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Performance of Multiantenna Linear MMSE

Receivers in Doubly Stochastic Networks

Junjie Zhu,Sudent Member, Siddhartan Govindasamiylember, Jeff Hwang

Abstract

A technique is presented to characterize the Signal-erfertence-plus-Noise Ratio (SINR) of a rep-
resentative link with a multiantenna linear Minimum-Me&quare-Error receiver in a wireless network
with transmitting nodes distributed according to a doulckastic process, which is a generalization
of the Poisson point process. The cumulative distributiamcfion of the SINR of the representative
link is derived assuming independent Rayleigh fading betwantennas. Several representative spatial
node distributions are considered, including network$wibth deterministic and random clusters, strip
networks (used to model roadways, e.g.), hard-core netvankl networks with generalized path-loss
models. In addition, it is shown that if the number of antenagthe representative receiver is increased
linearly with the nominal node density, the signal-to-iféeence ratio converges in distribution to a
random variable that is non-zero in general, and a positivst@nt in certain cases. This result indicates
that to the extent that the system assumptions hold, it isiplesto scale such networks by increasing
the number of receiver antennas linearly with the node theriBhe results presented here are useful
in characterizing the performance of multiantenna wirelestworks in more general network models

than what is currently available.

Index Terms

MMSE, Non-homogenous, Clustered, Cox

. INTRODUCTION

Multiantenna systems can increase data rates in wirelés®rks through spatial multiplexing,

beamforming and interference mitigation, the performaofcevhich is highly dependent on the
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spatial separations between nodes. Most of the resultseritégrature that explicitly model
multiantenna systems in spatially distributed networkgehBbcused on homogenous Poisson
spatial node distributions, i.e. systems where node postare independent of one another
and are distributed uniformly randomly on a plane ([1], [, [4]). While simpler and more
tractable, homogenous Poisson spatial node distributitmsnot apply in many scenarios, such
as networks with hot spots, clusters of active nodes oricéstis on the locations of nodes
(such as vehicular networks where nodes are restricteditg lwn a roadway). In particular,
networks where active nodes are spatially correlated, sisctoubly stochastic networks, are
difficult to analyze. Giacomelli, Ganti and Haenggi remank[%] that “Extensions [of results
for homogenous PPP networks] to models with dependences (regmlilsion or attraction) are
non-trivial.” In this work, we provide exact (and in some essclosed-form) expressions for the
CDF of the SINR for several different clustered network medaehich are examples of networks
with node attraction. Moreover, the non-homogenous Poissodel, which is a special case of
the doubly stochastic process, can be used to approximatiechee networks (a model with

node repulsion) as described later in this paper.

A. Main Contributions

In this paper, we develop a framework to analyze the Sign#ierference-plus-Noise Ratio
(SINR) of a representative link with a multiantenna lineanivhum-Mean-Square-Error (MMSE)
receiver in networks where nodes are distributed in spacerdimg to a doubly stochastic
or Cox process (e.g., seel [6]). This model allows for non-bgemeity and certain forms of
correlation in the spatial node distributions. Two specades of doubly stochastic processes are
non-homogenous PPPs, where node locations are indepenatetiite spatial node distribution
is non-uniform, and Poisson cluster processes, where naeslistributed in clusters whose
centers form a PPP. Other examples include networks witmglesirandomly located cluster
of nodes, and networks with random degrees of clusteringh Bon-homogenous PPPs and
Poisson cluster networks have been proposed as models tiworke with non-homogenous
spatial distributions, and analyzed for single antenngesys in works such as([7],[[8].][9], and
[10]. Analyzing such network models in systems with mukiysnultiantenna receivers (e.g.,
the MMSE receiver) is interesting given that almost all 8rip results consider either multiuser,

multiantenna systems in homogenous PPP networks, or samgdgna systems in more general
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Fig. 1. Homogenously distributed interferers (points}nieted to a disc at each of the homogenously distributedtehcenters
(crosses) with the representative receiver (trianglehatcenter of the network. In this example, it is conditionkedt there is
a cluster at the origin. Case 1 represents a cluster that miuteiclude the origin, whereas Case 2 represents a clusaer t

includes the origin.

network models. Moreover, multiantenna receivers can agspnterference from nearby nodes
and is thus less susceptible to the presence of nearbydrdesfcompared to single antenna
systems. Compared to non-interference-mitigating receiywith single or multiple antennas),

the MMSE receiver is generally expected to perform bettais Tifference is more significant

in networks with clusters of nodes than that in spatially bgenous networks.

We apply the general framework developed in this paper tonal@n of examples to illustrate
its applicability across a wide range of systems. The examgkwork models analyzed here
include Poisson cluster networks (an example is shown in[Bigvhich can model networks
with multiple, randomly distributed clusters (proposedaasodel for clustered networks in/[8])
and networks with one, randomly located cluster. Expressfor the CDF of the SINR in these
network models are provided in integral form which can beilgas/aluated using standard
numerical integration techniques. This framework can als@pplied to other network models,
with further examples provided in conference versions «f gaper.

Other network models analyzed here are networks with aesidgterministic cluster and an

inverse power-law spatial node intensity, for which a ctbf@m expression for the cumulative



distribution function (CDF) of the SINR for a receiver at tbenter of the cluster is given. This
result can be used to compare the benefits of using multigenaas in networks with varying
degrees of clustering. We also analyze strip networks whedes are distributed uniformly
randomly on a strip on the plane as a simple model for vehmtea long roadway.

Furthermore, we apply this model to approximate hard-coiatgprocesses which are notori-
ously difficult to analyze exactly due to the dependence betwnode locations. In a hard-core
process, each node is surrounded by a guard zone which kekgs @b a minimum distance
from each other. These processes can be used to model antige m CSMA networks [9] and
networks where nodes cannot physically come too close to ether. The standard approach to
analyze such networks is to approximate them as non-honoogelPPPs with a lower density
of nodes around a representative node (e.g., [11], [12]}, [[13]). Existing works however,
have not used multiuser receivers such as the MMSE receitdchwhas the capability to
mitigate interference. Moreover these works use a more toated non-homogenous Poisson
approximation based on the second order product density aieiM processes (e.g., see [6])
compared to the two-case piecewise constant model used $i@ee multiuser receivers and
hard-cores can both be used to reduce interference, sgudyMSE receivers in hard-core
networks can help us understand if it is beneficial to use CSik&protocols with interference
mitigating receivers and vice-versa since both methodsirzur significant overhead.

In addition to the different network models, we show that 8RR of a multiantenna receiver
in wireless networks with more general forms of path-losmntthe standard inverse power-law
model, is statistically equivalent to the SINR in a networkhwa non-homogenous Poisson
distribution of nodes with an appropriate model for the gpatode distribution. We also show
that if the number of receiver antennas is scaled linearti thie nominal node density in doubly
stochastic networks, the SINR at a representative receaarerges in distribution to a random
variable, and for the case of non-homogenous PPPs, it aqgewen probability to a positive
constant. This finding generalizes similar findings deripeeviously for homogenous PPPs of
nodes in[[1],[2] and.[3]. The practical utility of this resig that it indicates that to the extent that
system assumptions hold, doubly stochastic networks catdled by increasing the number of
receiver antennas with the nominal user density. Note thafinding is non-trivial as compared
to the results in[1],[12] and [3] which all assumed spatidilynogenous and uncorrelated user

distributions. In those works, it was possible to find expi@ss which involve the density of



users and the number of antennas. The double limit as the emaitantennas and density of
users go to infinity with a constant ratio of these expressiman be taken directly. In this work
however, a more complicated approach had to be taken whiaivad the derivation of an
apparently novel property of upper regularized gamma fanstgiven in Lemma]2 below.
In summary the main contributions of this work are
1) A general framework to statistically analyze the SINR auhly stochastic networks includ-
ing a framework for general construction of doubly stocitasetworks. This framework
is applicable to a variety of practically relevant scenarbat are interesting problems in
their own right.
2) Proof that scaling number of antennas with nominal usesithe can help scale doubly
stochastic networks.
3) Exact expressions for the CDFs of the SINR for Thomas anteMacluster networks with
the representative transmitter being part of a cluster oeso
4) Closed-form equations for certain clustered network et®do quantify the benefits of
multiple antennas in cluster networks.
5) Simple approximations to the CDF of the SINR for hard-coetworks which are difficult

to analyze exactly.

B. Related Results

As remarked earlier, the literature on spatially distrdalinhetworks with multiantenna users
has focused primarily on networks with nodes distributedaasomogenous PPP. For such
networks, [[15] analyzed the performance of matched-filled antenna selection receivers,
[3] analyzed linear MMSE receivers and [2] analyzed a plréao forcing receiver which
includes the standard zero-forcing receiver as a specsd. ddlultiantenna transmitters with
spatial multiplexing were analyzed inl[1],/[4], [16] and Jiimder different sets of assumptions.
[1], [4] and [16] also find the optimal number of streams (haultiplexing rate) to maximize
the overall data rate in homogenous PPP networks.

Few works have analyzed multiantenna systems in non-honoageor clustered networks.
[18] considered interference-alignment in clustered les® networks where partial interference-
alignment is used to reduce the system to a form similar tonglesiantenna system. While

interference-alignment can provide enormous data rategequires significant overhead for



the exchange of transmit (Tx) Channel-State Informatio8IJCIin comparison, the system we
analyze is more attractive for implementation as it doesraquire Tx CSI and uses a linear
receiver which only requires CSI of the target transmitted the spatial covariance matrix of the
interference plus noise. [13] approximates networks oftiplelinput-multiple-output (MIMO)
links with CSMA using a Poisson approximation for the sgatiade distribution. However, the
multiple antennas are not used for interference mitigatmmpared to this work which considers
interfering single-input-multiple-output (SIMO) linksith interference mitigating multiantenna
receivers.

[19] considers non-homogenous Poisson networks using ympstic analysis which is
applicable only with moderately large numbers of antenkragthermore, it does not provide the
distribution of the SINR and focuses on the convergence pfapiately normalized versions
of the SINR as the numbers of antennas per receiver gets. lerghe equivalent asymptotic
regimes, our results agree with those findings.

In a recent, independent parallel wofk [20] (which appeattdr our conference paper that
forms the basis of the results in this work [21]) the CDF of i8R was derived for hierarchical
Poisson networks which is used to analyze Poisson clusteonies. In [20] the authors assume
that the representative transmitter whose SINR is analygelbcated at a deterministic point
which is not part of a cluster, even though all other trantarstin the network belong to clusters.
For the results on Poisson cluster processes in this pdperepresentative transmitter could
either be part of a cluster or not, and is thus more generateMer, their results differ from
ours in that their expressions for the CDFs of the SINR ingatomplex contour integration

whereas corresponding results in our paper involve meltiphl integrals.

C. Notation

Throughout the paper, uppercase bold characters repnesgrites and lowercase bold char-
acters represent vectors. The indicator functign, equalsl1 if A is true, and0 otherwise.
B(Y, R) denotes a disk of radiuB centered at’".

II. SYSTEM MODEL

A representative receiver at the origin is communicatinghva representative transmitter

at a fixed distancer in the presence of simultaneously transmitting co-chammtgrferers



distributed on a plane. The spatial distribution of integfe will be described later in this section.
These interferers, transmitting with equal power, are comgating with other receivers whose
locations do not affect our results. We assume the inverseeplaw path-loss model where
the average power (over fading realizatiopsjrom a node transmitting with unit power, at a
distancer is p = r—°, with the path-loss exponent > 2. The receiver had antennas, and the
representative transmitter and each interferer have desamjenna. We use the labElto denote
the representative transmitter ahc, - - - , n to label the interferers:; represents the distance
between the-th interferer and the representative receiver at the mrigndz; andz; represent
the transmitted symbols from the representative transmattd:-th interferer respectively. At a

given sampling time, the received signal vecyoe CX*! is
y =" grar + Z ry g+ w, 1)
=1

Wherer;a/ *gr (Or T, o/ *g;) represents the channel coefficients between the repegisentrans-
mitter (or thei-th interferer) and the receiveg; andg; € CX*! comprise independent and
identically distributed (i.i.d.), zero-mean, unit-vari@e complex Gaussian entrieg.comprises,
i.i.d. complex Gaussian entries with varianceper complex dimension, representing noise.

The representative receiver estimates from y using a linear MMSE estimator which
maximizes the SINR, and which is given by:

SINR = r7°gh (GPG' + 021;) " g7, 2

whereI;, is the L x L identity matrix, P = diag [r1®,r3, - -r;*], and thei-th column of
G € Cl*n is g;. To simplify notation, we define the distance-normalizeNBlasy = SINR-74.
We assume that the interferers are distributed spatiatlgrding to a doubly stochastic process,
which is a generalization of the PPP. Doubly stochastic ggses can be described by first
defining a non-homogenous PPP, which is a point process wioele locations are independent,

and the number of nodes in any subBebf the plane is a Poisson random variable with mean

w(B) :/BA(T, 0)rdrdf. 3)

Here the intensity function\(r,#) captures the likelihood of interferers occurring in an in-
finitesimal region around a poirit, ). In the doubly stochastic, or Cox procegs,, ) is a

random process (e.g., sée [6]). For a particular realimaifche intensity function of the doubly



stochastic process, denoted ki, §), the process reduces to a non-homogenous PPP. Note here
that different models of spatial node distributions regulfifferent forms forA(r, ) and A(r, ).

Given a deterministic intensity functiok(r, §), we can construct a non-homogenous PPP of
interferers starting with a circular network of radiés and i.i.d. interferers placed according
to the probability density function (PDHFj.4(r, ¢) which is related to the intensity function as

follows:

T
fr,e(rv 9) = ;)\(Tv 9)1{0§7“<R} ) (4)

where the number of interferers in the circular network is a Poisson random variable with

= /O ’ /O " rA(r, 0)dfdr. (5)

In the derivation of the main results we takké — oo to model the interferers distributed

meany, defined as

according to a non-homogenous PPP with intensity functipné).

Note that since the spatial distribution of interferers ur metwork model is not necessar-
ily homogenous, the representative receiver does not syuorel directly to the notion of the
“typical” receiver commonly encountered in the literateeg., see [22] and references therein)
because unlike homogenous networks, statistical pr@sedi the system at any point on the
plane (e.g., the origin) could differ from the propertieo#tier points. For the purposes of this
work, the representative receiver should be interpretexblsi as the receiver at the origin, and

the representative transmitter is the transmitter to witich linked.

[Il. GENERAL RESULTS ON THEOQUTAGE PROBABILITY

One key performance measure of communication systems isutage probability, which is
defined as the probability that the SINR is below a thresholBor a fixedry, this probability
is P{SINR < 7} = F. (7r%), whereF,(v) is the CDF of the distance-normalized SINR

To characterize the SINR with doubly stochastic proces$asterferers, we first condition
on a realization of the intensity function, then find the getgrobability in the resulting non-
homogenous PPP, and finally remove the conditioning to dettie outage probability. The
following lemma characterizes the SINR when we conditioraaralization\(r, 6), of A(r, 0).
Note that this lemma first appeared as Theorem 1.in [21] which ¢onference version of this

paper, and a similar result appeared later in another wdk [2



Lemma 1: The CDF of~ conditioned onA(r,0) = A(r,0) (resulting in a non-homogenous
PPP with intensity function\(r, 0)) is

L-1 . o2~k . 2
Fn(lA=2=1-3 o A)/; 1 (33— 0t) = 1 - F(L’w(;&g +07)

(6)

/ / (r, 0)r 7 T dodr )

andI'(.) andI'(.,.) are the gamma function and the upper incomplete gamma &mchn

where

addition, the corresponding PDF ofis:

(W) + ) exp(—(y) — 0?y) (0 + ¢/ (7))
f+(v) = (L—1)

where’ () is the derivative ofi)(~y) with respect toy.

Proof: Given in AppendixX’A.

This result can also be used directly if the random intenfihction equals a deterministic
function (i.e. A(r,0) = A(r,0)) with probability 1. We apply this lemma to characterize the
outage probability in doubly stochastic networks in thddiwing theorem.

Theorem 1. The CDF of~v in a network with interferers distributed according to a blgu

stochastic process is

L—1
exp

- Z (E) (0?9)* Ep [0 (7; A) exp(—1(v; A))] ®)

k=0 =0

where(v; \) follows from (1) andE, denotes taking the expectation over all realizations of
A(r, ), i.e. all possiblex(r, §).

Proof: Taking the expectation of(6) ovek(r,6), expanding(y(v; \) + o2v)* using the
binomial theorem, and rearranging the terms yields (8).

Suppose that the doubly stochastic process of interfeserthaé superposition of a non-
homogenous PPP with intensity functiop(r,#) and another doubly stochastic point process
with intensity functionA,(r, #), which results inA(r, ) = \,(r, 0) + A,(r, ). Substituting this
intensity function into Theorernl 1 and moving the integrafoining A, (r,0) outside of the

expectation results in the following corollary.



Corollary 1:

—_

L—
E(y)=1-
k=

exp (=¥p(y) — a*y) N 2, \k— 1
DT Y () w00+ oM B, [ expl—v )]
0 £=0
9)

where, () andy, () are given by[(7), with\,(r, §) and \,(r, 6) replacing\(r, §) respectively.
A (7, 8) here denotes a realization 4f(r, ).

This corollary is useful later in this paper in characterginetworks with clusters of nodes
conditioned on the location of one or more clusters, whicligsful to characterize networks

where the representative transmitter at a given point lgslda a cluster.

V. SCALING DOUBLY STOCHASTIC NETWORKS BY INCREASING THENUMBER OF

ANTENNAS

One of the questions that Theoréin 1 allows us to answer ish@hehe can maintain a non-
zero Signal-to-Interference-Ratio (SIR) if the number pfemnas at the representative receiver
is increased linearly with the nominal density of interferéen the network. In the context of
homogenous networks|[1],![2] and/[3] found that this is inti¢kee case. Here, we shall show
that a similar result holds even when the spatial interfdrstribution is doubly stochastic.

Assuming that noise is negligible, we show that the SIR orréfpeesentative link converges in
distribution if the number of antennas at the receiver iases linearly with a nominal interferer
density. This is under the assumption that the channel mau#g¢pendent Rayleigh fading in
particular, holds, and that accurate measurements of GShwailable at the receiver. A key
result that we use is the following lemma which may alreadkibewn but we were unable to
find it in the literature.

Lemma 2: Let the upper regularized gamma function be denoted)by, ) = FF((LL”;)

['(L,x) is the upper incomplete gamma function. Liebe a positive integer ang > 0, then

, where

0, ifg>1
lim Q(L,qL) = (10)
fmroe 1, ifg<1.

Proof: Given in AppendiXB. Note that the proof here is a correctesiom of the proof of

Lemma 1 in a conference version of this paper] [21].



Suppose that the intensity functidy(r, §) = SA.(r,0), whereA.(r,0) is a nominal intensity
function which describes the “shape” of the true intensitydtion, ands is the nominal interferer
density which scales the nominal intensity function. Rét, 9) be a realization of\(r, ) and
(7, 0) be a realization of\.(r, 0), such that\(r, §) = S\.(r, 0). Next, define:

mw»azlml%&gwqijlﬂwr (11)
Note thaty(v; \) in () is equal tosy.(v; A.). We can now state the following theorem.

Theorem 2: Let 5 = /L with a constant scaling coefficieit> 0. As L. — oo, the distance-
normalized SIR;y converges in distribution to a random variable with CBE [¢(~; A)], where
PESS LR (12)
1, ify>y! (%; )\).
For a A(r,0) that is equal to a deterministic intensity function with lpability 1 (i.e. the
interferers form a non-homogenous PPP on the plane), thecSiRerges in probability to
vt ()

Proof: Given in AppendiX_C.

Therefore, if we increase the number of antennas lineardli thie nominal interferer density
in a non-homogenous Poisson network, the SIR will approacbrstant non-zero value. For
general doubly stochastic networks, the SIR approacheadoma variable with a CDF that is
dependent on the statistical properties of the intensitgtion which is a random process. This
fact implies that such networks can be scaled by linearlyesing the number of antennas per
receiver with node density without degrading the SIR to zerovided that the assumptions of
the system are satisfied. Note that as the number of antemtas/gry large, the independent
Rayleigh fading and accurate receiver CSl assumptiong&gliire increased antenna separations

and increased channel estimation times. An applicatiohisfresult is presented in Section V-B.

V. SINGLE CLUSTER NETWORKS

The doubly stochastic network model can be applied to mollesiter networks where the
cluster centers or the receiver is randomly located. Ingbddion, we consider the scenarios where
there is exactly one cluster in the network. Here we shallHix Ibcation of the representative

receiver at the origin but with a randomly located clustesté\that a randomly located receiver



with a fixed cluster could also be analyzed using this tealnigs we are only concerned with
the relative locations of the receiver and the cluster.

We assume that the interferers are clustered around a rdyvlocated parent point (which
is not an interferer),X,. We denote the PDF of the cluster center fay (r, #). Conditioned on
Xy, the daughter points follow a non-homogenous PPP with sitefunction A(r, ; X,) which
is related tofx,(r, ) by

Foa(r, 0] X0) = —A(r, 0; Xo). (13)
Hd

Applying Theorenill, we find that

L-1 o p2r . o2k
oy =1-3 [ [T EOEETIE autoi X0) - o) ohdrao, (1)
k=0

where(v; Xo) is given by [7) withA(r, 0) = A(r, 8; Xo).

A. Two-dimensional Gaussian Cluster Networks

Consider a cluster model where the interferers are digathaccording to a two dimensional
Gaussian distribution (with width parametey, centered atX,. This model can be viewed as
one with a single cluster from a Thomas Cluster Network azrelyfor single antenna systems in
[8] (referred to as “a symmetric normal distribution”). athat under this model, the distance
between an interferer to the representative receiver abrilgen is Rician distributed. Hence, the

PDF of the distance from an interferer to the representaggeiver at the origin is:

r —(r? + | X, |? r| X,
fr(r|Xo) = 2 exp (%) Io (%) ) (15)
¥ (7; Xo) can then be expressed as:
Ny | Ty
V0 X0) = g [ Ao (16)

which yields the CDF of the SINR when substituted iritol (14%ré] I,(-) is the zeroth-order
modified Bessel function of the first kind.

To verify and illustrate this result (including the accwraaf its numerical evaluation), we
simulated this system with = 10 ando? = 1074 . For each trial, we placed a Poisson number
of interferers with mean:;, = 3140 in a cluster whose centeX|, is distributed with uniform

probability in B(0, X,) The distances of the interferers from the origin thus follawRican



distribution with shape parameter= 100 for each trial. In Fig[ R, the simulated CDFs of the
SINR with R, = 300, 400, 500 and600 match our theoretical predictions which were numerically

evaluated using standard quadrature integration.
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Fig. 2. Empirical and theoretical CDF of SINR of a link with t€ceiver antennas, and interferers distributed accoriran

off-center circular Gaussian. The cluster centers wergildliged uniformly in disks of varying radiR,,.

B. Cluster Networks with Power-law Intensity Functions

When the location of the cluster centeXy is a constant with probability 1, the doubly
stochastic network reduces to a non-homogenous PoissamonketNon-homogenous Poisson
networks with intensity functions in the form @i can effectively model clustered networks
where the receiver is located at the center of a deterngniftister, e.g., [19]. The exponeat
determines the degree of clustering and the scale facterthe nominal density. The intensity
function includes the homogenous PPP as a special case avhén With a power-law spatial
node model, we obtain closed-form expressions for the CDEh@fSINR. This finding helps
guantify the performance gains that can be expected fromgusiultiple antennas to mitigate
interference in the center of a dense cluster as a functidheotlegree of clustering and other
system parameters. To the best of our knowledge, this is nheexact, closed-form result on
the CDF of the SINR for a spatially clustered user distrititi

Here we develop a more general form of such an intensity fomciThis model will later

be used to approximate hard-core networks in Sedtion VIE6Gnsider a set of non-negative



numbers representing radial rangés< R; < ... < R,,. Assume that the intensity function has

the following form:

prt for Ry <r < Ry

r2 for Ry <r<R
A 8) =" e (17)

\pmrﬁm for R,,_.1 <r<R,,

wheree; > =2 if Ry = 0, ande¢,, < a — 2 if R,, = oco. In the rangeR;_, < r < Ry, the
intensity function of the interferers follows a power-lawsttibution with nominal densityy,
and exponent,. Applying Lemmal# from Appendik]E td (17), we find that the CDFois
given by [6) with

m

27Tpk €192 €k+2 €k+2—|—0é RY
() = > 5t e [Rkk+ 21 <17 Y R ;—Tk
k=1

— Ry (1 GtZeatita g-l)]

I

o gl
For the simplest scenario, we have only one piece for thesitie function as follows:

(18)

A(r, ) = pre, (29)

where—2 < ¢ < 0, to maintain finite interference for any In this case, from the derivation in

Appendix F, the CDF ofy is expressible in closed-form (withparameterized) as

L1 k
1 [2m? 2
F,(v;e) =1— E o < 7;p csc (ﬂ'%) Dy 027)

k=0

272 2
X exp (— TP cse (71‘—6 + ) 7(6“)/0‘ — 027) . (20)
« o

Note that an asymptotic analysis was used to show convezgainan appropriately normalized

version of the SIR for this model in_[19]. To confirm that thesult above agrees with the
conclusions in that work, we first neglect the noise by sgttih= 0. Since the SIR grows without
bound asl. — oo, we define a normalized version of the SRz L~%/2+9)rgSIR = L~/(3F€)y
as is done in[[19] to avoid degenerate resultd.as co. Then

(L, 2”7% csc (mi2) glerD/e )

Fe(§) = PrL™/®+)y < €) = Pr(y < (L)) =1 - r((L)

. (21)
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Fig. 3. Comparison between the empirical and theoreticalbgivility density function of SINR with the power-law intgty
function A(r, 0) = &\/? . The parameters used are = 10, L = 10, a = 4, o> = 1072, and 100, 000 Monte-Carlo trials.

Given LemmalR, if we sety = Q’TTQ%SC (r<t2) ¢t/ then F¢(¢) approaches a step at a
:|—a/(e+2)

deterministic vaIue[Q”TZ” csc (m2) as L — oo. This implies that for large number of

r+% which is consistent with the findings in_[19].

—a/(e42)
alL ]

antennag., SIR~ [2”—2” csc (m<2)
To validate [(20), we conducted Monte Carlo simulations Wwhindicate a close agreement
between the simulations and the theoretical predictiofl@striated in Fig[[B which shows PDFs
of the SINR for the intensity functiot\(r, ¢) = *72.
It is worth noting that[(Z0) can be extended to networks withdom degrees of clustering,

which are doubly stochastic but not Poisson networks. Fstaince, consider a network which is
clustered withe = ¢; with a certain probability, and homogenous otherwise, Witiculd model
networks with varying user distributions influenced by wesagtterns. The CDF of the SINR in
the center of such a network (the location with the worsec&B\R) could be easily found in
closed-form from[(20) and Theorelmh 1 Bs(e = 1) F,(7;€1) + (1 — Pr(e = €1)) F,(7; 0).
Furthermore, we can use the power-law model as an exampledtrate the scaling properties
of the system in Theoreil 2. We compare the CDF of the SIR With0) = 5\.(r, 0), where
g =pandA.(r,0) =r°for L =2, 5, 10 and 40 antennas, with corresponding density0.025,
0.0625, 0.125 and 0.5 in the network. Note that these valoggspond to a linear increase in
interferer density with the number of antennas. The CDFsllaistrated in Fig[4 which shows

that as the number of interferers increases frbno 20 with a corresponding increase in the



density of interferers, the CDF of SIR approaches a steptifumci.e the SIR approaches a
deterministic non-zero value in distribution. Moreover, the SIR conveggin distribution to a

constant implies that it converges in probability.

~-L=2,p=0.025

0.8l|-~-L =5,p =0.0625
L=10,p=0.125

—L=40,p=05

0.6

CDF

0.4f

0.2

“0 0 0 20 40 60 80
SIR(dB)

Fig. 4. Cumulative distribution function of the SIR (dB) Wihumber of antennas increasing linearly with nominal fetrer
density with \(r,0) = p/+/r, rr = 10, a = 4 ando* = 0.

VI. SUPERPOSITION OFPOISSON ANDNEYMAN-SCOTT NETWORKS

In this section, we derive the CDF of the SINR on a represeetdink in a network with
interferers distributed as a superposition of a non-homoge PPP and the Neyman-Scott cluster
process. The Neyman-Scott process is often used in spiti@ties to model random clustering
and has been proposed as a model for wireless networks wittoma clusters of users|[8].
The superposition of the two processes enables us to analydestered point process of
transmitters, conditioned on the location of the clustertaming the representative transmitter.
The conditioning on the location of this cluster in turn eleabus to condition on the location
of the representative transmitter. An example using theektatluster process is given later in
this section.

We assume that one subset of interferers is distributed-diogpto a PPP with a deterministic
intensity function\,(r, #) while the rest are distributed according to the Neyman+{Sdaster
process as follows. A set of parent points, denotediiby { X;| i = 1,2, ...}, is generated from a
PPP with intensity\*(r, §) on the plane (see e.gl../[6]), and for each cluster a randonbeuof
daughter points are placed in an i.i.d. fashion accordirgptoe probability distribution. To define

the Neyman-Scott process within our context, we start withdeterministic intensity function



associated with a single cluster whose parent point (oteleenter) isX;, defined as\(r, 0; X;).
The number of the i.i.d daughter points that surround papemt X, is a Poisson random
variable with mearnu,. The relationship between the PDF of the daughter pointscéged
with a parent pointX; and the intensity function of the parent point§r, ) depends on the
clustering model. All the daughter points are consideréeriarers in the network, but the parent
points are not. Thus, the intensity function of the intexferin the network, conditioned on a
particular realization of the parent point procéssis:

A(r, 0;T1) = + > A6 X)), (22)

X;ell

When the conditioning on the realization of the parent pgirgcess is removed we obtain a

superposition of Poisson and Neyman-Scott cluster presess

A. Outage Probability

We can apply Corollaryll to derive the outage probability ttlis model. The expectation
over the random intensity functions(r,#) can be evaluated using the following Lemma that
may already be known, but we were not able to find in the litegat

Lemma 3: Let II be a PPP oiR? with intensity A* : R? — [0,00), and let= = >~ ; ¢((X),

where( : R? — [0, c0) is a non-negative measurable function. Then, for integerd),

By [2e=] eexp{/w( ~cw) _ 1))\*( )du}

v Dl CEeOx )™
ml!1!7’”L17712!2!m2...mg!f!mZ ’

(m1,...;mg)E€EM,

(23)
whereu and z are integration variables, ant, is the set of all-tuples of nonnegative integers
(my, ..., my) satisfying the constraint:

1-mi+2-mo+3-mg+...+L€-my=~. (24)

Note that(’(z) refers to thej-th power of the functior((z).
Proof: Given in AppendixD.
To express the CDF of the SINR on the representative link, vgé diefine

2w ’Y
/’/‘ A(r, 0; Xi)r Ty ddr, (25)



and conditioned on the parent point procégsy), () in Corollary[1 can be expressed as:

/ /27r A(r, H;Xi)r%dedr =3 x (26)

X;ell X;€ll

The interchange of the order of integration and summatidovie from Theorem 11.30 in [23].
With this definition, we can state the following result.
Theorem 3: The CDF of the distance-normalized SINRin a network with interferers dis-

tributed as a superposition of a non-homogenous PPP and mate$cott cluster process is:

Fy(y) =1 —exp { /0 " /0 N (e7¢) — 1) A*(r, 6’)rdrd9} Lz::l exp (—1p(7) — 0%)

’ wp M 7) [T [ S GO r)e 0N (r, 0)rdrdo)
8 ZZ Z m1!1!m1m2!2!m2...mg!£!ml - @N)
Proof: Evaluating Er [wg(v) exp(—lpq(’y))] in Corollary[d wherey,(v) follows from (26)
with Lemmal[3, algebraic manipulations, and converting titegrals from Cartesian to polar
coordinates yieldd (27).
In (21), ¢, () captures the effect of the deterministic portion of theristey function,\*(r, )

mj

represents the intensity function of the parent point mecand((r) captures the effect of
the daughter points associated with a parent point that ia distancer from the origin.
For representative Neyman-Scott processes, such as therrMielister process, the integrals

in equation[(2l7) can be evaluated numerically using stahdethods.

B. Application to the Matern Cluster Process Conditioned on a Deterministic Cluster

Here, we apply Theorer 3 to analyze the Matern cluster psot@sype of Neyman-Scott
process), conditioned on a deterministic cluster centatetie origin. Neyman-Scott processes
have been used as models for wireless networks with clusteterferers in works such asl[8].
Consider Fig[IlL which illustrates a realization the supsitimn of the Matern cluster process
and a deterministic PPP where each cluster is a disk of rdgjjushe corresponding per-cluster

intensity function is

A(r, 05 X5) = palyero)eB(xi R} » (28)



where p; = 4/ (7R2) is the density of the daughter points in a single cluster.d@mmed on
a realization of the parent poini$, the intensity function becomes:
A(r, 0;10) = i1 0)eB0.70)} T+ Z Pal{(r0)eB(X; Ry)}- (29)
X;ell
wherep, = (uq—1)/(7R%) as we reduce the mean number of interferers by 1 at the detistini
cluster to account for the representative transmitter. flisé term represents the deterministic
cluster and the second term represents the Matern clusieegs conditioned on the realization
of the parent pointsI.
From results in'V-B and Lemmid 4, the contribution of the deiarstic cluster is:
Up(7) = TPy RIe (1, %; 21:@; —?) = (fa — 1)211 (1, g; S Z —@) . (30)
Next, we find the parameters and functions that capture teeféners from the Matern cluster

process. To find the corresponding PDF, conditioned on orenpaointX;, of the distance of a
random point from this cluster to the representative regefy(r|X;) , we need to consider two
disjoint and independent cases. The cases correspond tbewvlibe cluster under consideration
includes the origin or not, as shown in Fig. 1.

Case 1|X;| > Ry, i.e. when the representative receiver is outside the BigK;, R,). In this
case,r is the distance between a random point inside a circle ousaRj; and a fixed point
outside this circle (at a distan¢d&;|). This PDF is given in[[24] as follows:

r? +|X;* — R?
2r| X,
Case 2:|X;| < Ry, i.e. when the representative receiver is inside diskX;, R,). Using

2r _
fr(r| 1Xi] > Ry) = —a €08 ! ( ) * 141X~ Ry<r<|X;|+Rq} (31)
d

geometric arguments and applying the techniques used teed@1) in [24] , we found the

PDF ofr in a similar form as follows:

2r 2r r? + | X;|* — R?
(r] 1 Xl < Ry) = —= - L<p,—ix.p + —= cos ™! : ) 1inix<r "
Tl 1] < Ra) = 2 - Lirsrapny + g €08 ( 2 [Ram Xl <r< Ryt X1}
(32)
Substituting [(311) and (32) intd_(R5) yields:
| X:|+R _1 (T H|X;2-R%\ o
(X)) = Pd f|XZ-|—Rdd 2r cos™! ( 20 X] d) 1+rzfydr Xl > R
' Ra=|Xil 5 _ro Rat|Xi] _1 (PHXP-R3\ e
Pd [fo ¢ 2r e dr + fRdd—lXi\ 2r cos ™! ( 2K d) 1+T,Zydr} .| Xi| < Ry.

The CDF is found by substituting this expression dnd (3Q) {&m).



We verified the resulting CDF by Monte Carlo simulations. hcle trial of the simulations
we start with a homogenous PPP with dengifyto model the cluster centers, and place one
deterministic cluster centered at the origin. Next we gateea Poisson number of daughter points
at the deterministic cluster with densipy, in a disk of radiusRk,. Then, we independently
generate a Poisson number of daughter points with density.i.d. in disks of radiusR,,
centered at each of other cluster centers. Even though wd oot solve the integrals in the
resulting CDFs of the SINR in closed form, we were able to agphndard quadrature numerical
integration methods to compare the theoretical predistionthe simulated CDFs of the SINR.

Fig.[8 depicts the simulated and theoretical CDFs of the SWNtR interferers distributed as
a Matern cluster process, conditioned on a cluster at tlggnofor L = 1,2,3 and4 antennas,
and SNR of 10 dB, and the remaining parameters as specifiedeirfigure. The simulated
and theoretical CDFs of the SINR are indistinguishable,cwlgonfirms the accuracy of both
the analysis and the numerical integration. Notice thatvim@ance of the SINR for the cluster

processes is large due to the high degree of irregularithenspatial interferer distribution.

O Simulation
—Theory

0.8

0.6

CDF

0.4

0.2

10 0 10 20
SINR(dB)

Fig. 5. Comparison between the empirical and theoreticdF€£8f SINR when interferers are generated from a Maternelust
process conditioned on one deterministic cluster. Varyirgnumber of antennab, the empirical CDFs result frorh00, 000

Monte Carlo trials. Other parameters used are= 10, o = 4, 6> = 107>, pp, = 1.6 x 1075, pg = 200 and Ry = 300.

VIlI. NON-HOMOGENOUSPOISSONNETWORKS

As described in Sectidn ]I, conditioned on a realizatiorthe intensity function, the doubly

stochastic process reduces to a non-homogenous PPP, amdushaa special case of a doubly



stochastic process. As one of the main results of this secti@ show that the SINR of a
representative link in a homogenous network with a germgdlpath-loss model is statistically
equivalent to that in a non-homogenous network with the rsegower-law path-loss model,
which enables us to use the framework developed here toatbare systems with more general
path-loss models and to compare networks with different-pzd¢s models.

Non-homogenous Poisson networks are interesting as thsgyide many practical scenarios
such as simple models of roadway networks where the spaidg distribution has a constant
positive intensity on the roadway and is zero outside thdwag. The non-homogenous network
model can also be used to approximate the SINR distributorlirfiks in hard-core networks,
which serve as simple models for networks with protocolshsas CSMA. As noted in the
introduction, CSMA networks are notoriously difficult toapze. In Sectio_VII-C, we show
that a simple approximation of a hard-core process usingnahomogenous PPP can provide
an accurate approximation for the CDF of the SINR. Note thadtieg works on hard core
networks, none of which consider interference-mitigatimgltiantenna receivers as we do here,
use more complicated approximations because they are roséige to nearby interferers which

would be nulled out by the MMSE receiver in our system.

A. Modeling Generalized Path-loss Models through Non-homogenous Poisson Networks

In this subsection, we show that the distance-normalizédRSof the representative link
in a homogenous PPP network where the path-loss is any nmuoally decreasing function
of distance, is statistically equivalent to the SINR in rfwmogenous PPP network with an
appropriate intensity function and the inverse-power-[@ath loss model. This enables us to
apply the framework we developed for the inverse-power lavdehto analyze networks with a
more general form of path loss. Although the inverse poaer#nodel has been experimentally
validated for certain physical scenarios (e.g., see¢ [2BPre are many scenarios for which this
model is inadequate as described!in/[25] for instance.

Assume that the path-loss is representeddfy), which is a continuous, monotonically
decreasing function. We note here that the this form of padk4s quite general and is equivalent
to general path-loss models used inl[22] and numerous otlekswon spatially distributed
networks. The CDF of the distance-normalized SINI given in Lemmall, and(r, §) equals

some deterministic intensity functiok(r, #) with probability 1. Let\;(r, #) be isotropic ind



so that it is not dependent @h Thus,

> r
¢(7) = 27/0 )\G(T)T%dr. (33)
Let u = [p(r)]"=. Sincey(r) is continuous and monotonically decreasing, it is invéztédnd
r = ¢ '(u=). By change of variables, we have:
v(y) = 27r/[ o Aa(p™H (u™)) -7 (™) - O (0~ (1) - (—a)u—*"du
[p(o)] /e T+ u

We denote a new isotropic intensity function &gr) with
As(r) = Aa(€H (™) €7 (=) - (N (1) - (=a)r™ 2 - Loy -va<refploo) -y (34)

Hence, we have found an isotropic intensity functiog(r), under the path-loss modeled by
r~* such that the resulting CDF of is (6), where

W(y) = 27?/0 )\s(T)T%dT. (35)

So given a certain spatial distribution of interferers unae arbitrary path-loss model(r),
we can find a corresponding spatial node distribution untergath-loss modet~* in our
system model that will have the same distance-normalizéiRSitatistically.

For instance, suppose we have a homogenous network witbromdensityp and dispersive
path losse="". This model has been proposed for certain propagation amvients over large
distances with supporting data in [26]. Substituting= =, we getr = aln(u)/v anddr =

a/(vu)du. Thereforeu) () can also be expressed as:

CEE) g In(y Ty« * o?ln(u) u %y
¢(7):27T/ ) p ( )1 — —du:27r/ P 2(2) o du (36)
=% (0) v +u*yvu 1 viu 14+wu~
The equivalent intensity function with path logs® is then
a?1In(r)
)\S(T) =p D272 1{1§r§oo} (37)

We conducted simulations of this model with= 10, r; = 10, o = 10~!2, a homogenous
PPP distribution of interferers and path-loss!”, with v = 0.01, and A\¢(r) = p = 107°. This
model is found to be equivalent to a non-homogenous PPP \witf-lpssr—* where, \g(r) =

P 1/27"(2 )1{1<r<oo} =1 61;2"2 1{1<r<o0}- Subplot (c) of Figlb shows simulations of networks with

both path-loss models along with the theoretical CDF, iatiiigy a close agreement, thereby
illustrating that the distance-normalized SINR for a reeeiat the origin in a network with a
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Fig. 6. Figure (a) shows a homogenous PPP which with a dispgrath loss modele("%-°'"), is statistically equivalent at the
origin to the non-homogenous PPP in Figure (b) with path 1055 Figure (c) illustrates simulated and theoretical préolict
for the CDF of the SINR for both models, indicating their eglénce.

dispersive path-loss model and the homogenous spatiaibdisdn of nodes shown in subplot
(a) of Fig.[6, is equivalent statistically the non-homogend&PP shown in subplot (b) of the
figure, with ther—® path-loss model.

B. Two-dimensional Strip Networks

We can use the framework for analyzing the SINR in non-homogs PPPs to characterize
a representative link in a strip network, which can be used asnple model for a vehicular
network on a straight roadway [27]. In this model, nodes astriduted according to a non-
homogenous PPP on the plane with intensity function equalitoa strip of width2a centered
at the origin, and zero outside the strip. Hig. 7 illustrad@sexample of such a network. By
taking R — oo, we arrive at an infinite strip network.

Using geometric arguments, we find that the PDF of the distdretween the origin and a
node distributed with uniform probability in the band-alaped strip illustrated in Figl 7 is

2mr /A ,r<a

fr(r) =

4rarcsin(a/r)/A , a<r <R

where A = 2R? arcsin(a/R) +2av/ R? — a? is the area of the band-aid shaped strip./As» o,



we can write the following expression in terms of the intgnsinction \,(r, 0):

2m 2pmr ,r<a
/ rAp(r, 0)d0 = , (38)
0

drparcsin(a/r) , r>a

We can thus apply Lemmnid 1 whevg~) in (7) becomes:

a /_y [oe) .
=21 T dr +4 / rarcsin(a/r dr
() /)/0 pop: ’ (/)7+ra
2 2 a &
= mpa” o Fy (1,—, e _a_) +4p/ rarcsin(a/r) dr (39)
a o Y a v+

® Representative receiver
O Representative transmitter

O Interferer
Fig. 7. Modeling a strip network as a non-homogenous PPP.

Fig.[8 illustrates results from0, 000 trials of a Monte Carlo simulation of this network model,
with the parameters indicated in the caption. The CDF wakiated using standard quadrature
integration. The close agreement between the simulationnaimerical computation validates
the results and indicates that accurate numerical evaluafithe CDF is possible using standard

techniques.

C. Approximating Hard-Core Processes by Non-Homogenous Poisson Processes

In this section, we use a Poisson approximation to analyre ¢@e networks. We construct
circular guard zones of radiug,; around all transmitting nodes (representative transmattel
intreferers) which serves as a simplified model for CSMA meks [9] . The CDF of the SINR
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Fig. 8. Simulated 10, 000 trials) and theoretical CDF of the SINR (dB) in a road way ratawwith - = 10, o2 = 1072,
a =4, L =10, p=0.01, anda = 5, 10 and 25 corresponding to the the widths: 10, 20 and 50.

for the MMSE receiver with this model can be approximatechgsi non-homogenous PPP with
intensity function

f r, 0 1
Ar(r.6) 0 or (r,0) € B(Xr, Ry) (40)

p(Ry). otherwise
where X, = (r7,0) is a nominal location of the representative transmittere Tensity of
interferers is zero in the guard zone of the representataesinitter and equals a constant
p(Ry) = %R%”R%), which is the effective density of nodes from the Matern tyiperocess,
outside the guard zongl[6]. Note that since the Matern hard-grocess is isotropic, the angular
coordinate of the representative transmitter can be anyevaere. Using geometric arguments,

we found the PDF of the distance from a point outsigieXr, R;) to the origin to be

2 2 2
_ r“+r5—R
2mr—2r cos ™! ( ) T 1)
rrT

if rp— R <r<rp+ Ry

fr(r) = 4 ’ (41)

2 0
=, otherwise.



if o > R; (i.e. the representative receiver is outside the guard zdnthe representative

transmitter), and

p

0, if r <Ry —rr
2 2 2
27r—2r cos 1 M
folr) = A< G ) if Ri —rp <71 <rp+ Ry (42)
\ ZLAT, otherwise.

if 0 < Ry (i.e. the representative receiver is inside the guard zdnthe representative
transmitter).

Therefore, the CDF is given by1(6) with functiof(-) evaluated as:
rr—R1 (e} —a
*y Ty
=2mp(R / 7d7’+27r R / r————dr
() =2mp(Ry) i Tp— p(Fy) o THr

rr+Rg _ P2
+p(R1)/ {27rr —2rcos”! (T + Rl)} T dr, (43)

Ry 2rrp 14 r—ay

if ro > Ry, and

rr+Rg 2 2 2 —
() :p(Rl)/ [27?7’—27“005_1 (T R Rl)} L

r
Ry—rp 2rre 1+ r—ay

o0

“y
campe) [ e (44)
rr+Rg 1 +r- a,}/

if ro < Rj.

To verify that this approximation holds for Matern type-gtworks with guard zones around
each transmitter, we simulated networks with= 10,7 = 10, = 4 and SNR = 10 dB for
several different guard zone radii. The results of the satiohs and the CDF of the SINR
with A(r,0) from (40) are show in Figl]9, which indicates a close agreé¢nbetween the
approximation and the simulated CDF.

Note that in more sophisticated protocols such as CSMA wvatfiston avoidance (CSMA/CA),
guard zones are placed around active receivers. We havd thahby centering the guard-zone
around the representative receiver instead of the repgsantransmitter, we can model such
networks with comparable accuracy.

To analyze the tradeoff between the increased SINR and tieduin the density of active
transmissions as a result of increasing the radius of thedgg@ne around receivers, we use
the spectral efficiency density, given ly= p(R;)log,(1 + SINR), where SINR is the SINR

at the representative receiver which has a guard-zone afs&y around it, and the density of
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Fig. 9. CDF of the SINR for Matern type-Il networks with hacdres around all transmitters.

active transmitters outside the guard-zong(i&8;). The CDF of the SINR is found by replacing
X7 with 0 in (40) which places a guard-zone around the representedtaver at the origin.
The network-wide metricy assumes that the distances between interferers and tbp&ate/e
receivers are equal across the network. While this is afsgni simplification, we note that in
the absence of appropriate models for link-length distidoy this simplification is commonly
used to optimize network-wide metrics such as in [28] and. [29Fig.[10, we plotted the CDF of
n, F,(n; R1) with R; varying from 0 to 10 and ranging from O to 0.1. Other parameters include
pp=0.05,r7 =5, a=4,0%=10"" and L = 5. Fig.[10 shows that for a certain outage, there
is an optimal radius of guard zone that maximizes the speeffigiency density. Due to the
complexity of finding an inverse function @, (n; R;) with respect tak;, we found the optimal
guard-zone radius can be evaluated numerically using atdnzero-finding techniques. These
plots indicate that a guard-zone could be useful in a wisshetwork even when an interference-
mitigating multiantenna receiver is used since the optiguard-zone radius is strictly positive in
all the cases considered. Additionally, note that the m®ad optimizing the guard-zone radius
via Monte Carlo simulation is very time consuming as a largenber of different guard-zone
radii would have to be simulated and simulations of hardecorocesses are relatively slow
to begin with. This illustrates that the expressions we pi®ware useful to optimize system
parameters when simulations would take prohibitively lamgomplete. A similar idea can be
used in networks which employ an ALOHA protocol over an ergtdoubly stochastic network

model, e.g., a Poisson cluster process. The ALOHA prolighofitransmission can be maximized



Contour plot of the CDF af

Fig. 10. Contour plot of the CDF of the spectral efficiency signwith respect to the spectral efficiency densijtyand the
radius of the guard zon&;. The unit density ig, = 0.05 and the distance between the representative receiver amshiitter

is rr = 5. .The parameters used atie= 4, o> = 107* and L = 5.

subject to a given outage probability constraint by nunadiycinverting the expression for the
CDF in the same manner that was done to optimize the guarel-gaius. Optimizing this

probability through Monte Carlo simulation would be sigesiintly more challenging.

VIIl. SUMMARY AND CONCLUSIONS

In this paper, we develop a technique to compute the CDF ofSiiNR on a link with a
multiantenna linear MMSE receiver in networks with co-ahantransmitters distributed ac-
cording to doubly stochastic processes. Special casessé throcesses include Poisson cluster
processes, processes with a single randomly located claste non-homogenous PPPs. This
framework is applied to a variety of network models, inchgihetworks with deterministic and
non-deterministic clusters strip networks, and hard-cw®vorks.

Among others, these results enable us to quantify the berafimultiple antennas in the
center of a dense cluster of nodes. Moreover we find that CEMAprotocols that place
guard zones around receivers can provide a spectral efficieenefit, even when receivers use
interference-mitigating receivers such as the MMSE rewenother interesting finding is that if
the number of receiver antennas is increased linearly Wwegmbminal density of nodes in doubly

stochastic networks, then the SIR converges in distributioa random variable. Moreover, for



non-homogenous Poisson networks the SIR converges in lplityp#o a positive constant. This
finding indicates that to the extent that the system asswmpthold (in particular the i.i.d.
Rayleigh fading assumption), such networks are scalablmdrgasing the number of receiver
antennas linearly with node density.

Thus, in addition to providing a framework to characterie SINR of a multiantenna link
in a broader class of network models than what’s currenthilable, these results enable us to

draw conclusions regarding the design of spatially disted networks as well.
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APPENDIX
A. Proof of Lemma

Established by equations (11) and (12)!in [3] the CDFyafan be expressed as

L—1 min(i,n) i—k

k i—k
Py 1
F(y)=1— E
L () exp(— ZO Z H(n ") ”[1+m} E”{Hm} ’

where E is the expectation with respect to the random variabl®ecall thatp = »~* and the

interferer locations follow the PDF, 4(r, ). Consequently, we have the following expressions

][ [

Ep{lﬁm} // Jrolr.6)5 Md@dr (46)

As the number of interferers is a meanu Poisson random variable, the CDF fis:
oo L—1 min(4,N)

B =1-en-r 33 3 ry Z_@'(“W’ HE exp (1)

n=0 =0 k=0

R ror ! k R ror 1 n—k
———dfd ———dfd : 47
Applying a sequence of steps similar to that used in the pobtie main result for homogenous
networks in [3] yields:

i ik k
F,(y) = 1—exp(—a’y ZZI{?'Z— < / / f”,re 7 d@dr) .

1=0 k=0

R 2w
“y
— ro(r,0)———dfdr | . 48
exp( 'u/o 0 Fror )1+7" “y T) (48)



Given the relationship between the PDF of the locations ef ititerferers and the intensity
function in (13), we denote () a

Rhm// pfra(r,0) B d@dr—/ / 7 Ty dedr (49)

Substituting[(4B) intd (48), applylng the binomial theorghe series expansion of the exponential
function, and finally equation (6.5.13) af [30] yields:

F.(v) = 1—exp( —o?y ZZ R — (7) exp(y(7))
= 1= T i) — ot =1 - HELDET)

Differentiating the CDF yields the PDF of.

B. Proof of Lemma[Z

1

Consider the following random variablés = Z,f;é V., andU = k 1 'V, whereV, are

-1
i.i.d. Poisson random variables with me@nNote that
I'(L,qL
Q(L,qL) = (é —’ql)') =Pr(U<L-1)=Pr (U+ Vo/(L—1) < 1) (51)

where the previous equality holds becaug€., ¢L) is the probability that a Poisson random
variable with meamnyL is less than or equal té — 1. By the weak law of large nhumbers as
L — oo, bothU — ¢ andV, /(L — 1) — 0 in probability implying thatU + V; /(L — 1) — ¢ in
probability. The latter implies that

= (52)

) 0, ifu<yg
1, ifu>gq.

. - Vo
Jim Pr ( L—1-
Settingu = 1 in (582) and substitutind (51) into the resulting equatiomptetes the proof

C. Proof of Theorem[2

First, let us condition on a realization of the intensity dtian A(r, 0) = A(r,0). The doubly
stochastic network thus reduces to a non-homogenous PB&RMitgy that the noise is negligible,
the CDF in [(6) from Lemmall can be expressed as:

D(L, CLe(7: M)

(53)



Let ¢ = (¢p.(v; A) in Lemmal2. Then, we have:

- ~1 (1.
DL L) oy 0, if vy <o (§:2) (54)

1, ify >yt (%;A).

Thus, conditioned on particular realization/®fr, §) or if the interferers form a non-homogenous

fim By (7 A) = 1— lim (L)

Poisson process (i.e. deterministi¢r, 0)), v converges in distribution to a constant, implying

convergence in probability as well. Removing the conditignin (54) , we have

lim F,(y) = lim By [F,(1;0)] = By [ lim B,(:0)] =Ealo(r V)], (55)

L—oo
where the exchange of the expectation and limit operatioifsads from the bounded convergence
theorem (see e.g.. [31]). Note that unlike the case of nandyenous Poisson process of
interferers, in the case of a general doubly stochasticgsof interferersy is only guaranteed

to converge in distribution.

D. Proof of Lemma[3

It is shown in Section 3.2 of [32] that given any positive me&asle function((.),

En[e®%] = exp { /R 2 (e —1) )\(u)du} : (56)

for any negative and re&. Taking thekth derivative with respect t®, (56) becomes

B [267] = L e { JRGEE )\(u)du}
_ 3 Klexp { fpa (€940 — 1) A(w)du} £ H ( ))\(z)dz) " e

mqlllmimgl2ima mk'k:‘mk

dF k! k
A - () I (o9
qor/19(9) = ST b T “o(0)- 1] (e

(m1,...,mp)EMy, J=1



E. General Power Law Term

Lemma 4: Given the assumption that > 2,

0, if R =0
rk+1 i /K K K a o .
/T il — B F (17%2%%;—%), if0<R <oo  (58)
Try(rt2)/e ey (rEE2) | if R = oo.

Proof: Using symbolic integration software, we can directly easduthe integral fol) <

R’ < co. Applying Euler’'s hypergeometric transformation [30] hetresulting expression, taking

R’ — oo and applying the reflection formula for hypergeometric tiorts (see e.g.| [30], yields

the third expression in the case statemenflin (58)
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