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Performance of Multiantenna Linear MMSE

Receivers in Doubly Stochastic Networks

Junjie Zhu,Student Member, Siddhartan Govindasamy,Member, Jeff Hwang

Abstract

A technique is presented to characterize the Signal-to-Interference-plus-Noise Ratio (SINR) of a rep-

resentative link with a multiantenna linear Minimum-Mean-Square-Error receiver in a wireless network

with transmitting nodes distributed according to a doubly stochastic process, which is a generalization

of the Poisson point process. The cumulative distribution function of the SINR of the representative

link is derived assuming independent Rayleigh fading between antennas. Several representative spatial

node distributions are considered, including networks with both deterministic and random clusters, strip

networks (used to model roadways, e.g.), hard-core networks and networks with generalized path-loss

models. In addition, it is shown that if the number of antennas at the representative receiver is increased

linearly with the nominal node density, the signal-to-interference ratio converges in distribution to a

random variable that is non-zero in general, and a positive constant in certain cases. This result indicates

that to the extent that the system assumptions hold, it is possible to scale such networks by increasing

the number of receiver antennas linearly with the node density. The results presented here are useful

in characterizing the performance of multiantenna wireless networks in more general network models

than what is currently available.

Index Terms

MMSE, Non-homogenous, Clustered, Cox

I. INTRODUCTION

Multiantenna systems can increase data rates in wireless networks through spatial multiplexing,

beamforming and interference mitigation, the performanceof which is highly dependent on the
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spatial separations between nodes. Most of the results in the literature that explicitly model

multiantenna systems in spatially distributed networks have focused on homogenous Poisson

spatial node distributions, i.e. systems where node positions are independent of one another

and are distributed uniformly randomly on a plane ([1], [2],[3], [4]). While simpler and more

tractable, homogenous Poisson spatial node distributionsmay not apply in many scenarios, such

as networks with hot spots, clusters of active nodes or restrictions on the locations of nodes

(such as vehicular networks where nodes are restricted to being on a roadway). In particular,

networks where active nodes are spatially correlated, suchas doubly stochastic networks, are

difficult to analyze. Giacomelli, Ganti and Haenggi remark in [5] that “Extensions [of results

for homogenous PPP networks] to models with dependence (node repulsion or attraction) are

non-trivial.” In this work, we provide exact (and in some cases, closed-form) expressions for the

CDF of the SINR for several different clustered network models which are examples of networks

with node attraction. Moreover, the non-homogenous Poisson model, which is a special case of

the doubly stochastic process, can be used to approximate hard-core networks (a model with

node repulsion) as described later in this paper.

A. Main Contributions

In this paper, we develop a framework to analyze the Signal-to-Interference-plus-Noise Ratio

(SINR) of a representative link with a multiantenna linear Minimum-Mean-Square-Error (MMSE)

receiver in networks where nodes are distributed in space according to a doubly stochastic

or Cox process (e.g., see [6]). This model allows for non-homogeneity and certain forms of

correlation in the spatial node distributions. Two specialcases of doubly stochastic processes are

non-homogenous PPPs, where node locations are independentbut the spatial node distribution

is non-uniform, and Poisson cluster processes, where nodesare distributed in clusters whose

centers form a PPP. Other examples include networks with a single, randomly located cluster

of nodes, and networks with random degrees of clustering. Both non-homogenous PPPs and

Poisson cluster networks have been proposed as models for networks with non-homogenous

spatial distributions, and analyzed for single antenna systems in works such as [7], [8], [9], and

[10]. Analyzing such network models in systems with multiuser, multiantenna receivers (e.g.,

the MMSE receiver) is interesting given that almost all existing results consider either multiuser,

multiantenna systems in homogenous PPP networks, or singleantenna systems in more general
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Fig. 1. Homogenously distributed interferers (points) restricted to a disc at each of the homogenously distributed cluster centers

(crosses) with the representative receiver (triangle) at the center of the network. In this example, it is conditioned that there is

a cluster at the origin. Case 1 represents a cluster that doesnot include the origin, whereas Case 2 represents a cluster that

includes the origin.

network models. Moreover, multiantenna receivers can suppress interference from nearby nodes

and is thus less susceptible to the presence of nearby interferers compared to single antenna

systems. Compared to non-interference-mitigating receivers (with single or multiple antennas),

the MMSE receiver is generally expected to perform better. This difference is more significant

in networks with clusters of nodes than that in spatially homogenous networks.

We apply the general framework developed in this paper to a number of examples to illustrate

its applicability across a wide range of systems. The example network models analyzed here

include Poisson cluster networks (an example is shown in Fig. 1) which can model networks

with multiple, randomly distributed clusters (proposed asa model for clustered networks in [8])

and networks with one, randomly located cluster. Expressions for the CDF of the SINR in these

network models are provided in integral form which can be easily evaluated using standard

numerical integration techniques. This framework can alsobe applied to other network models,

with further examples provided in conference versions of this paper.

Other network models analyzed here are networks with a single deterministic cluster and an

inverse power-law spatial node intensity, for which a closed form expression for the cumulative



distribution function (CDF) of the SINR for a receiver at thecenter of the cluster is given. This

result can be used to compare the benefits of using multiple antennas in networks with varying

degrees of clustering. We also analyze strip networks wherenodes are distributed uniformly

randomly on a strip on the plane as a simple model for vehicleson a long roadway.

Furthermore, we apply this model to approximate hard-core point processes which are notori-

ously difficult to analyze exactly due to the dependence between node locations. In a hard-core

process, each node is surrounded by a guard zone which keep nodes at a minimum distance

from each other. These processes can be used to model active nodes in CSMA networks [9] and

networks where nodes cannot physically come too close to each other. The standard approach to

analyze such networks is to approximate them as non-homogenous PPPs with a lower density

of nodes around a representative node (e.g., [11], [12], [13], [14]). Existing works however,

have not used multiuser receivers such as the MMSE receiver which has the capability to

mitigate interference. Moreover these works use a more complicated non-homogenous Poisson

approximation based on the second order product density of Matern processes (e.g., see [6])

compared to the two-case piecewise constant model used here. Since multiuser receivers and

hard-cores can both be used to reduce interference, studying MMSE receivers in hard-core

networks can help us understand if it is beneficial to use CSMA-like protocols with interference

mitigating receivers and vice-versa since both methods canincur significant overhead.

In addition to the different network models, we show that theSINR of a multiantenna receiver

in wireless networks with more general forms of path-loss than the standard inverse power-law

model, is statistically equivalent to the SINR in a network with a non-homogenous Poisson

distribution of nodes with an appropriate model for the spatial node distribution. We also show

that if the number of receiver antennas is scaled linearly with the nominal node density in doubly

stochastic networks, the SINR at a representative receiverconverges in distribution to a random

variable, and for the case of non-homogenous PPPs, it converges in probability to a positive

constant. This finding generalizes similar findings derivedpreviously for homogenous PPPs of

nodes in [1], [2] and [3]. The practical utility of this result is that it indicates that to the extent that

system assumptions hold, doubly stochastic networks can bescaled by increasing the number of

receiver antennas with the nominal user density. Note that our finding is non-trivial as compared

to the results in [1], [2] and [3] which all assumed spatiallyhomogenous and uncorrelated user

distributions. In those works, it was possible to find expressions which involve the density of



users and the number of antennas. The double limit as the number of antennas and density of

users go to infinity with a constant ratio of these expressions can be taken directly. In this work

however, a more complicated approach had to be taken which involved the derivation of an

apparently novel property of upper regularized gamma functions given in Lemma 2 below.

In summary the main contributions of this work are

1) A general framework to statistically analyze the SINR in doubly stochastic networks includ-

ing a framework for general construction of doubly stochastic networks. This framework

is applicable to a variety of practically relevant scenarios that are interesting problems in

their own right.

2) Proof that scaling number of antennas with nominal user density can help scale doubly

stochastic networks.

3) Exact expressions for the CDFs of the SINR for Thomas and Matern cluster networks with

the representative transmitter being part of a cluster of nodes.

4) Closed-form equations for certain clustered network models to quantify the benefits of

multiple antennas in cluster networks.

5) Simple approximations to the CDF of the SINR for hard-corenetworks which are difficult

to analyze exactly.

B. Related Results

As remarked earlier, the literature on spatially distributed networks with multiantenna users

has focused primarily on networks with nodes distributed asa homogenous PPP. For such

networks, [15] analyzed the performance of matched-filter and antenna selection receivers,

[3] analyzed linear MMSE receivers and [2] analyzed a partial-zero forcing receiver which

includes the standard zero-forcing receiver as a special case. Multiantenna transmitters with

spatial multiplexing were analyzed in [1], [4], [16] and [17] under different sets of assumptions.

[1], [4] and [16] also find the optimal number of streams (i.e.multiplexing rate) to maximize

the overall data rate in homogenous PPP networks.

Few works have analyzed multiantenna systems in non-homogenous or clustered networks.

[18] considered interference-alignment in clustered wireless networks where partial interference-

alignment is used to reduce the system to a form similar to a single-antenna system. While

interference-alignment can provide enormous data rates, it requires significant overhead for



the exchange of transmit (Tx) Channel-State Information (CSI). In comparison, the system we

analyze is more attractive for implementation as it does notrequire Tx CSI and uses a linear

receiver which only requires CSI of the target transmitter and the spatial covariance matrix of the

interference plus noise. [13] approximates networks of multiple-input-multiple-output (MIMO)

links with CSMA using a Poisson approximation for the spatial node distribution. However, the

multiple antennas are not used for interference mitigationcompared to this work which considers

interfering single-input-multiple-output (SIMO) links with interference mitigating multiantenna

receivers.

[19] considers non-homogenous Poisson networks using an asymptotic analysis which is

applicable only with moderately large numbers of antennas.Furthermore, it does not provide the

distribution of the SINR and focuses on the convergence of appropriately normalized versions

of the SINR as the numbers of antennas per receiver gets large. In the equivalent asymptotic

regimes, our results agree with those findings.

In a recent, independent parallel work [20] (which appearedafter our conference paper that

forms the basis of the results in this work [21]) the CDF of theSINR was derived for hierarchical

Poisson networks which is used to analyze Poisson cluster networks. In [20] the authors assume

that the representative transmitter whose SINR is analyzed, is located at a deterministic point

which is not part of a cluster, even though all other transmitters in the network belong to clusters.

For the results on Poisson cluster processes in this paper, the representative transmitter could

either be part of a cluster or not, and is thus more general. Moreover, their results differ from

ours in that their expressions for the CDFs of the SINR involve complex contour integration

whereas corresponding results in our paper involve multiple real integrals.

C. Notation

Throughout the paper, uppercase bold characters representmatrices and lowercase bold char-

acters represent vectors. The indicator function1{A} equals1 if A is true, and0 otherwise.

B(Y,R) denotes a disk of radiusR centered atY .

II. SYSTEM MODEL

A representative receiver at the origin is communicating with a representative transmitter

at a fixed distancerT in the presence of simultaneously transmitting co-channelinterferers



distributed on a plane. The spatial distribution of interferers will be described later in this section.

These interferers, transmitting with equal power, are communicating with other receivers whose

locations do not affect our results. We assume the inverse power-law path-loss model where

the average power (over fading realizations)p from a node transmitting with unit power, at a

distancer is p = r−α, with the path-loss exponentα > 2. The receiver hasL antennas, and the

representative transmitter and each interferer have a single antenna. We use the labelT to denote

the representative transmitter and1, 2, · · · , n to label the interferers.ri represents the distance

between thei-th interferer and the representative receiver at the origin, andxT andxi represent

the transmitted symbols from the representative transmitter andi-th interferer respectively. At a

given sampling time, the received signal vectory ∈ CL×1 is

y = r
−α/2
T gTxT +

n
∑

i=1

r
−α/2
i gixi +w , (1)

wherer−α/2
T gT (or r−α/2

i gi) represents the channel coefficients between the representative trans-

mitter (or thei-th interferer) and the receiver.gT and gi ∈ CL×1 comprise independent and

identically distributed (i.i.d.), zero-mean, unit-variance complex Gaussian entries.w comprises,

i.i.d. complex Gaussian entries with varianceσ2 per complex dimension, representing noise.

The representative receiver estimatesxT from y using a linear MMSE estimator which

maximizes the SINR, and which is given by:

SINR= r−α
T g

†
T

(

GPG† + σ2IL
)−1

gT , (2)

where IL is theL × L identity matrix,P = diag
[

r−α
1 , r−α

2 , · · · r−α
n

]

, and thei-th column of

G ∈ CL×n is gi. To simplify notation, we define the distance-normalized SINR asγ = SINR·rαT .

We assume that the interferers are distributed spatially according to a doubly stochastic process,

which is a generalization of the PPP. Doubly stochastic processes can be described by first

defining a non-homogenous PPP, which is a point process wherenode locations are independent,

and the number of nodes in any subsetB of the plane is a Poisson random variable with mean

µ(B) =
∫

B
Λ(r, θ) r dr dθ . (3)

Here the intensity functionΛ(r, θ) captures the likelihood of interferers occurring in an in-

finitesimal region around a point(r, θ). In the doubly stochastic, or Cox process,Λ(r, θ) is a

random process (e.g., see [6]). For a particular realization of the intensity function of the doubly



stochastic process, denoted byλ(r, θ), the process reduces to a non-homogenous PPP. Note here

that different models of spatial node distributions resultin different forms forΛ(r, θ) andλ(r, θ).

Given a deterministic intensity functionλ(r, θ), we can construct a non-homogenous PPP of

interferers starting with a circular network of radiusR and i.i.d. interferers placed according

to the probability density function (PDF)fr,θ(r, θ) which is related to the intensity function as

follows:

fr,θ(r, θ) =
r

µ
λ(r, θ)1{0≤r<R} , (4)

where the number of interferersn in the circular network is a Poisson random variable with

meanµ, defined as

µ =

∫ R

0

∫ 2π

0

rλ(r, θ)dθdr. (5)

In the derivation of the main results we takeR → ∞ to model the interferers distributed

according to a non-homogenous PPP with intensity functionλ(r, θ).

Note that since the spatial distribution of interferers in our network model is not necessar-

ily homogenous, the representative receiver does not correspond directly to the notion of the

“typical” receiver commonly encountered in the literature(e.g., see [22] and references therein)

because unlike homogenous networks, statistical properties of the system at any point on the

plane (e.g., the origin) could differ from the properties atother points. For the purposes of this

work, the representative receiver should be interpreted simply as the receiver at the origin, and

the representative transmitter is the transmitter to whichit is linked.

III. GENERAL RESULTS ON THEOUTAGE PROBABILITY

One key performance measure of communication systems is theoutage probability, which is

defined as the probability that the SINR is below a thresholdτ . For a fixedrT , this probability

is Pr{SINR≤ τ} = Fγ(τr
α
T ), whereFγ(γ) is the CDF of the distance-normalized SINRγ.

To characterize the SINR with doubly stochastic processes of interferers, we first condition

on a realization of the intensity function, then find the outage probability in the resulting non-

homogenous PPP, and finally remove the conditioning to derive the outage probability. The

following lemma characterizes the SINR when we condition ona realizationλ(r, θ), of Λ(r, θ).

Note that this lemma first appeared as Theorem 1 in [21] which is a conference version of this

paper, and a similar result appeared later in another work [20].



Lemma 1: The CDF ofγ conditioned onΛ(r, θ) = λ(r, θ) (resulting in a non-homogenous

PPP with intensity functionλ(r, θ)) is

Fγ|Λ(γ|Λ = λ) = 1−
L−1
∑

k=0

(ψ(γ;λ) + σ2γ)k

k!
exp(−ψ(γ;λ)− σ2γ) = 1− Γ(L, ψ(γ;λ) + σ2γ)

Γ(L)

(6)

where

ψ(γ;λ) =

∫ ∞

0

∫ 2π

0

λ(r, θ)r
r−αγ

1 + r−αγ
dθdr, (7)

and Γ(.) and Γ(., .) are the gamma function and the upper incomplete gamma function. In

addition, the corresponding PDF ofγ is:

fγ(γ) =
(ψ(γ) + σ2γ)L−1 exp(−ψ(γ)− σ2γ)(σ2 + ψ′(γ))

(L− 1)!

whereψ′(γ) is the derivative ofψ(γ) with respect toγ.

Proof: Given in Appendix A.

This result can also be used directly if the random intensityfunction equals a deterministic

function (i.e.Λ(r, θ) = λ(r, θ)) with probability 1. We apply this lemma to characterize the

outage probability in doubly stochastic networks in the following theorem.

Theorem 1: The CDF ofγ in a network with interferers distributed according to a doubly

stochastic process is

Fγ(γ) = 1−
L−1
∑

k=0

exp (−σ2γ)

k!

k
∑

ℓ=0

(

k

ℓ

)

(σ2γ)k−ℓEΛ

[

ψℓ(γ;λ) exp(−ψ(γ;λ))
]

, (8)

whereψ(γ;λ) follows from (7) andEΛ denotes taking the expectation over all realizations of

Λ(r, θ), i.e. all possibleλ(r, θ).

Proof: Taking the expectation of (6) overΛ(r, θ), expanding(ψ(γ;λ) + σ2γ)k using the

binomial theorem, and rearranging the terms yields (8).

Suppose that the doubly stochastic process of interferers is the superposition of a non-

homogenous PPP with intensity functionλp(r, θ) and another doubly stochastic point process

with intensity functionΛq(r, θ), which results inΛ(r, θ) = λp(r, θ) + Λq(r, θ). Substituting this

intensity function into Theorem 1 and moving the integral involving λp(r, θ) outside of the

expectation results in the following corollary.



Corollary 1:

Fγ(γ) = 1−
L−1
∑

k=0

exp (−ψp(γ)− σ2γ)

k!

k
∑

ℓ=0

(

k

ℓ

)

(ψp(γ) + σ2γ)k−ℓEΛq

[

ψℓ
q(γ) exp(−ψq(γ))

]

,

(9)

whereψp(γ) andψq(γ) are given by (7), withλp(r, θ) andλq(r, θ) replacingλ(r, θ) respectively.

λq(r, θ) here denotes a realization ofΛq(r, θ).

This corollary is useful later in this paper in characterizing networks with clusters of nodes

conditioned on the location of one or more clusters, which isuseful to characterize networks

where the representative transmitter at a given point belongs to a cluster.

IV. SCALING DOUBLY STOCHASTIC NETWORKS BY INCREASING THENUMBER OF

ANTENNAS

One of the questions that Theorem 1 allows us to answer is whether one can maintain a non-

zero Signal-to-Interference-Ratio (SIR) if the number of antennas at the representative receiver

is increased linearly with the nominal density of interferers in the network. In the context of

homogenous networks [1], [2] and [3] found that this is indeed the case. Here, we shall show

that a similar result holds even when the spatial interfererdistribution is doubly stochastic.

Assuming that noise is negligible, we show that the SIR on therepresentative link converges in

distribution if the number of antennas at the receiver increases linearly with a nominal interferer

density. This is under the assumption that the channel model, independent Rayleigh fading in

particular, holds, and that accurate measurements of CSI are available at the receiver. A key

result that we use is the following lemma which may already beknown but we were unable to

find it in the literature.

Lemma 2: Let the upper regularized gamma function be denoted byQ(L, x) = Γ(L,x)
Γ(L)

, where

Γ(L, x) is the upper incomplete gamma function. LetL be a positive integer andq > 0, then

lim
L→∞

Q(L, qL) =











0, if q ≥ 1

1, if q < 1.
(10)

Proof: Given in Appendix B. Note that the proof here is a corrected version of the proof of

Lemma 1 in a conference version of this paper, [21].



Suppose that the intensity functionΛ(r, θ) = βΛc(r, θ), whereΛc(r, θ) is a nominal intensity

function which describes the “shape” of the true intensity function, andβ is the nominal interferer

density which scales the nominal intensity function. Letλ(r, θ) be a realization ofΛ(r, θ) and

λc(r, θ) be a realization ofΛc(r, θ), such thatλ(r, θ) = βλc(r, θ). Next, define:

ψc(γ;λc) =

∫ ∞

0

∫ 2π

0

λc(r, θ)

β
r

r−αγ

1 + r−αγ
dθdr . (11)

Note thatψ(γ;λ) in (7) is equal toβψc(γ;λc). We can now state the following theorem.

Theorem 2: Let β = ℓL with a constant scaling coefficientℓ > 0. As L → ∞, the distance-

normalized SIR,γ converges in distribution to a random variable with CDFEΛ [φ(γ;λ)], where

φ(γ;λ) =











0, if γ ≤ ψ−1
c

(

1
ℓ
;λ

)

1, if γ > ψ−1
c

(

1
ℓ
;λ

)

.
(12)

For a Λ(r, θ) that is equal to a deterministic intensity function with probability 1 (i.e. the

interferers form a non-homogenous PPP on the plane), the SIRconverges in probability to

ψ−1
c

(

1
ℓ

)

r−α
T .

Proof: Given in Appendix C.

Therefore, if we increase the number of antennas linearly with the nominal interferer density

in a non-homogenous Poisson network, the SIR will approach aconstant non-zero value. For

general doubly stochastic networks, the SIR approaches a random variable with a CDF that is

dependent on the statistical properties of the intensity function which is a random process. This

fact implies that such networks can be scaled by linearly increasing the number of antennas per

receiver with node density without degrading the SIR to zero, provided that the assumptions of

the system are satisfied. Note that as the number of antennas gets very large, the independent

Rayleigh fading and accurate receiver CSI assumptions willrequire increased antenna separations

and increased channel estimation times. An application of this result is presented in Section V-B.

V. SINGLE CLUSTER NETWORKS

The doubly stochastic network model can be applied to model cluster networks where the

cluster centers or the receiver is randomly located. In thissection, we consider the scenarios where

there is exactly one cluster in the network. Here we shall fix the location of the representative

receiver at the origin but with a randomly located cluster. Note that a randomly located receiver



with a fixed cluster could also be analyzed using this technique as we are only concerned with

the relative locations of the receiver and the cluster.

We assume that the interferers are clustered around a randomly-located parent point (which

is not an interferer),X0. We denote the PDF of the cluster center byfX0
(r, θ). Conditioned on

X0, the daughter points follow a non-homogenous PPP with intensity functionλ(r, θ;X0) which

is related tofX0
(r, θ) by

fr,θ(r, θ|X0) =
r

µd
λ(r, θ;X0). (13)

Applying Theorem 1, we find that

Fγ(γ) = 1−
L−1
∑

k=0

∫ ∞

0

∫ 2π

0

(ψ(γ;X0) + σ2γ)k

k!
exp(−ψ(γ;X0)− σ2γ)fX0

(τ, ϑ)dτdϑ, (14)

whereψ(γ;X0) is given by (7) withλ(r, θ) = λ(r, θ;X0).

A. Two-dimensional Gaussian Cluster Networks

Consider a cluster model where the interferers are distributed according to a two dimensional

Gaussian distribution (with width parameterν), centered atX0. This model can be viewed as

one with a single cluster from a Thomas Cluster Network analyzed for single antenna systems in

[8] (referred to as “a symmetric normal distribution”). Note that under this model, the distance

between an interferer to the representative receiver at theorigin is Rician distributed. Hence, the

PDF of the distance from an interferer to the representativereceiver at the origin is:

fr(r|X0) =
r

ν2
exp

(−(r2 + |X0|2)
2ν2

)

I0

(

r|X0|
ν2

)

, (15)

ψ(γ;X0) can then be expressed as:

ψ(γ;X0) = µd

∫ ∞

0

fr(r|X0)
r−αγ

1 + r−αγ
dr (16)

which yields the CDF of the SINR when substituted into (14). Here, I0(·) is the zeroth-order

modified Bessel function of the first kind.

To verify and illustrate this result (including the accuracy of its numerical evaluation), we

simulated this system withL = 10 andσ2 = 10−14 . For each trial, we placed a Poisson number

of interferers with meanµd = 3140 in a cluster whose centerX0 is distributed with uniform

probability in B(0, X0) The distances of the interferers from the origin thus followa Rican



distribution with shape parameterν = 100 for each trial. In Fig. 2, the simulated CDFs of the

SINR withRp = 300, 400, 500 and600 match our theoretical predictions which were numerically

evaluated using standard quadrature integration.
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Fig. 2. Empirical and theoretical CDF of SINR of a link with 10receiver antennas, and interferers distributed accordingto an

off-center circular Gaussian. The cluster centers were distributed uniformly in disks of varying radiiRp.

B. Cluster Networks with Power-law Intensity Functions

When the location of the cluster center,X0 is a constant with probability 1, the doubly

stochastic network reduces to a non-homogenous Poisson network. Non-homogenous Poisson

networks with intensity functions in the form ofρrǫ can effectively model clustered networks

where the receiver is located at the center of a deterministic cluster, e.g., [19]. The exponentǫ

determines the degree of clustering and the scale factorρ is the nominal density. The intensity

function includes the homogenous PPP as a special case whenǫ = 0. With a power-law spatial

node model, we obtain closed-form expressions for the CDF ofthe SINR. This finding helps

quantify the performance gains that can be expected from using multiple antennas to mitigate

interference in the center of a dense cluster as a function ofthe degree of clustering and other

system parameters. To the best of our knowledge, this is the only exact, closed-form result on

the CDF of the SINR for a spatially clustered user distribution.

Here we develop a more general form of such an intensity function. This model will later

be used to approximate hard-core networks in Section VII-C.Consider a set of non-negative



numbers representing radial rangesR0 < R1 < ... < Rm. Assume that the intensity function has

the following form:

λ(r, θ) =







































ρ1r
ǫ1 for R0 ≤ r < R1

ρ2r
ǫ2 for R1 ≤ r < R2

...

ρmr
ǫm for Rm−1 ≤ r < Rm ,

(17)

where ǫ1 > −2 if R0 = 0, and ǫm < α − 2 if Rm = ∞. In the rangeRk−1 ≤ r < Rk, the

intensity function of the interferers follows a power-law distribution with nominal densityρk,

and exponentǫk. Applying Lemma 4 from Appendix E to (17), we find that the CDF of γ is

given by (6) with

ψ(γ) =

m
∑

k=1

2πρk
2 + ǫk

[

Rǫk+2
k 2F1

(

1,
ǫk + 2

α
;
ǫk + 2 + α

α
;−R

α
k

γ

)

−Rǫk+2
k−1 2F1

(

1,
ǫk + 2

α
;
ǫk + 2 + α

α
;−R

α
k−1

γ

)]

. (18)

For the simplest scenario, we have only one piece for the intensity function as follows:

λ(r, θ) = ρrǫ, (19)

where−2 < ǫ ≤ 0, to maintain finite interference for anyr. In this case, from the derivation in

Appendix F, the CDF ofγ is expressible in closed-form (withǫ parameterized) as

Fγ(γ; ǫ) = 1−
L−1
∑

k=0

1

k!

(

2π2ρ

α
csc

(

π
ǫ+ 2

α

)

γ(ǫ+2)/α + σ2γ

)k

× exp

(

−2π2ρ

α
csc

(

π
ǫ+ 2

α

)

γ(ǫ+2)/α − σ2γ

)

. (20)

Note that an asymptotic analysis was used to show convergence of an appropriately normalized

version of the SIR for this model in [19]. To confirm that the result above agrees with the

conclusions in that work, we first neglect the noise by settingσ2 = 0. Since the SIR grows without

bound asL→ ∞, we define a normalized version of the SIR,ξ = L−α/(2+ǫ)rαTSIR= L−α/(2+ǫ)γ

as is done in [19] to avoid degenerate results asL→ ∞. Then

Fξ(ξ) = Pr(L−α/(2+ǫ)γ < ξ) = Pr(γ < ξLα/(2+ǫ)) = 1− Γ(L, 2π
2ρ
α

csc
(

π ǫ+2
α

)

ξ(ǫ+2)/αL)

Γ(L)
. (21)
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Fig. 3. Comparison between the empirical and theoretical probability density function of SINR with the power-law intensity

functionΛ(r, θ) = 0.023√
r

. The parameters used arerT = 10, L = 10, α = 4, σ2 = 10−12, and100, 000 Monte-Carlo trials.

Given Lemma 2, if we setq = 2π2ρ
α

csc
(

π ǫ+2
α

)

ξ(ǫ+2)/α, then Fξ(ξ) approaches a step at a

deterministic value
[

2π2ρ
α

csc
(

π ǫ+2
α

)

]−α/(ǫ+2)

asL → ∞. This implies that for large number of

antennasL, SIR≈
[

2π2ρ
αL

csc
(

π ǫ+2
α

)

]−α/(ǫ+2)

r−α
T which is consistent with the findings in [19].

To validate (20), we conducted Monte Carlo simulations which indicate a close agreement

between the simulations and the theoretical prediction as illustrated in Fig. 3 which shows PDFs

of the SINR for the intensity functionΛ(r, θ) = 0.023√
r

.

It is worth noting that (20) can be extended to networks with random degrees of clustering,

which are doubly stochastic but not Poisson networks. For instance, consider a network which is

clustered withǫ = ǫ1 with a certain probability, and homogenous otherwise, which could model

networks with varying user distributions influenced by usage patterns. The CDF of the SINR in

the center of such a network (the location with the worst-case SINR) could be easily found in

closed-form from (20) and Theorem 1 asPr(ǫ = ǫ1)Fγ(γ; ǫ1) + (1− Pr(ǫ = ǫ1))Fγ(γ; 0).

Furthermore, we can use the power-law model as an example to illustrate the scaling properties

of the system in Theorem 2. We compare the CDF of the SIR withλ(r, θ) = βλc(r, θ), where

β = ρ andλc(r, θ) = rǫ for L =2, 5, 10 and 40 antennas, with corresponding densityρ = 0.025,

0.0625, 0.125 and 0.5 in the network. Note that these values correspond to a linear increase in

interferer density with the number of antennas. The CDFs areillustrated in Fig. 4 which shows

that as the number of interferers increases from2 to 20 with a corresponding increase in the



density of interferers, the CDF of SIR approaches a step function, i.e the SIR approaches a

deterministic non-zero value in distribution. Moreover, the SIR converging in distribution to a

constant implies that it converges in probability.
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Fig. 4. Cumulative distribution function of the SIR (dB) with number of antennas increasing linearly with nominal interferer

density withλ(r, θ) = ρ/
√
r, rT = 10, α = 4 andσ2 = 0.

VI. SUPERPOSITION OFPOISSON AND NEYMAN -SCOTT NETWORKS

In this section, we derive the CDF of the SINR on a representative link in a network with

interferers distributed as a superposition of a non-homogenous PPP and the Neyman-Scott cluster

process. The Neyman-Scott process is often used in spatial statistics to model random clustering

and has been proposed as a model for wireless networks with random clusters of users [8].

The superposition of the two processes enables us to analyzea clustered point process of

transmitters, conditioned on the location of the cluster containing the representative transmitter.

The conditioning on the location of this cluster in turn enables us to condition on the location

of the representative transmitter. An example using the Matern cluster process is given later in

this section.

We assume that one subset of interferers is distributed according to a PPP with a deterministic

intensity functionλp(r, θ) while the rest are distributed according to the Neyman-Scott cluster

process as follows. A set of parent points, denoted byΠ = {Xi| i = 1, 2, ...}, is generated from a

PPP with intensityλ∗(r, θ) on the plane (see e.g., [6]), and for each cluster a random number of

daughter points are placed in an i.i.d. fashion according tosome probability distribution. To define

the Neyman-Scott process within our context, we start with the deterministic intensity function



associated with a single cluster whose parent point (or cluster center) isXi, defined asλ(r, θ;Xi).

The number of the i.i.d daughter points that surround parentpoint Xi is a Poisson random

variable with meanµd. The relationship between the PDF of the daughter points associated

with a parent pointXi and the intensity function of the parent pointsλ∗(r, θ) depends on the

clustering model. All the daughter points are considered interferers in the network, but the parent

points are not. Thus, the intensity function of the interferers in the network, conditioned on a

particular realization of the parent point processΠ, is:

λ(r, θ; Π) = λp(r, θ) +
∑

Xi∈Π
λ(r, θ;Xi). (22)

When the conditioning on the realization of the parent pointprocess is removed we obtain a

superposition of Poisson and Neyman-Scott cluster processes.

A. Outage Probability

We can apply Corollary 1 to derive the outage probability forthis model. The expectation

over the random intensity functionsΛ(r, θ) can be evaluated using the following Lemma that

may already be known, but we were not able to find in the literature.

Lemma 3: Let Π be a PPP onR2 with intensityλ∗ : R2 → [0,∞), and letΞ =
∑

X∈Π ζ(X),

whereζ : R2 → [0,∞) is a non-negative measurable function. Then, for integersℓ ≥ 0,

EΠ

[

Ξℓe−Ξ
]

=ℓ exp

{
∫

R2

(

e−ζ(u) − 1
)

λ∗(u)du

}

×
∑

(m1,...,mℓ)∈Mℓ

∏ℓ
j=1

[∫

R2 ζ
j(z)e−ζ(z)λ∗(z)dz

]mj

m1!1!m1m2!2!m2 ...mℓ!ℓ!mℓ
, (23)

whereu andz are integration variables, andMℓ is the set of allℓ-tuples of nonnegative integers

(m1, ..., mℓ) satisfying the constraint:

1 ·m1 + 2 ·m2 + 3 ·m3 + ... + ℓ ·mℓ = ℓ. (24)

Note thatζj(z) refers to thej-th power of the functionζ(z).

Proof: Given in Appendix D.

To express the CDF of the SINR on the representative link, we first define

ζ(Xi) =

∫ ∞

0

∫ 2π

0

λ(r, θ;Xi)r
r−αγ

1 + r−αγ
dθdr, (25)



and conditioned on the parent point processΠ, ψq(γ) in Corollary 1 can be expressed as:

ψq(γ) =

∫ ∞

0

∫ 2π

0

∑

Xi∈Π
λ(r, θ;Xi)r

r−αγ

1 + r−αγ
dθdr =

∑

Xi∈Π
ζ(Xi). (26)

The interchange of the order of integration and summation follows from Theorem 11.30 in [23].

With this definition, we can state the following result.

Theorem 3: The CDF of the distance-normalized SINRγ in a network with interferers dis-

tributed as a superposition of a non-homogenous PPP and a Neyman-Scott cluster process is:

Fγ(γ) = 1− exp

{
∫ 2π

0

∫ ∞

0

(

e−ζ(r) − 1
)

λ∗(r, θ)rdrdθ

} L−1
∑

k=0

exp
(

−ψp(γ)− σ2γ
)

×
k

∑

ℓ=0

(ψp(γ) + σ2γ)k−ℓ

(k − ℓ)!

∑

(m1,...,mℓ)∈Mℓ

∏ℓ
j=1

[

∫ 2π

0

∫∞
0
ζj(r)e−ζ(r)λ∗(r, θ)rdrdθ

]mj

m1!1!m1m2!2!m2 ...mℓ!ℓ!mℓ
. (27)

Proof: EvaluatingEΠ

[

ψℓ
q(γ) exp(−ψq(γ))

]

in Corollary 1 whereψq(γ) follows from (26)

with Lemma 3, algebraic manipulations, and converting the integrals from Cartesian to polar

coordinates yields (27).

In (27),ψp(γ) captures the effect of the deterministic portion of the intensity function,λ∗(r, θ)

represents the intensity function of the parent point process, andζ(r) captures the effect of

the daughter points associated with a parent point that is ata distancer from the origin.

For representative Neyman-Scott processes, such as the Matern cluster process, the integrals

in equation (27) can be evaluated numerically using standard methods.

B. Application to the Matern Cluster Process Conditioned on a Deterministic Cluster

Here, we apply Theorem 3 to analyze the Matern cluster process (a type of Neyman-Scott

process), conditioned on a deterministic cluster centeredat the origin. Neyman-Scott processes

have been used as models for wireless networks with clustered interferers in works such as [8].

Consider Fig. 1 which illustrates a realization the superposition of the Matern cluster process

and a deterministic PPP where each cluster is a disk of radiusRd. The corresponding per-cluster

intensity function is

λ(r, θ;Xi) = ρd1{(r,θ)∈B(Xi,Rd)} , (28)



whereρd = µd/(πR
2
d) is the density of the daughter points in a single cluster. Conditioned on

a realization of the parent pointsΠ, the intensity function becomes:

λ(r, θ; Π) = ρ′d1{(r,θ)∈B(0,Rd)} +
∑

Xi∈Π
ρd1{(r,θ)∈B(Xi,Rd)}. (29)

whereρ′d = (µd−1)/(πR2
d) as we reduce the mean number of interferers by 1 at the deterministic

cluster to account for the representative transmitter. Thefirst term represents the deterministic

cluster and the second term represents the Matern cluster process conditioned on the realization

of the parent pointsΠ.

From results in V-B and Lemma 4, the contribution of the deterministic cluster is:

ψp(γ) = πρ′dR
2
d2F1

(

1,
2

α
;
2 + α

α
;−R

α
b

γ

)

= (µd − 1)2F1

(

1,
2

α
;
2 + α

α
;−R

α
b

γ

)

. (30)

Next, we find the parameters and functions that capture the interferers from the Matern cluster

process. To find the corresponding PDF, conditioned on one parent pointXi, of the distance of a

random point from this cluster to the representative receiver fr(r|Xi) , we need to consider two

disjoint and independent cases. The cases correspond to whether the cluster under consideration

includes the origin or not, as shown in Fig. 1.

Case 1:|Xi| ≥ Rd, i.e. when the representative receiver is outside the diskB(Xi, Rd). In this

case,r is the distance between a random point inside a circle of radius Rd and a fixed point

outside this circle (at a distance|Xi|). This PDF is given in [24] as follows:

fr(r| |Xi| ≥ Rd) =
2r

πR2
d

cos−1

(

r2 + |Xi|2 − R2
d

2r|Xi|

)

· 1{|Xi|−Rd≤r≤|Xi|+Rd} (31)

Case 2:|Xi| < Rd, i.e. when the representative receiver is inside diskB(Xi, Rd). Using

geometric arguments and applying the techniques used to derive (31) in [24] , we found the

PDF of r in a similar form as follows:

fr(r| |Xi| < Rd) =
2r

πR2
d

· 1{r≤Rd−|Xi|} +
2r

πR2
d

cos−1

(

r2 + |Xi|2 − R2
d

2r|Xi|

)

· 1{Rd−|Xi|≤r≤Rd+|Xi|}.

(32)

Substituting (31) and (32) into (25) yields:

ζ(Xi) =











ρd
∫ |Xi|+Rd

|Xi|−Rd
2r cos−1

(

r2+|Xi|2−R2
d

2r|Xi|

)

r−αγ
1+r−αγ

dr , |Xi| ≥ Rd

ρd

[

∫ Rd−|Xi|
0

2r r−αγ
1+r−αγ

dr +
∫ Rd+|Xi|
Rd−|Xi| 2r cos

−1
(

r2+|Xi|2−R2
d

2r|Xi|

)

r−αγ
1+r−αγ

dr
]

, |Xi| < Rd.

The CDF is found by substituting this expression and (30) into (27).



We verified the resulting CDF by Monte Carlo simulations. In each trial of the simulations

we start with a homogenous PPP with densityρp to model the cluster centers, and place one

deterministic cluster centered at the origin. Next we generate a Poisson number of daughter points

at the deterministic cluster with densityρ′d in a disk of radiusRd. Then, we independently

generate a Poisson number of daughter points with densityρd, i.i.d. in disks of radiusRd,

centered at each of other cluster centers. Even though we could not solve the integrals in the

resulting CDFs of the SINR in closed form, we were able to apply standard quadrature numerical

integration methods to compare the theoretical predictions to the simulated CDFs of the SINR.

Fig. 5 depicts the simulated and theoretical CDFs of the SINRwith interferers distributed as

a Matern cluster process, conditioned on a cluster at the origin for L = 1, 2, 3 and4 antennas,

and SNR of 10 dB, and the remaining parameters as specified in the figure. The simulated

and theoretical CDFs of the SINR are indistinguishable, which confirms the accuracy of both

the analysis and the numerical integration. Notice that thevariance of the SINR for the cluster

processes is large due to the high degree of irregularity in the spatial interferer distribution.
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Fig. 5. Comparison between the empirical and theoretical CDFs of SINR when interferers are generated from a Matern cluster

process conditioned on one deterministic cluster. Varyingthe number of antennasL, the empirical CDFs result from100, 000

Monte Carlo trials. Other parameters used arerT = 10, α = 4, σ2 = 10−5, ρp = 1.6 × 10−5, µd = 200 andRd = 300.

VII. N ON-HOMOGENOUSPOISSONNETWORKS

As described in Section III, conditioned on a realization ofthe intensity function, the doubly

stochastic process reduces to a non-homogenous PPP, and is as such a special case of a doubly



stochastic process. As one of the main results of this section, we show that the SINR of a

representative link in a homogenous network with a generalized path-loss model is statistically

equivalent to that in a non-homogenous network with the inverse power-law path-loss model,

which enables us to use the framework developed here to characterize systems with more general

path-loss models and to compare networks with different path-loss models.

Non-homogenous Poisson networks are interesting as they describe many practical scenarios

such as simple models of roadway networks where the spatial node distribution has a constant

positive intensity on the roadway and is zero outside the roadway. The non-homogenous network

model can also be used to approximate the SINR distribution for links in hard-core networks,

which serve as simple models for networks with protocols such as CSMA. As noted in the

introduction, CSMA networks are notoriously difficult to analyze. In Section VII-C, we show

that a simple approximation of a hard-core process using a non-homogenous PPP can provide

an accurate approximation for the CDF of the SINR. Note that existing works on hard core

networks, none of which consider interference-mitigatingmultiantenna receivers as we do here,

use more complicated approximations because they are more sensitive to nearby interferers which

would be nulled out by the MMSE receiver in our system.

A. Modeling Generalized Path-loss Models through Non-homogenous Poisson Networks

In this subsection, we show that the distance-normalized SINR of the representative link

in a homogenous PPP network where the path-loss is any monotonically decreasing function

of distance, is statistically equivalent to the SINR in non-homogenous PPP network with an

appropriate intensity function and the inverse-power-lawpath loss model. This enables us to

apply the framework we developed for the inverse-power law model to analyze networks with a

more general form of path loss. Although the inverse power-law model has been experimentally

validated for certain physical scenarios (e.g., see [25]),there are many scenarios for which this

model is inadequate as described in [25] for instance.

Assume that the path-loss is represented byϕ(r), which is a continuous, monotonically

decreasing function. We note here that the this form of path-loss is quite general and is equivalent

to general path-loss models used in [22] and numerous other works on spatially distributed

networks. The CDF of the distance-normalized SINRγ is given in Lemma 1, andΛ(r, θ) equals

some deterministic intensity functionλG(r, θ) with probability 1. LetλG(r, θ) be isotropic inθ



so that it is not dependent onθ. Thus,

ψ(γ) = 2π

∫ ∞

0

λG(r)r
ϕ(r)γ

1 + ϕ(r)γ
dr. (33)

Let u = [ϕ(r)]−
1

α . Sinceϕ(r) is continuous and monotonically decreasing, it is invertible and

r = ϕ−1(u−α). By change of variables, we have:

ψ(γ) = 2π

∫ [ϕ(∞)]−1/α

[ϕ(0)]−1/α

λG(ϕ
−1(u−α)) · ϕ−1(u−α) · u−αγ

1 + u−αγ
· (ϕ−1)′(u−α) · (−α)u−α−1du

We denote a new isotropic intensity function asλS(r) with

λS(r) = λG(ℓ
−1(r−α)) · ℓ−1(r−α) · (ℓ−1)′(r−α) · (−α)r−α−2 · 1{[ϕ(0)]−1/α≤r≤[ϕ(∞)]−1/α}. (34)

Hence, we have found an isotropic intensity functionλS(r), under the path-loss modeled by

r−α such that the resulting CDF ofγ is (6), where

ψ(γ) = 2π

∫ ∞

0

λS(r)r
r−αγ

1 + r−αγ
dr. (35)

So given a certain spatial distribution of interferers under an arbitrary path-loss modelϕ(r),

we can find a corresponding spatial node distribution under the path-loss modelr−α in our

system model that will have the same distance-normalized SINR statistically.

For instance, suppose we have a homogenous network with uniform densityρ and dispersive

path losse−νr. This model has been proposed for certain propagation environments over large

distances with supporting data in [26]. Substitutingu = e
νr
α , we getr = α ln(u)/ν and dr =

α/(νu)du. Therefore,ψ(γ) can also be expressed as:

ψ(γ) = 2π

∫ ℓ−
1
α (∞)

ℓ−
1
α (0)

ρ
α ln(u)

ν

u−αγ

1 + u−αγ

α

νu
du = 2π

∫ ∞

1

ρ
α2 ln(u)

ν2u2
u

u−αγ

1 + u−αγ
du (36)

The equivalent intensity function with path lossr−α is then

λS(r) = ρ
α2 ln(r)

ν2r2
1{1≤r≤∞} (37)

We conducted simulations of this model withL = 10, rT = 10, σ2 = 10−12, a homogenous

PPP distribution of interferers and path-loss:e−νr, with ν = 0.01, andλG(r) = ρ = 10−5. This

model is found to be equivalent to a non-homogenous PPP with path-lossr−4 where,λS(r) =

ρα2 ln(r)
ν2r2

1{1≤r≤∞} = 1.6 ln(r)
ν2r2

1{1≤r≤∞}. Subplot (c) of Fig. 6 shows simulations of networks with

both path-loss models along with the theoretical CDF, indicating a close agreement, thereby

illustrating that the distance-normalized SINR for a receiver at the origin in a network with a
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Fig. 6. Figure (a) shows a homogenous PPP which with a dispersive path loss model (e−0.01r), is statistically equivalent at the

origin to the non-homogenous PPP in Figure (b) with path lossr−4. Figure (c) illustrates simulated and theoretical predictions

for the CDF of the SINR for both models, indicating their equivalence.

dispersive path-loss model and the homogenous spatial distribution of nodes shown in subplot

(a) of Fig. 6, is equivalent statistically the non-homogenous PPP shown in subplot (b) of the

figure, with ther−α path-loss model.

B. Two-dimensional Strip Networks

We can use the framework for analyzing the SINR in non-homogenous PPPs to characterize

a representative link in a strip network, which can be used asa simple model for a vehicular

network on a straight roadway [27]. In this model, nodes are distributed according to a non-

homogenous PPP on the plane with intensity function equal toρ in a strip of width2a centered

at the origin, and zero outside the strip. Fig. 7 illustratesan example of such a network. By

takingR → ∞, we arrive at an infinite strip network.

Using geometric arguments, we find that the PDF of the distance between the origin and a

node distributed with uniform probability in the band-aid-shaped strip illustrated in Fig. 7 is

fr(r) =











2πr/A , r ≤ a

4r arcsin(a/r)/A , a < r ≤ R

whereA = 2R2 arcsin(a/R)+2a
√
R2 − a2 is the area of the band-aid shaped strip. AsR → ∞,



we can write the following expression in terms of the intensity function λb(r, θ):

∫ 2π

0

rλb(r, θ)dθ =











2ρπr , r ≤ a

4rρ arcsin(a/r) , r > a
, (38)

We can thus apply Lemma 1 whereψ(γ) in (7) becomes:

ψ(γ) = 2πρ

∫ a

0

r
γ

γ + rα
dr + 4ρ

∫ ∞

a

r arcsin(a/r)
γ

γ + rα
dr

= πρa2 2F1

(

1,
2

α
;
2 + α

α
;−a

α

γ

)

+ 4ρ

∫ ∞

a

r arcsin(a/r)
γ

γ + rα
dr (39)

Representative transmitter

Interferer

Representative receiver

Fig. 7. Modeling a strip network as a non-homogenous PPP.

Fig. 8 illustrates results from10, 000 trials of a Monte Carlo simulation of this network model,

with the parameters indicated in the caption. The CDF was evaluated using standard quadrature

integration. The close agreement between the simulation and numerical computation validates

the results and indicates that accurate numerical evaluation of the CDF is possible using standard

techniques.

C. Approximating Hard-Core Processes by Non-Homogenous Poisson Processes

In this section, we use a Poisson approximation to analyze hard core networks. We construct

circular guard zones of radiusR1 around all transmitting nodes (representative transmitter and

intreferers) which serves as a simplified model for CSMA networks [9] . The CDF of the SINR



−10 0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

SINR(dB)

C
D

F

 

 

Simulation

Theory

a = 5
a = 10

a = 25

Fig. 8. Simulated (10, 000 trials) and theoretical CDF of the SINR (dB) in a road way network with rT = 10, σ2 = 10−12,

α = 4, L = 10, ρ = 0.01, anda = 5, 10 and 25 corresponding to the the widths: 10, 20 and 50.

for the MMSE receiver with this model can be approximated using a non-homogenous PPP with

intensity function

ΛT (r, θ) =











0 for (r, θ) ∈ B(XT , R1)

ρ(R1). otherwise
(40)

whereXT = (rT , 0) is a nominal location of the representative transmitter. The density of

interferers is zero in the guard zone of the representative transmitter and equals a constant

ρ(R1) =
1−exp(−ρpπR2

1)

πR2
1

, which is the effective density of nodes from the Matern type-II process,

outside the guard zone [6]. Note that since the Matern hard-core process is isotropic, the angular

coordinate of the representative transmitter can be any value here. Using geometric arguments,

we found the PDF of the distance from a point outsideB(XT , R1) to the origin to be

fr(r) =















2πr−2r cos−1

(

r2+r2T−R2
1

2rrT

)

A
, if rT −R1 < r < rT +R1

2πr
A
, otherwise.

(41)



if rT ≥ R1 (i.e. the representative receiver is outside the guard zoneof the representative

transmitter), and

fr(r) =



























0, if r < R1 − rT

2πr−2r cos−1

(

r2+r2T−R2
1

2rrT

)

A
, if R1 − rT < r < rT +R1

2πr
A
, otherwise.

(42)

if rT < R1 (i.e. the representative receiver is inside the guard zone of the representative

transmitter).

Therefore, the CDF is given by (6) with functionψ(·) evaluated as:

ψ(γ) =2πρ(R1)

∫ rT−R1

0

r
r−αγ

1 + r−αγ
dr + 2πρ(R1)

∫ ∞

rT+Rd

r
r−αγ

1 + r−αγ
dr

+ ρ(R1)

∫ rT+Rd

rT−R1

[

2πr − 2r cos−1

(

r2 + r2T −R2
1

2rrT

)]

r−αγ

1 + r−αγ
dr, (43)

if rT ≥ R1, and

ψ(γ) =ρ(R1)

∫ rT+Rd

R1−rT

[

2πr − 2r cos−1

(

r2 + r2T −R2
1

2rrT

)]

r−αγ

1 + r−αγ
dr

+ 2πρ(R1)

∫ ∞

rT+Rd

r
r−αγ

1 + r−αγ
dr. (44)

if rT < R1.

To verify that this approximation holds for Matern type-II networks with guard zones around

each transmitter, we simulated networks withL = 10, rT = 10, α = 4 and SNR = 10 dB for

several different guard zone radii. The results of the simulations and the CDF of the SINR

with Λ(r, θ) from (40) are show in Fig. 9, which indicates a close agreement between the

approximation and the simulated CDF.

Note that in more sophisticated protocols such as CSMA with collision avoidance (CSMA/CA),

guard zones are placed around active receivers. We have found that by centering the guard-zone

around the representative receiver instead of the representative transmitter, we can model such

networks with comparable accuracy.

To analyze the tradeoff between the increased SINR and reduction in the density of active

transmissions as a result of increasing the radius of the guard-zone around receivers, we use

the spectral efficiency density, given byη = ρ(R1) log2(1 + SINR), where SINR is the SINR

at the representative receiver which has a guard-zone of radiusR1 around it, and the density of
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Fig. 9. CDF of the SINR for Matern type-II networks with hard-cores around all transmitters.

active transmitters outside the guard-zone isρ(R1). The CDF of the SINR is found by replacing

XT with 0 in (40) which places a guard-zone around the representativereceiver at the origin.

The network-wide metric,η assumes that the distances between interferers and their respective

receivers are equal across the network. While this is a significant simplification, we note that in

the absence of appropriate models for link-length distribution, this simplification is commonly

used to optimize network-wide metrics such as in [28] and [29]. In Fig. 10, we plotted the CDF of

η, Fη(η;R1) with R1 varying from 0 to 10 andη ranging from 0 to 0.1. Other parameters include

ρp = 0.05 , rT = 5, α = 4, σ2 = 10−14 andL = 5. Fig. 10 shows that for a certain outage, there

is an optimal radius of guard zone that maximizes the spectral efficiency density. Due to the

complexity of finding an inverse function ofFη(η;R1) with respect toR1, we found the optimal

guard-zone radius can be evaluated numerically using standard zero-finding techniques. These

plots indicate that a guard-zone could be useful in a wireless network even when an interference-

mitigating multiantenna receiver is used since the optimalguard-zone radius is strictly positive in

all the cases considered. Additionally, note that the process of optimizing the guard-zone radius

via Monte Carlo simulation is very time consuming as a large number of different guard-zone

radii would have to be simulated and simulations of hard-core processes are relatively slow

to begin with. This illustrates that the expressions we provide are useful to optimize system

parameters when simulations would take prohibitively longto complete. A similar idea can be

used in networks which employ an ALOHA protocol over an existing doubly stochastic network

model, e.g., a Poisson cluster process. The ALOHA probability of transmission can be maximized
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subject to a given outage probability constraint by numerically inverting the expression for the

CDF in the same manner that was done to optimize the guard-zone radius. Optimizing this

probability through Monte Carlo simulation would be significantly more challenging.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we develop a technique to compute the CDF of theSINR on a link with a

multiantenna linear MMSE receiver in networks with co-channel transmitters distributed ac-

cording to doubly stochastic processes. Special cases of these processes include Poisson cluster

processes, processes with a single randomly located cluster and non-homogenous PPPs. This

framework is applied to a variety of network models, including networks with deterministic and

non-deterministic clusters strip networks, and hard-corenetworks.

Among others, these results enable us to quantify the benefits of multiple antennas in the

center of a dense cluster of nodes. Moreover we find that CSMA-like protocols that place

guard zones around receivers can provide a spectral efficiency benefit, even when receivers use

interference-mitigating receivers such as the MMSE receiver. Another interesting finding is that if

the number of receiver antennas is increased linearly with the nominal density of nodes in doubly

stochastic networks, then the SIR converges in distribution to a random variable. Moreover, for



non-homogenous Poisson networks the SIR converges in probability to a positive constant. This

finding indicates that to the extent that the system assumptions hold (in particular the i.i.d.

Rayleigh fading assumption), such networks are scalable byincreasing the number of receiver

antennas linearly with node density.

Thus, in addition to providing a framework to characterize the SINR of a multiantenna link

in a broader class of network models than what’s currently available, these results enable us to

draw conclusions regarding the design of spatially distributed networks as well.
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APPENDIX

A. Proof of Lemma 1

Established by equations (11) and (12) in [3], the CDF ofγ can be expressed as

Fγ(γ) = 1− exp(−σ2γ)En





L−1
∑

i=0

min(i,n)
∑

k=0

n!(σ2γ)i−k

k!(n− k)!(i− k)!
Ep

[

pγ

1 + pγ

]k

Ep

[

1

1 + pγ

]i−k


 ,

where Ex is the expectation with respect to the random variablex. Recall thatp = r−α and the

interferer locations follow the PDFfr,θ(r, θ). Consequently, we have the following expressions

Ep

[

pγ

1 + pγ

]

=

∫ R

0

∫ 2π

0

fr,θ(r, θ)
r−αγ

1 + r−αγ
dθdr , (45)

Ep

[

1

1 + pγ

]

=

∫ R

0

∫ 2π

0

fr,θ(r, θ)
1

1 + r−αγ
dθdr . (46)

As the number of interferersn is a meanµ Poisson random variable, the CDF ofγ is:

Fγ(γ) = 1− exp(−σ2γ)
∞
∑

n=0

L−1
∑

i=0

min(i,N)
∑

k=0

n!

k!(n− k)!(i− k)!
(σ2γ)i−kµ

n

n!
exp(−µ)·

(
∫ R

0

∫ 2π

0

fr,θ(r, θ)
r−αγ

1 + r−αγ
dθdr

)k (∫ R

0

∫ 2π

0

fr,θ(r, θ)
1

1 + r−αγ
dθdr

)n−k

. (47)

Applying a sequence of steps similar to that used in the proofof the main result for homogenous

networks in [3] yields:

Fγ(γ) = 1− exp(−σ2γ)
L−1
∑

i=0

i
∑

k=0

(σ2γ)i−k

k!(i− k)!

(

µ

∫ R

0

∫ 2π

0

fr,θ(r, θ)
r−αγ

1 + r−αγ
dθdr

)k

·

exp

(

−µ
∫ R

0

∫ 2π

0

fr,θ(r, θ)
r−αγ

1 + r−αγ
dθdr

)

. (48)



Given the relationship between the PDF of the locations of the interferers and the intensity

function in (13), we denoteψ(γ) as:

ψ(γ) = lim
R→∞

∫ R

0

∫ 2π

0

µfr,θ(r, θ)
r−αγ

1 + r−αγ
dθdr =

∫ ∞

0

∫ 2π

0

Λ(r, θ)r
r−αγ

1 + r−αγ
dθdr . (49)

Substituting (49) into (48), applying the binomial theorem, the series expansion of the exponential

function, and finally equation (6.5.13) of [30] yields:

Fγ(γ) = 1− exp(−σ2γ)

L−1
∑

i=0

i
∑

k=0

(σ2γ)i−k

k!(i− k)!
ψk(γ) exp(ψ(γ))

= 1−
L−1
∑

i=0

(ψ(γ) + σ2γ)i

i!
exp(−ψ(γ)− σ2γ) = 1− Γ(L, ψ(γ) + σ2γ)

Γ(L)
. (50)

Differentiating the CDF yields the PDF ofγ.

B. Proof of Lemma 2

Consider the following random variablesU =
∑L−1

k=0 Vk andŪ = 1
L−1

∑L−1
k=1 Vk, whereVk are

i.i.d. Poisson random variables with meanq. Note that

Q(L, qL) =
Γ(L, qL)

(L− 1)!
= Pr (U ≤ L− 1) = Pr

(

Ū + V0/(L− 1) ≤ 1
)

. (51)

where the previous equality holds becauseQ(L, qL) is the probability that a Poisson random

variable with meanqL is less than or equal toL − 1. By the weak law of large numbers as

L→ ∞, both Ū → q andV0/(L− 1) → 0 in probability implying thatŪ + V0/(L− 1) → q in

probability. The latter implies that

lim
L→∞

Pr

(

Ū +
V0

L− 1
≤ u

)

=











0, if u ≤ q

1, if u > q.
(52)

Settingu = 1 in (52) and substituting (51) into the resulting equation completes the proof

C. Proof of Theorem 2

First, let us condition on a realization of the intensity function Λ(r, θ) = λ(r, θ). The doubly

stochastic network thus reduces to a non-homogenous PPP. Assuming that the noise is negligible,

the CDF in (6) from Lemma 1 can be expressed as:

Fγ(γ|Λ = λ) = 1− Γ(L, ℓLψc(γ;λ))

Γ(L)
. (53)



Let q = ℓψc(γ;λ) in Lemma 2. Then, we have:

lim
L→∞

Fγ(γ;λ) = 1− lim
L→∞

Γ(L, ℓLψc(γ))

Γ(L)
= φ(γ;λ) =











0, if γ ≤ ψ−1
c

(

1
ℓ
;λ

)

1, if γ > ψ−1
c

(

1
ℓ
;λ

)

.
(54)

Thus, conditioned on particular realization ofΛ(r, θ) or if the interferers form a non-homogenous

Poisson process (i.e. deterministicΛ(r, θ)), γ converges in distribution to a constant, implying

convergence in probability as well. Removing the conditioning in (54) , we have

lim
L→∞

Fγ(γ) = lim
L→∞

EΛ [Fγ(γ;λ)] = EΛ

[

lim
L→∞

Fγ(γ;λ)
]

= EΛ[φ(γ;λ)] , (55)

where the exchange of the expectation and limit operations follows from the bounded convergence

theorem (see e.g., [31]). Note that unlike the case of non-homogenous Poisson process of

interferers, in the case of a general doubly stochastic process of interferers,γ is only guaranteed

to converge in distribution.

D. Proof of Lemma 3

It is shown in Section 3.2 of [32] that given any positive measurable functionζ(.),

EΠ[e
ΘΞ] = exp

{
∫

R2

(

eΘζ(u) − 1
)

λ(u)du

}

, (56)

for any negative and realΘ. Taking thekth derivative with respect toΘ, (56) becomes

EΠ

[

ΞkeΘΞ
]

=
dk

dΘk
exp

{
∫

R2

(

eΘζ(u) − 1
)

λ(u)du

}

=
∑

(m1,...,mk)∈Mk

k! exp
{∫

R2

(

eΘζ(u) − 1
)

λ(u)du
}

m1!1!m1m2!2!m2 ...mk!k!mk

k
∏

j=1

(
∫

R2

ζj(z)eΘζ(z)λ(z)dz

)mj

. (57)

The last step follows from Faà di Bruno’s formula [33]:

dk

dΘk
f(g(Θ)) =

∑

(m1,...,mk)∈Mk

k!

m1!1!m1m2!2!m2 ...mk!k!mk
f (m1+...+mk) (g(Θ)) ·

k
∏

j=1

(

g(j)(Θ)
)mj

,

wheref(.) andg(.) are arbitrary measurable functions. Evaluating (57) atΘ = −1 yields (23).



E. General Power Law Term

Lemma 4: Given the assumption thatα > 2,

∫

rκ+1 γ

rα + γ
dr

∣

∣

∣

∣

r=R′

=























0, if R′ = 0

R′κ+2

κ+2 2F1

(

1, κ+2
α
; κ+2+α

α
;−R′α

γ

)

, if 0 < R′ <∞
π
α
γ(κ+2)/α csc

(

π κ+2
α

)

, if R′ = ∞.

(58)

Proof: Using symbolic integration software, we can directly evaluate the integral for0 <

R′ <∞. Applying Euler’s hypergeometric transformation [30] to the resulting expression, taking

R′ → ∞ and applying the reflection formula for hypergeometric functions (see e.g., [30], yields

the third expression in the case statement in (58)
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