method (pars).

5.2 Performance and Comparison

Using this protocol, we compared NJ [17], TNT [47], and

GREEDY-SEARCH (GS) [21] which starts from the NJ tree, a

modified version of GREEDY TRHIST RESTRICTED (GTR)

[9] to infer multiple duplication trees, WINDOWS [10],

DTSCORE [18], and eight versions of our local search

method LSDT corresponding to different starting duplica-

tion trees (GS, GTR, WINDOW, and DTSCORE) and

different criteria (parsimony and BME). TNT and GS use

the parsimony criterion, but the other are distance-based

methods. TNT is acknowledged as one of the very best

parsimony packages; it was run with 10 replicates and TBR

rearrangements. TNT often returns a set of equally

parsimonious trees. When this set contained duplication

trees, we randomly selected one of them; when no

duplication tree was inferred by TNT, we randomly

selected one of the output trees.

Results are given in Tables 1 and 2. First, we observe that

with n ¼ 48 the true tree is almost never entirely found, for

the reasons explained earlier. On the other hand, the best

methods recover 80 to 95 percent of the duplication events,

indicating that the tested datasets are relatively easy. NJ

and TNT perform relatively well, but they often output

trees that are not duplication trees, which is unsatisfactory

(e.g., with 48 leaves and NO-MC, NJ and TNT only infer

1 percent and 5 percent of duplication trees, respectively).

The GS approach is noteworthy since it modifies the trees

inferred by NJ to transform them into duplication trees.

However, GS is only slightly better than NJ regarding the

proportion of correctly reconstructed trees, but consider-

ably degrades the number of recovered duplication events,

which could be explained by the blind search it performs

to transform NJ trees into duplication trees. GTR also

obtains relatively poor results. As expected from its

assumptions, WINDOW performs better in the MC case

than in the NO-MC one. Finally, DTSCORE obtains the best

performance among the four existing methods, whatever

the topological criterion considered.

Applying our method to starting trees produced by GS,

GTR, WINDOW, and DTSCORE reveals the advantages of

the local search approach. Optimizing parsimony or BME

gives similar results, with a slight advantage for parsimony

as expected from the relatively low divergence rates in our

data sets. The trees produced by GS, GTR, and WINDOW

are clearly improved and, for most, are better than those

obtained by DTSCORE. DTSCORE trees are also improved,

even though this improvement is not very high from a

topological point of view. This could be explained by the

fact that DTSCORE is already an accurate method with

respect to the datasets used.

When we consider the parsimony criterion, the gain

achieved by LSDT is appreciable for each start method. This

could be expected for GS, WINDOW and DTSCORE which

do not optimize this criterion; with n ¼ 48 in NO-MC case,

the gain for GS is about 329, thus confirming that this

method is clearly suboptimal; the gains for WINDOW and

DTSCORE are about 42 and 15, which are lower but still

significant. The GTR results, which optimizes parsimony,

are more surprising since the gain (always with n ¼ 48 in

NO-MC case) is about 77 on average, which is very high.

Moreover, the parsimony value obtained by LSDT is very

close to that of TNT, in spite of a much more restricted

search space. This confirms the good performance of our
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local search method. It should be stressed that these gains

are obtained at low computational cost as dealing with any

of the 48-taxon datasets only requires about 10 seconds

for parsimony and five seconds for BME on a standard

PC-Pentium 4.

5.3 Analysis of the ZNF45 Family

Zinc finger (ZNF) genes code for proteins that contain one

or more zinc finger motifs. The zinc finger motif is one of

the most common motifs involved in nucleic acid-protein

interaction. Experimental studies on functions of ZNF genes

suggest that many of them code for transcription factors,

and some of them are known to take part in cellular growth

and development [48]. However, the biological functions of

most ZNF genes are currently unknown. The 16 members of

ZNF45 gene family are found in the q13.2 gene cluster on

human chromosome 19 [49]. The organization and features

of the members of the ZNF45 family suggest that the genes

in the family may have been produced by a series of in situ
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TABLE 2
Performance Comparison Using Simulations (No Molecular Clock of Evolution)

Note: see Table 1.

TABLE 1
Performance Comparison Using Simulations (Molecular Clock Mode of Evolution)

X+LSDT_Y: X is the method used to obtain the starting tree and Y the criterion being optimized by LSDT;%tr: the percentage of trees being correctly
reconstructed; the percentage of duplication trees obtained by phylogeny reconstruction methods is given between parentheses; %ev: the
percentage of duplication events in the true tree being recovered by the inferred tree; pars: the average parsimony value.



gene duplication events [49]. The ZNF45 gene family has

been previously studied by Tang et al. [10] and Zhang et al.

[21], who proposed different tandem duplication trees to

explain its evolutionary history.

We downloaded the DNA sequences of the 16 members

of ZNF45 from NCBI. Multiple alignment was achieved

using TCOFFEE,1 using default settings. We removed gaps

as usual in phylogenetics [22] and third codon positions

which look saturated (734 parsimony steps are required to

explain the evolution of the 237 sites). We thus obtained a

final alignment2 containing 474 homologous sites, with a

maximum pairwise divergence of 0:45.

PAUP* [23] was used to estimate the matrix of pairwise

distances, assuming the GTR substitution model [50] and a

gamma distribution of rates with parameter 1.

We used this distance matrix and DTSCORE to build a

starting tree, which was then refined by LSDT using

parsimony. We selected this criterion because of its good

performance with simulated data (Tables 1 and 2). The

resulting tree (Figs. 10a and 10b) is a simple DT requiring

897 steps to explain the extant sequences. We tried to

improve this score using a computationally intensive

ratchet approach [51], but were unable to obtain any other

DT with better (or even identical) parsimony. We also ran

TNT with ratchet, 1,000 random taxon addition replicates

and TBR branch swapping (i.e., all TNT options to intensify

the search) and found one maximum-parsimony phylogeny

requiring 896 steps. This phylogeny (Fig. 10c) contains an

unresolved node with degree 4 and is not a duplication tree.

TNT phylogeny is close to LSDT duplication tree. To

transform from one to the other only three taxa have to be
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1. http://igs-server.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi.
2. Available on request.

Fig. 10. (a) Duplication tree for the 16 genes of human ZNF 45 family inferred by DTSCORE plus LSDT with parsimony; black dots represent the only
allowed root positions, according to the tandem duplication model; the (arbitrarily) selected root position is circled. (b) Rooted duplication tree
corresponding to tree (a). (c) Phylogeny inferred by TNT. Tree (a) can be obtained from tree (c) by moving ZNF45 and ZNF228 to edge 1, and
ZNF233 to edge 2. Edge lengths in tree (a) and tree (c) were estimated by maximum likelihood [52]. Lengths in tree (b) are meaningless and were
adjusted to obtain a readable drawing.



moved (Fig. 10), and both trees differ by only 1 parsimony

step. A similar difference was commonly observed in

simulation where TNT found (non-DT) phylogenies requir-

ing one parsimony step less (on average) than the DTs

found by LSDT (Tables 1 and 2), though the true tree used

to generate the sequences was a DT. Thus, having (only)

one parsimony step of difference between the best DT and

the best phylogeny is not significant and can be seen as

supporting the duplication model. Moreover, the discre-

pancy between the two trees can be explained by long

branch attraction, a phenomenon that frequently affects

parsimony-based reconstructions [53]. Indeed, ZNF180 and

ZNF229 genes are distant from the other genes (Figs. 10a

and 10c) and might perturb the whole tree. When removing

those two genes from the data set, both LSDT and TNT

found the same tree, which is identical to the LSDT tree of

Fig. 10a without the two genes. With 14 segments, the

probability of randomly picking up a duplication tree

among all distinct phylogenies is less than 10�4 [26]. This

extremely small probability indicates that the identity

between LSDT and TNT trees is very unlikely to be due

to chance. This provides a strong support for the tandem

duplication model and indicates that our LSDT tree likely

represents most—if not all—of the history of ZNF45 family.

We compared trees obtained by Tang et al. [10], Zhang

et al. [21], and those of the other programs to the LSDT tree

of Fig. 10. We computed the parsimony score of each tree

and the percentage of events shared by each tree with the

LSDT tree. Just as in the simulation study, we tested GS

[21], GTR [9], WINDOW [10], DTSCORE [8], and LSDT

using different starting points but optimizing parsimony in

all cases.

Results are displayed in Table 3 and confirm those

obtained with simulated data sets.Results of trees from

[10] and [21] are poor, which was expected as these

methods (WINDOWS and GS, respectively) do not

optimize the parsimony criterion and as we did not use

the same alignment. GS is relatively poor, while

DTSCORE, WINDOWS, and GTR perform better. LSDT

clearly improves these four methods, with gains ranging

from 10 to 50 parsimony steps. In all cases but GTR,

LSDT recovers the most parsimonious DT of Fig. 10.

6 CONCLUSION AND PROSPECTS

We have demonstrated that restricting the neighborhood

defined by the SPR rearrangement to valid duplication trees

allows the whole DT space to be explored. Thanks to these

rearrangements, we have defined a general local search

method which we used to optimize the parsimony and

balanced minimum evolution criteria. We have thus

improved the topological accuracy of all the tested

methods.

Several research directions are possible. Finding the set

of combinatorial configurations for the SPR rearrangement

which necessarily produce a duplication tree, could allow

the neighborhood computation to be accelerated (e.g., for

n ¼ 48 only 5 percent of the SPR neighborhood correspond

to duplication trees) and, furthermore, gain more insight

into the nature of duplication trees, which are just starting

to be investigated mathematically [12], [26], [27]. Our local

search method could be improved using restricted TBR

rearrangements or with the help of different stochastic

approaches (taboo, noising, ...) in order to avoid local

minima. Moreover, it would be relevant to test this local

search method with other criteria like maximum likelihood.

Finally, combining the tandem duplication events with

speciation events, as described in [54] and [55] for

nontandem duplications, would be relevant for real

applications where we have homologous tandem repeats

from several genomes.
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