
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015 1

Intelligent Deflection Routing in Buffer-Less
Networks

Soroush Haeri, Student Member, IEEE and Ljiljana Trajković, Fellow, IEEE

Abstract—Deflection routing is employed to ameliorate packet
loss caused by contention in buffer-less architectures such as op-
tical burst-switched (OBS) networks. The main goal of deflection
routing is to successfully deflect a packet based only on a limited
knowledge that network nodes possess about their environment.

In this paper, we present a framework that introduces intelli-
gence to deflection routing (iDef). iDef decouples the design of the
signaling infrastructure from the underlying learning algorithm.
It consists of a signaling and a decision-making module. Signaling
module implements a feedback management protocol while the
decision-making module implements a reinforcement learning
algorithm. We also propose several learning-based deflection
routing protocols, implement them in iDef using the ns-3 network
simulator, and compare their performance.

Index Terms—Associative learning, buffer-less networks,
decision-making, deflection routing, reinforcement learning.

I. INTRODUCTION

DEFLECTION routing is a viable contention resolution
scheme that may be employed in buffer-less networks

such as optical burst-switched (OBS) networks [1]. Contention
occurs when according to a routing table, multiple arriving
traffic flows at a node need to be routed through a single
outgoing link. In this case, only one flow is routed through
the optimal link defined by the routing table. In the absence
of a contention resolution scheme, the remaining flows are
discarded because the node possesses no buffers. Instead of
buffering or discarding packets, deflection routing helps to
temporarily deflect them away from the path that is prescribed
by the routing table.

Deflection routing may benefit from the random nature
of reinforcement learning algorithms. A deflection routing
algorithm coexists in the network along with an underlying
routing protocol that usually generates a significant number of
control signals. Therefore, it is desired that deflection routing
protocols generate few control signals. Reinforcement learning
algorithms enable a deflection routing protocol to generate
viable deflection decisions by adding a degree of randomness
to the decision-making process.

Manuscript received March 23, 2014; revised May 13, 2014, June 30, 2014,
and September 19, 2014; accepted September 20, 2014. Date of publication
December 18, 2014; date of current version January 13, 2015. This work
was supported by the Natural Sciences and Engineering Research Council of
Canada under Grant 216844-13. This paper was recommended by Associate
Editor T. Vasilakos.

The authors are with the School of Engineering Science, Simon Fraser
University, Vancouver, BC V5A 1S6, Canada (e-mail: shaeri@sfu.ca;
ljilja@sfu.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2014.2360680

Reinforcement learning-based algorithms were proposed in
the early days of the Internet to develop routing policies [2]–
[4]. Q-learning [5] is a reinforcement learning algorithm that
has been employed for generating routing policies. The Q-
routing algorithm [2] requires that nodes locally make their
routing decisions. Each node learns a local deterministic
routing policy using the Q-learning algorithm. Generating
the routing policies locally is computationally less intensive.
However, the Q-routing algorithm does not generate an op-
timal routing policy in networks with low loads nor does
it learn new optimal policies in cases when network load
decreases. The Predictive Q-routing algorithm [3] addresses
these shortcomings by recording the best experiences learned,
which may then be reused to predict traffic behavior. Packet
routing algorithms in large networks such as the Internet have
to consider the business relationships between Internet Service
Providers. Therefore, in such environment, randomness is not a
desired property of a routing algorithm. Consequently, Internet
routing algorithms have not employed reinforcement learning
because of its inherent randomness.

The contributions of this paper are:

1) We develop a framework named iDef that simplifies
implementation and testing of deflection routing proto-
cols by employing a modular architecture. The ns-3 [6]
implementation of iDef is made publicly available [7].

2) We introduce the novel Node Degree Dependent (NDD)
signaling algorithm [8]. The complexity of the algorithm
only depends on the degree of the node that is NDD
compliant while the complexity of the other currently
available reinforcement learning-based deflection rout-
ing algorithms depends on the size of the network.
Therefore, NDD is better suited for larger networks.
Simulation results show that NDD-based deflection rout-
ing algorithms scale well with the size of the network
and perform better than the existing algorithms. Fur-
thermore, the NDD signaling algorithm generates fewer
control signals compared to the existing algorithms.

3) For the decision-making, we propose a feed-forward
neural network (NN) and a feed-forward NN with
episodic updates (ENN). They employ a single hidden
layer NN that updates its weights using an associative
learning algorithm. Currently available reinforcement
learning-based deflection routing algorithms employ Q-
learning, which does not utilize efficiently the gathered
feedback signals. NN and ENN decision-making algo-
rithms address the deficiency of Q-learning by intro-
ducing a single hidden layer NN to generate deflection



IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015 2

decisions. The NN-based deflection routing algorithms
achieve better results than Q-learning-based algorithms
in networks with low to moderate loads. Efficiently
utilizing control signals in such cases is important be-
cause the number of deflections is small and a deflection
routing algorithm receives fewer feedback signals.

4) The proposed NDD signaling algorithm with NN, ENN,
and Q-learning-based decision-making modules was in-
corporated into three reinforcement learning-based de-
flection routing protocols named NN-NDD, ENN-NDD,
and Q-NDD. We implement these protocols within the
iDef framework and compare their performance with
the existing Reinforcement Learning Deflection Routing
Scheme (RLDRS) [9] and Predictive Q-learning Deflec-
tion Routing (PQDR) [10].

The remainder of this manuscript is organized as follows.
In Section II, we describe buffer-less network architectures
and contention in such networks. Reinforcement learning is
presented in Section III. In Section IV, we introduce deflection
routing as a contention resolution scheme and provide a
brief survey of work related to applications of reinforcement
learning in deflection routing. We present the iDef framework
in Section V and the NDD signaling algorithm in Section VI.
Designs of the NN and ENN decision-making modules are
presented in Section VII. Their performance is evaluated in
Section VIII. We conclude with Section IX.

II. BUFFER-LESS ARCHITECTURE AND CONTENTION

Nodes in buffer-less networks do not posses memory
(buffer) to store packets. Buffers are usually implemented as
first-in-first-out (FIFO) queues that are used to store pack-
ets contending to be forwarded to the same outgoing link.
Examples of buffer-less architectures are OBS networks and
network-on-chips. OBS is a technology designed to share
optical fiber resources across data networks [1]. Other optical
switching technologies for data communication such as Syn-
chronous Optical Network (SONET) and Synchronous Digital
Hierarchy (SDH) [11] reserve the entire light-path from a
source to a destination. Even though a light-path is not fully
utilized, it may not be shared unless its reservation is explicitly
released. The OBS technology overcomes these limitations.
Switching in OBS networks is performed optically, allowing
the optical/electrical/optical conversions to be eliminated in the
data plane. This permits high capacity switching with simpler
switching architecture and lower power consumption [12].

In OBS networks, data are optically switched. At an ingress
node of such a network, multiple packets are aggregated into
one optical burst. Before transmitting the burst, a burst header
packet (BHP) is created and sent ahead of the burst with an
offset time toffset. The BHP contains information needed to
perform OBS switching and IP routing, such as the burst length
tlength, offset time toffset, and the destination IP address. When
an OBS node receives a BHP, it has toffset time to locate the
outgoing link lo in the routing table, reserve the link for the
burst to pass through, and reconfigure the optical cross-connect
(OXC) module that connects the incoming and the outgoing
links.

f2 xi

xj

xk

xl

l0

l1

lm

f1

xd1

xd2

Fig. 1. A network with n buffer-less nodes.

Consider an arbitrary buffer-less network shown in Fig. 1,
where N = {x1, x2, . . . , xn} denotes the set of all network
nodes. Node xi routes the incoming traffic flows f1 and f2
to the destination nodes xd1 and xd2 , respectively. According
to the shortest path routing table stored in xi, both flows f1
and f2 should be forwarded to node xj via the outgoing link
l0. In this case, the flows f1 and f2 are contending for the
outgoing link l0. The node xi forwards flow f1 through l0 to
the destination xd1. However, in the absence of a contention
resolution scheme, the flow f2 is discarded because node xi
is unable to buffer it. Deflection routing [13] is a contention
resolution scheme that may be employed to reduce packet
loss. Contention between the flows f1 and f2 is resolved
by routing f1 through the preferred outgoing link l0 while
routing f2 through alternate outgoing link l ∈ L\{l0}, where
the set L denotes the set of all outgoing links connected
to x1. Various other methods have been proposed to resolve
contention. Wavelength conversion [14], fiber delay lines [15],
and control packet buffering [16] are among the contention
resolution schemes that are applicable to optical networks.

III. REINFORCEMENT LEARNING

Reinforcement learning algorithms learn situation-to-action
mappings with the main objective to maximize numerical
rewards. These algorithms may be employed by agents that
learn to interact with a dynamic environment through trial-and-
error [17]. Reinforcement learning consists of three abstract
events irrespective of the learning algorithm: an agent observes
the state of the environment and selects an appropriate action;
the environment generates a reinforcement signal and transmits
it to the agent; the agent employs the reinforcement signal to
improve its subsequent decisions. Therefore, a reinforcement
learning agent requires information about the state of the
environment, reinforcement signals from the environment, and
a learning algorithm.

Q-learning [5] is a reinforcement learning algorithm that has
been employed for path selection in deflection routing. The
algorithm maintains a Q-value Q(s, a) in a Q-table for every
state-action pair. Let st and at denote the encountered state and
the action executed by an agent at a time instant t, respectively.
Furthermore, let rt+1 denote the reinforcement signal that the
environment has generated for performing action at in state
st. When the agent receives the reward rt+1, it updates the



IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015 3

Q-value that corresponds to the state st and action at as:

Q(st, at)←Q(st, at)+ (1)

α×
[
rt+1 + γmax

at+1

Q(st+1, at+1)−Q(st, at)
]
,

where 0 < α ≤ 1 is the learning rate and 0 ≤ γ < 1 is the
discount factor.

Enhancing a node in buffer-less networks with a rein-
forcement learning agent that generates deflection decisions
requires three components: function that maps a collection
of the environment variables to an integer (state); decision-
making algorithm that selects an action based on the state;
signaling mechanism for sending, receiving, and interpreting
the feedback signals. The decision-making instances in de-
flection routing are intermittent. Hence, a learning algorithm
need not consider the effect of all possible future system
trajectories for making its decisions. Agents that do not
consider future system trajectories for decision-making are
known as immediate reward or associative learning agents.

IV. DEFLECTION ROUTING BY REINFORCEMENT
LEARNING

Deflection routing has attracted significant attention [18]–
[20] as a viable method to resolve contention in buffer-
less networks. Studies show that multiple deflections may
significantly improve utilization in networks with multiple
alternate routes such as fully meshed networks [21]. Perfor-
mance evaluation of various deflection routing algorithms us-
ing scale-free Barabási-Albert [22] topologies, which resemble
the autonomous system-level view of the Internet, shows that
deflection routing effectively reduces the burst loss probability
in optical networks [23].

Deflection routing algorithms generate deflection decisions
based on a deflection set D, which includes all viable alternate
links available for deflection. The size of the set D determines
the flexibility of deflection module in resolving contention.
One approach includes all available links in the set D, which
would maximize the flexibility while possibly introducing
routing loops. Another approach includes only outgoing links
that lie on the shortest path, which avoids routing loops
while reducing the flexibility in decision-making [24]. Several
algorithms have been proposed to populate large deflection sets
D while ensuring no routing loops [25], [26]. The proposed
NDD signaling algorithm begins by including all outgoing
links in the deflection set D. As time progresses and deflection
module receives feedback signals, the probability of selecting
alternate links that may result in routing loops decreases.

Performance analysis of deflection routing based on ran-
dom decisions shows that random deflection may effectively
reduce blocking probability and jitter in networks with light
traffic loads [27]. Advanced deflection routing algorithms im-
prove the quality of decision-making by enabling neighboring
nodes to exchange traffic information [9], [28]–[31]. This
information provides to the deflection module an integral
neighborhood view for decision-making. Heuristic methods
may then be employed to make deflection decisions based
on the collected traffic information. Reinforcement learning,
which has been implemented in the proposed NN-NDD and

ENN-NDD algorithms, provides a systematic framework for
processing the gathered information. Various other deflection
routing protocols based on reinforcement learning [8]–[10],
[30] employ the Q-learning algorithm or its variants.

The Q-learning Path Selection algorithm [30] calculates a
priori a set of candidate paths P = {p1, . . . , pm} for tuples
(si, sj), where si, sj ∈ S and S = {s1, . . . , sn} denotes
the set of all edge nodes in the network. The Q-table stored
in the ith edge node maintains a Q-value for every tuple
(sj , pk), where sj ∈ S\{si} and pk ∈ P . The sets S and
P are states and actions, respectively. The Q-value is updated
after each decision is made and the score of the path is
reduced or increased depending on the received rewards. The
algorithm does not specify a signaling method or a procedure
for handling the feedback signals. RLDRS [9] also employs the
Q-learning algorithm for deflection routing. The advantages of
RLDRS are its precise signaling and rewarding procedures.

Decisions that repeatedly receive poor rewards have low Q-
values. Certain poor rewards might be due to a transient link
failure or congestion and, hence, recovery and reselection of
such decisions may improve the decision-making. Q-learning-
based deflection routing algorithms do not provide a procedure
to reselect the paths that have low Q-values as a consequence
of transient network conditions. The PQDR algorithm [10]
enables a node to recover and reselect such paths and improve
its decision-making ability. The PQDR algorithm combines the
Predictive Q-routing algorithm [3] and RLDRS to optimally
deflect contending flows. When deflecting a traffic flow, the
PQDR algorithm stores in a Q-table the accumulated reward
for each deflection decision. It also recovers and reselects
decisions that are not well rewarded and have not been used
over a period of time.

The Q-learning Path Selection algorithm, RLDRS, and
PQDR have two drawbacks: they are not scalable and their
underlying learning algorithms are inefficient.

1) Scalability: Q-learning Path Selection algorithm and
RLDRS are not scalable because their space complexity de-
pends on the network size. For example, the size of the Q-table
generated by the Q-learning Path Selection algorithm [30]
depends on the size of the network and the set of candidate
paths. Therefore, it may be infeasible to store a large Q-table
emanating from a large network.

2) Learning Deficiency: Q-learning is the only learning
algorithm that has been employed for the deflection rout-
ing [8]–[10], [30]. The learning algorithm used in PQDR [10]
is a variant of Q-learning and, hence, it inherits some of
its deficiencies. Even though Q-learning guarantees eventual
convergence to an optimal policy when finding the best action
set, it does not efficiently use the gathered data. Therefore,
it requires gaining additional experience to achieve good
results [17].

The proposed NDD signaling algorithm addresses the scal-
ability issue of the current reinforcement learning-based de-
flection routing algorithms. Its complexity depends only on a
node degree. The NN and ENN decision-making modules are
introduced to address the learning deficiency of Q-learning.
They learn based on the REINFORCE associative learning
algorithm [32], [33] that utilizes the gained experience more



IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015 4

efficiently than Q-learning.

V. THE IDEF FRAMEWORK

The proposed iDef framework is designed to facilitate de-
velopment of reinforcement learning-based deflection routing
protocols. We implemented the iDef framework in the ns-3
network simulator. In iDef, a reinforcement learning-based
deflection routing algorithm is abstracted using mapping,
decision-making, and signaling modules. iDef is designed to
minimize the dependency among its modules. This minimal
dependency enables implementation of portable deflection
routing protocols within the iDef framework, which enables
modules to be replaced without changing the entire design.
For example, replacing the decision-making module requires
no changes in the implemented signaling module.

A deflection manager glues together the iDef modules. It
has access to the OBS network interface cards and the IP
routing table. The deflection manager makes iDef portable by
eliminating communication among mapping, decision-making,
and signaling modules. The burst header messages received by
a node are passed to the deflection manager. The deflection
manager inspects the IP routing table for the next hop and
then checks the status of the optical interfaces. If the desired
optical interface is available, the optical cross-connects are
configured according to the path defined by the IP routing
table. If the interface is busy, the deflection manager passes the
environment variables such as destination of the burst, output
links blocking state, and the next hop on the shortest path, to
the mapping module.

The mapping module maps all or a subset of the received
variables to an integer called the state. For example, in the
proposed NDD signaling algorithm, one possibility of such
mapping is to append the binary ID of the port number
obtained from the routing table to a string of 0s and 1s that
represents the outgoing links status. This binary string may
then be converted to an integer.

The decision-making module implements the learning algo-
rithm. Therefore, the statistics, the history, and other required
information for decision-making are stored in this module. It
implements two main functions that are used by the deflection
manager: a function that generates actions given a state and a
function that updates the statistics when a reinforcement signal
is received. The mapped state is passed to the decision-making
module where an alternate output link (action) is selected
for the burst. The generated decisions are then passed to the
deflection manager. The signaling module passes the received
reinforcement signals to the decision-making module where
they are used for statistic updates.

The signaling module adds header fields to the deflected
bursts. It also inspects the burst headers received by the
deflection manager for special deflection header fields and
tags. It assembles and sends feedback messages when required.
Upon receiving a feedback message, the signaling module
interprets the reinforcement signal and translates it to a scalar
reward. This reward is then used by the deflection manager to
enhance the decision-making module.

VI. THE NODE DEGREE DEPENDENT SIGNALING
ALGORITHM

We describe here the proposed NDD [8] signaling algorithm
and the messages that need to be sent in order to enhance
a buffer-less node with a decision-making ability. The NDD
algorithm provides a signaling infrastructure that nodes may
require in order to learn and then optimally deflect packets in
a buffer-less network.

We consider a buffer-less network with N nodes. All nodes
are iDef compatible and, hence, possess mapping, decision-
making, and signaling modules. The headers of the packets
received by a node are passed to the signaling module. The
module inspects the routing table for the next hop and then
checks the status of the network interfaces. If the desired
interface is available, the packet is routed according to the
path defined by the routing table. If the interface is busy
and the packet has not been deflected earlier by any other
node, the current states of the network interfaces and the
output port obtained from the routing table are passed to the
mapping module. The mapping module maps these inputs to
a unique representation known as the system state. It then
passes this information (state) to the decision-making module.
The state representation depends on the underlying learning
algorithm. Therefore, it may change based on the design of the
decision-making module. Various decision-making modules
require specifically designed compatible mapping modules.
For example, Q-learning-based decision-making module re-
quires a mapping module that transforms the current states
of the network interfaces and the output port suggested by
the routing table to a real number while NN and ENN-based
decision-making modules require binary vectors. The mapping
module maps the states of the network interfaces to an ordered
string of 0s and 1s, where idle and busy interfaces are denoted
by 0 and 1, respectively.

The decision-making module returns the index of the best
network interface for deflecting the packet based on the current
state. The signaling module adds the following information to
the packet header: a unique ID number used to identify the
feedback message that pertains to a deflection; the address of
the node that initiated the deflection, to be used by other nodes
as the destination for the feedback messages; a deflection hop
counter DHC, which is incremented each time other nodes
deflect the packet.

When a packet is to be deflected at a node for the first
time, the node records the current time as the deflection time
DfT along with the ID assigned to the packet. The Drop
Notification DN timer is initiated and the packet is deflected to
the network interface that is selected by the decision-making
module. The maximum value of the DN timer is set to DNmax,
which indicates expiration of the timer. The purpose of the
timer is to reduce the number of feedback signals.

After a deflection decision is made, the decision-making
module waits for the feedback. It makes no new decisions dur-
ing this idle interval. The deflected packet is discarded when
either it reaches a fully congested node or its DHC reaches
the maximum permissible number of deflections DHCmax.

The node that discards the deflected packet assembles a



IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015 5

feedback message consisting of the packet ID, DHC, and the
time instant DrT when the packet was discarded. The feedback
message is then sent to the node that initiated the deflection.

When the node that initiated the deflection receives the
feedback message, it calculates the total travel time TTT that
the packet has spent in the network after the first deflection:

TTT = DrT −DfT. (2)

The TTT and DHC values are used by the decision-making
module to update its statistics. If no feedback message is
received until the DN timer expires, the node assumes that
the packet has arrived successfully to its destination. The
node may then update its decision-making module with the
reinforcement signal having TTT = 0 and DHC = 0. A
decreasing function with the global maximum at (0, 0) is used
as a reward function to map TTT and DHC to a real value r.

A node records the best action selected by the decision-
making module. These records are used if a node needs to
deflect a packet that has been deflected earlier or during an
idle interval.

In order to reduce the excess traffic generated by the number
of feedback messages, a node receives feedback messages
only when it deflects packets that have not been deflected
earlier. Hence, only deflecting such packets enhances the
node’s decision-making ability.

VII. NNS FOR DEFLECTION ROUTING

In this Section, we first describe the REINFORCE algo-
rithm [33]. We then propose the feed-forward NN to be used
for generating deflection decisions. The NN decision-making
module implements a network of interconnected learning
agents. In this Section, the term network refers to an NN.

A. Feed-Forward NNs for Reinforcement Learning

In a network of learning agents with weighted interconnec-
tions, the following steps are executed for each decision made:

• network receives an input from its environment;
• the input propagates through the network and it is mapped

to an output;
• the output is fed to the environment for evaluation;
• environment evaluates the output signal and generates a

reinforcement signal r;
• each network unit modifies its weights based on a learn-

ing algorithm using the received reinforcement signal.
Let wij denote the weight of the connection between agents

i and j. The behavior of the agent i is defined by a vector wi

that contains the weights of all connections to the ith agent.
The agent i receives an input vector xi from the environment
and/or other agents and then maps the input to an output yi
according to a probability distribution function gi(ζ,wi,xi) =
Pr{yi = ζ | wi,xi} [33]. In case of binary agents where the
input is mapped to either 0 or 1 with probabilities pi and 1−pi,
respectively, gi is defined as a Bernoulli semilinear unit:

gi(ζ,wi,xi) =

{
1− pi if ζ = 0
pi if ζ = 1

, (3)

where

pi =fi(w
T
i xi)

=fi

(∑
j

wijxj

)
. (4)

Function fi is a differentiable squashing function. A com-
monly used function is the logistic map:

fi
(∑

j

wijxj
)

=
1

1 + e−
∑

j wijxij
, (5)

where xij is the jth element of the input vector xi. Agents that
use Bernoulli semilinear unit along with the logistic function
are called Bernoulli-logistic units.

Upon receiving a feedback signal r, the NN updates its
weights. The update rule for Bernoulli-logistic units suggested
by the REINFORCE algorithm updates the weights wij as:

∆wij = αr(yi − pi)xij , (6)

where α is a non-negative rate factor, yi is the output of the ith
agent, pi is the probability of yi = 1 given the input vector
xi and weight vector wi, and xij is the jth element of the
input vector xi. Let matrix W denote the collection of weights
that determines the behavior of an arbitrary feed-forward
network. Under the assumption that the environment’s inputs
to the network and the received reinforcement signals for any
input/output pair are determined by stationary distributions,
(6) maximizes the expected value of the reinforcement signal,
given the weight matrix E{r |W}.

The REINFORCE algorithm utilizes an episodic update rule
in order to operate in environments where delivery of the rein-
forcement signals has unknown delays. A k-episode is defined
when a network selects k actions between two consecutive
reinforcement receptions. The k-episode is terminated upon
receiving a reinforcement signal. The REINFORCE algorithm
suggests that a network may update its weighs at the end of
the k-episode as:

∆wij = αr

k∑
l=1

[(yi(l)− pi(l))xj(l − 1)]. (7)

B. Feed-Forward NN for Deflection Routing with Single
Episode Updates

We propose a single-hidden-layer feed-forward network
for deflection routing because fewer number of algebraic
operations are required when the network selects actions
and updates its weights. Furthermore, such networks have
reasonable learning capabilities [34], [35]. The feed-forward
NN for generating deflection decisions is composed of the
input, middle, and output layers, as shown in Fig. 2.

Consider a buffer-less node with n outgoing links. The input
layer of such a node consists of two partitions denoted by
binary vectors Il = [il1 . . . iln] and Id = [ild . . . idn]. If the
kth outgoing link of the node is blocked, ilk is set to 1. It is
0 otherwise. If the burst that is to be deflected contends for
the jth outgoing link of the node, the jth entry of the input
vector Id is set to 1 while the remaining elements are set to 0.



IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015 6

y
1z m

1

z m
n

W
dm

z o
1

z o
n

di
1

di
n

W
mo

W
l o

y
2

y
n

y
n-1

i l
1

i l
n

Fig. 2. The proposed design of the feed-forward NN for deflection routing.
The input layer consists of two partitions denoted by binary vectors Il =
[il1 . . . iln] and Id = [ild . . . idn]. The Il partition of the input has weighted
connections to the output layer. The binary vector Zm = [zm1 . . . zmn ]
denotes the mid-layer of the proposed feed-forward network while Zo denotes
the output layer.

The Il partition of the input has weighted connections to the
output layer. The n× n matrix of wights Wlo is defined as:

Wlo =


wlo

11 0 · · · 0
0 wlo

22 · · · 0
...

...
...

0 0 · · · wlo
nn

 . (8)

Selecting a link that is blocked for deflection should be avoided
because it results in an immediate packet loss. Let us assume
that the ith outgoing link of the buffer-less node is selected
as the preferred link for deflection when the output yi of
the feed-forward network is 1. If Bernoulli-logistic agents
are employed, selecting a blocked link for deflection may be
prohibited by setting the elements wlo

kk, k = 1, . . . , n, of the
weight matrix Wlo to a large negative value. Regardless of the
state of the buffer-less network and its behavior, selecting a
blocked link will always result in immediate packet drop. This
behavior does not change with time and does not depend on the
reinforcement signals received from the environment. Hence,
Wlo is a deterministic weight matrix that is not updated when
reinforcement signals are received.

Let the binary vector Zm = [zm1 . . . zmn ] denote the mid-
layer of the proposed feed-forward network shown in Fig. 2.
This layer is connected to the input and the output layers using
the weight matrices:

Wdm =


wdm

11 wdm
12 · · · wdm

1n

wdm
21 wdm

22 · · · wdm
2n

...
...

...
wdm

n1 wdm
n2 · · · wdm

nn

 (9)

and

Wmo =


wmo

11 wmo
12 · · · wmo

1n

wmo
21 wmo

22 · · · wmo
2n

...
...

...
wmo

n1 wmo
n2 · · · wmo

nn

 . (10)

These matrices reflect the preferences for deflection decisions.
If there is no initial preference for the output links, a uniform
distribution of the output links is desirable. This is achieved by
setting Wdm = Wmo = 0. However, these weight matrices
get updated and new probability distributions are shaped as
reinforcement signals are received from the environment. For
an arbitrary h×k matrix Q, we define the Bernoulli semilinear
operator F as:

F(Q) =


1

1+eq11 · · · 1
1+eq1k

1
1+eq21 · · · 1

1+eq2k
...

...
1

1+eqh1
· · · 1

1+eqhk

 . (11)

In each decision-making epoch, a probability vector Pm =
[pm1 . . . pmn ] is calculated using the Bernoulli semilinear oper-
ator as:

Pm = F
(
Id ×Wmo

)
. (12)

Each zmk ∈ Zm is then calculated as:

zmk =

 0 if pmk < 0.5
U(0, 1) if pmk = 0.5
1 if pmk > 0.5

, (13)

where U(0, 1) denotes 0 or 1 sampled from a uniform distri-
bution.

Let the 1× 2n row vector Io = [Il Zm] denote the input to
the output layer Zo. The n × 2n matrix Wo = [Wlo Wmo]
denotes the weight matrix of the output layer Zo. The proba-
bility vector Po = [po1 . . . p

o
n] is first calculated as:

Po = F
(
Io ×

(
Wo

)T)
. (14)

We then calculate the binary output vector Zo =
[zo1 . . . z

o
n] (13). Indices of 1s that appear in the output vector

Zo may be used to identify an outgoing link for the burst to
be deflected. If Zo contains multiple 1s, then the tie-break
procedure described in Algorithm 1 is used for selecting the
outgoing link. The output vector Zo and associated probability
vector Po are the inputs to the algorithm. Multiple indices
of 1s in Zo may have different values in Po because (13)
maps to 1 all Po elements greater than 0.5 when updating
Zo. Therefore, in order to break a tie, Algorithm 1 considers
all indices of 1s in Zo and selects the index that has the
maximum value in Po. If there are multiple indices with the
same maximum value, Algorithm 1 randomly selects one of
these indices according to a uniform distribution. It then sets
to 0 the value of the elements of Zo that were not selected.
The algorithm needs to inspect the values of Zo and Po at
most once. Furthermore, since vectors Zo and Po of a buffer-
less node with n outgoing links have n elements, the time
complexity of Algorithm 1 is O(n).

After the reinforcement signal is received from the envi-
ronment, the network updates its weight matrices Wdm and
Wmo according to (6).



IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015 7

Algorithm 1: The tie-break procedure used to select an
action based on the output vector Zo of the feed-forward
NN.
Input: Output vector: Zo = [zo1 . . . z

o
n]

Probability vector: Po = [po1 . . . p
o
n]

Output: Index of the outgoing link for the burst to be
deflected: a

1 begin
2 pmax ← 0
3 S ← ∅
4 for all k ∈ {1, 2, . . . , n} do
5 if zok = 1 && pok = pmax then
6 S ← k
7 end
8 else if zok = 1 && pok > pmax then
9 S ← ∅

10 S ← k
11 pmax ← pok
12 end
13 end
14 a← sample uniformly from S
15 for all k ∈ {1, 2, . . . , n}\{a} do
16 zok ← 0
17 end
18 return a
19 end

C. Feed-Forward NN for Deflection Routing with k-Episode
Updates

The difference between an episodic feed-forward NN
decision-making module and a single episode module is that
the episodic network may generate deflection decisions while
it waits for reward signals that belong to its previous decisions.
An episodic network generates deflection decisions similar
to the feed-forward NN with a single episode. It keeps an
episode counter Cepisode that is incremented when the network
generates a deflection decision and a reward counter Cr that is
incremented when the network receives a reward signal from
the environment.

An episode starts when Cepisode = 0 and terminates
when the network receives a reward signal for all generated
deflection decisions (Cepisode = Cr). During an episode, the
decision-making module maintains the input vector Id, weight
matrices Zm and Zo, and probability vectors Pm and Po.

Let us assume that an episode terminates after k decisions.
Let Rk denote the sum of all k reward signals that have been
received from the environment. When the k-episode termi-
nates, the feed-forward network resets the counters Cepisode

and Cr to zero. Furthermore, it updates its weights as:

wdm
uv ← wdm

uv +

(
αRk

k∑
q=2

[(
(zmu )q−(pmu )q

)
(idv)q−1

])
(15)

wmo
uv ← wmo

uv +

(
αRk

k∑
q=2

[(
(zou)q−(pou)q

)
(zmv )q−1

])
, (16)

where wdm
uv and wmo

uv are elements in the uth row and vth

column of the weight matrices Wdm and Wmo, respectively,
and (zmu )q is the uth element of the vector Zm that was
calculated during the qth decision of the current episode.

D. Time Complexity Analysis

Q-NDD, PQDR, and RLDRS employ the table-based Q-
learning algorithm. Hence, selecting an action depends on the
table implementation. If the Q-table is implemented as a hash
table, then an actions may be generated in constant time O(1).
The update procedure executed after receiving a reward signal
may also be completed in constant time. The NN-NDD and
ENN-NDD algorithms employ the NN shown in Fig. 2. In
the case of NN-NDD, time complexity of selecting an action
and updating the network weights after receiving a reward
signal is no longer constant. When selecting an action, the
NN needs to calculate vectors Pm and Po using (12) and (14),
respectively. This results in O(n2) complexity, where n is the
number of a buffer-less node neighbors. The reward procedure
requires inspection of elements of the weight matrices Wdm

and Wmo. Each of these inspections is quadratic in n, yielding
a complexity of O(n2) for the update procedure. In the
case of ENN-NDD, the complexity of selecting an action is
also O(n2) while the complexity of the update procedure is
O(kn2), where k is the length of an episode.

The polynomial time complexity of the NN-NDD and ENN-
NDD algorithms may affect their real-time decision-making
performance. However, this complexity only depends on the
degree of a buffer-less node. For example, the NN of a node
with the degree equal to 1,000 performs 106 operations for an
action selection or for an update. An average general-purpose
2 GHz CPU is capable of processing 2 × 109 operations per
second and, therefore, it is capable of processing the NN in
less than 0.5 ms.

VIII. PERFORMANCE EVALUATION

We evaluate performance of the proposed deflection routing
protocols, RLDRS [9], and PQDR [10] by implementing them
within the iDef framework. We compare the algorithms based
on burst loss probability, number of deflections, average end-
to-end delay, and average number of hops traveled by bursts.
We first use the National Science Foundation (NSF) network
topology shown in Fig. 3, which has been extensively used
to evaluate performance of OBS networks [9], [18], [21],
[30], [36]–[38]. We also use network topologies generated
by the Waxman algorithm [39]. These networks consist of
10, 20, 50, 100, 200, 500, and 1,000 nodes. We compare the
deflection routing algorithms in terms of memory and Central
Processing Unit (CPU) time using the larger Waxman graphs.
In all simulation scenarios, we allow up to two deflections per
burst (DHCmax = 2). The burst header processing time is set
to 0.1 ms.

A. NSF Network Scenario

The topology of the NSF network is shown in Fig. 3. The
nodes are connected using bidirectional 1 Gbps fiber links with



IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015 8

0

1

2

3

4 5 7
10

11

13

12

8

6

14

9

Fig. 3. Topology of the NSF network after the 1989 transition. Node 9 and
node 14 were added in 1990.

64 wavelengths. The learning rate is set to α = 0.1 and the
maximum drop notification timer to DNmax = 50 ms.

Multiple Poisson traffic flows with a data rate of 0.5 Gbps
are transmitted randomly across the network. Each Poisson
flow is 50 bursts long with each burst containing 12.5 kB
of payload. While the burst arrival process depends on the
aggregation algorithm [40] deployed in a node, the Poisson
process has been widely used for performance analysis of OBS
networks because it is mathematically tractable [41], [42].

The simulation scenarios are repeated with five random
assignments of nodes as sources and destinations. The sim-
ulation results are averaged over the five simulation runs. The
burst loss probability and the average number of deflections as
functions of the number of Poisson flows for 64 wavelengths
scenarios are shown in Fig. 4.

Even though the space complexity of the NDD algorithm
is reduced to the degree of a node, simulation results show
that NDD-based protocols perform better than RLDRS and
PQDR in the case of low to moderate traffic loads. However,
NN-NDD and Q-NDD protocols initiate larger number of
deflections compared to RLDRS and PQDR. In moderate to
high loads, PQDR exhibits the best performance. It deflects
fewer bursts and its burst-loss probability is lower compared
to other algorithms. In the cases of higher traffic loads, ENN-
NDD algorithm discards fewer bursts while deflecting more
bursts compared to other NDD-based algorithms.

In scenarios with lower traffic loads, the bursts are deflected
less frequently and, therefore, the decision-making modules
(learning agents) learn based on a smaller number of trials
and errors (experience). The learning deficiency of Q-learning
based algorithms in these cases results in higher burst-loss
probabilities. In the cases of low to moderate traffic loads, the
NN-NDD algorithm has the lowest burst-loss probability. In
scenarios with higher traffic loads, decision-making modules
(learning agents) deflect bursts more frequently. This enables
the learning agents to gain additional experience and make
more informed decisions. In these cases, RLDRS and the
PQDR algorithm make optimal decisions, which result in
lower burst-loss probabilities because they collect and store
additional information about the network dynamics.

The RLDRS and PQDR signaling algorithms take into
account the number of hops to destination when they generates
feedback signals. Therefore, RLDRS and PQDR have smaller
average end-to-end delay and average number of hops traveled

by bursts. The average end-to-end delay of the deflection
routing algorithms is shown in Fig. 5. The average number
of hops has a similar trend.

Simulation results indicate that in the case of moderate loads
(40%–65%), the NDD algorithms have much smaller burst-
loss probability than RLDRS and PQDR, as shown in Fig. 4
(top left). For example, at 65% load, the burst-loss probability
of the NN-NDD algorithm is approximately 0.003, which is
four times better than performance of PQDR (≈ 0.012). The
NDD algorithms maintain comparable performance in terms
of end-to-end delay (within ≈ 0.04 ms), as shown in Fig. 5. In
the case of high loads (80%–100%), the maximum difference
in burst-loss probabilities is between NN-NDD (≈ 0.18) and
PQDR (≈ 0.13) at 100% load, as shown in Fig. 4 (bottom
left). The maximum difference in end-to-end delays at 100%
load is between Q-NDD (≈ 0.5 ms) and RLDRS (≈ 0.42
ms), as shown in Fig. 5. Superior performance of NDD
algorithms in case of moderate loads makes them a viable
solution for deflection routing because the Internet backbone
was engineered to keep link load levels below 50% [26].
Studies show that the overloads of over 50% occur less than
0.2% of a link life-time [26], [43].

B. Complex Network Topologies and Memory Usage

We use the Boston University Representative Internet Topol-
ogy Generator (BRITE) [44] to generate random Waxman
graphs [39] with 10, 20, 50, 100, 200, 500, and 1,000 nodes.
An edge that connects nodes u and v exists with a probability:

Pr
(
{u, v}

)
= β exp

(−d(u, v)

Lδ

)
, (17)

where d(u, v) is the distance between nodes u and v, L is the
maximum distance between two adjacent nodes, and β and
δ are parameters in the range (0, 1]. In simulation scenarios,
we use β = 0.2 and δ = 0.15 [45]. Nodes are randomly
placed and each node is connected to three other nodes
using bidirectional single wavelength fiber links. Sources and
destinations of traffic flows are randomly selected. For all
scenarios, we keep the network load at 40%. Hence, scenarios
with 10, 20, 50, 100, 200, 500, and 1,000 nodes have 24,
48, 120, 240, 480, 1,200, and 2,400 Poisson traffic flows,
respectively. Simulations were performed on a Dell Optiplex-
790 with 16 GB memory and the Intel Core i7 2600 processor.

1) Burst-Loss Probability: Performance of deflection rout-
ing algorithms in terms of burst-loss probability as a function
of number of nodes is shown in Fig. 6. Note that the burst-loss
probability has a logarithmic trend. The NN-NDD and Q-NDD
algorithms scale better as the size of the network grows.

The burst-loss probability of the NN-NDD and Q-NDD
algorithms is smaller and bursts are deflected less frequently.
However, bursts travel through additional hops and thus expe-
rience longer end-to-end delays. Therefore, smaller burst-loss
probability and smaller number of deflections come at the cost
of selecting longer paths, which are less likely to be congested.
RLDRS and the PQDR algorithm consider the number of hops
to destination when deflecting bursts, which causes the bursts
to travel through shorter paths. The probability of congestion
along shorter paths is usually higher because the majority of



IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015 9

30 35 40 45 50 55 60 65
0

0.002

0.004

0.006

0.008

0.01

0.012

Network load (%)

B
u

rs
t 

lo
s
s
 p

ro
b

a
b

ili
ty

 

 

NN−NDD

ENN−NDD

Q−NDD

PQDR

RLDRS

30 35 40 45 50 55 60 65
0

1000

2000

3000

4000

5000

6000

Network load (%)

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
d

e
fl
e

c
ti
o

n
s

 

 

NN−NDD

ENN−NDD

Q−NDD

PQDR

RLDRS

65 70 75 80 85 90 95 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Network load (%)

B
u

rs
t 

lo
s
s
 p

ro
b

a
b

ili
ty

 

 

NN−NDD

ENN−NDD

Q−NDD

PQDR

RLDRS

65 70 75 80 85 90 95 100
0

1

2

3

4

5

6

7

8

9
x 10

4

Network load (%)

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
d

e
fl
e

c
ti
o

n
s

 

 

NN−NDD

ENN−NDD

Q−NDD

PQDR

RLDRS

Fig. 4. Burst loss probability (left column) and average number of deflections (right column) as a function of the number of Poisson flows in the NSF network
simulation scenario. For readability, two cases are plotted: 1,000 (≈ 35% load) to 2,000 (≈ 65% load) Poisson flows (top row) and 2,000 (≈ 65% load) to
3,000 (≈ 100% load) Poisson flows (bottom row). The NDD algorithms perform better than RLDRS and PQDR in case of low to moderate traffic loads. In
the cases of higher traffic loads, ENN-NDD has smaller burst-loss while deflecting bursts more frequently compared to other NDD algorithms.

the routing protocols tend to route data through such paths.
As a result, burst-loss probability and probability of deflecting
bursts is higher along the paths that PQDR and RLDRS select
for deflection.

2) Number of Deflections: Although burst deflection re-
duces the burst-loss probability, it introduces excess traffic
load in the network. This behavior is undesired from the
traffic engineering point of view. Therefore, the volume of the
deflected traffic should also be considered as a performance
measure. Performance of the deflection routing algorithms in
terms of number of deflections as a function of number of
nodes is shown in Fig. 7. Simulation results show that the NN-
NDD and Q-NDD algorithms deflect fewer bursts compared
to RLDRS and the PQDR algorithm.

3) End-to-End Delay and Average Number of Hops:
Average end-to-end delay as a function of the number of
nodes is shown in Fig. 8. Simulation results indicate that in
the case of NDD algorithms, bursts travel through additional
hops compared to RLDRS and the PQDR algorithm. When
deflecting a burst, RLDRS and the PQDR algorithm consider

30 40 50 60 70 80 90 100
0.4

0.42

0.44

0.46

0.48

0.5

0.52

Network load (%)

A
v
e

ra
g

e
 e

n
d

−
to

−
e

n
d

 d
e

la
y
 (

m
s
)

 

 

NN−NDD

ENN−NDD

Q−NDD

PQDR

RLDRS

Fig. 5. Average end-to-end delay as a function of the number of Poisson
flows in the NSF network scenario with 64 wavelengths. RLDRS and PQDR
achieve better performance in terms of average end-to-end delay.



IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015 10

Number of nodes

B
u

rs
t 

lo
s
s
 p

ro
b

a
b

ili
ty

 

 

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
NN−NDD

ENN−NDD

Q−NDD

PQDR

RLDRS

Fig. 6. Burst loss probability as a function of the number of nodes in the
Waxman graphs at 40% traffic load.

Number of nodes

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
d

e
fl
e

c
ti
o

n
s

 

 

10
1

10
2

10
3

0

2

4

6

8

10

12

14
x 10

4

NN−NDD

ENN−NDD

Q−NDD

PQDR

RLDRS

Fig. 7. Number of deflections as a function of the number of nodes in the
Waxman graphs at 40% traffic load.

the number of hops to the destination. Furthermore, the
underlying topology and the connectivity of nodes affect the
number of hops traveled by bursts [23].

4) Memory and CPU Requirements: The memory and
CPU time requirements of NN-NDD, ENN-NDD, Q-NDD,
RLDRS, and PQDR are shown in Table I. All algorithms
initially have comparable memory requirements. However, as
the simulations proceed and the Q-tables are populated by
new entries, the memory usage of RLDRS and the PQDR
algorithm grows faster compared to NN-NDD and Q-NDD.
The ENN-NDD algorithm memory usage grows faster than
NN-NDD, Q-NDD, and RLDRS. This may be attributed to
a larger number of bursts that ENN-NDD deflects, as shown
in Fig. 7. The simulation results also show that NDD-based
algorithms require less CPU time compared to RLDRS and
PQDR. The memory usage of algorithms in the network with
1,000 nodes is shown in Fig. 9. The graphs were generated by
using 100 equally spaced time instances over each simulation

Number of nodes

A
v
e

ra
g

e
 e

n
d

−
to

−
e

n
d

 d
e

la
y
 (

s
)

 

 

10
1

10
2

10
3

2

3

4

5

6

7

8

9

10
x 10

−4

NN−NDD

ENN−NDD

Q−NDD

PQDR

RLDRS

Fig. 8. Average end-to-end delay as a function of the number of nodes in
the Waxman graphs at 40% traffic load.

0 20 40 60 80 100
980

990

1000

1010

1020

1030

1040

1050

Sample number

M
e

m
o

ry
 u

s
e

d
 (

M
B

)

 

 

NN−NDD

ENN−NDD

Q−NDD

PQDR

RLDRS

Fig. 9. Memory used in the network with 1,000 nodes. The graphs were
generated by using 100 equally spaced time instances over each simulation
run.

run.

IX. CONCLUSION

In this paper, we introduced the iDef framework that was
implemented in the ns-3 network simulator. iDef may be
employed for implementation and testing of various rein-
forcement learning-based deflection routing algorithms. Its
independent modules enable users to integrate various learning
and signaling algorithms when designing deflection routing
protocols. We also introduced the NDD signaling algorithm
for deflection routing. Its space complexity depends only on
the node degree. Furthermore, we proposed an NN-based
associative learning algorithm and an NN-based associative
learning algorithm with episodic updates. We combined the
NDD signaling algorithm with NN, ENN, and a Q-learning-
based decision-making modules for deflection routing.



IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015 11

TABLE I
COMPARISON OF MEMORY AND CPU USAGE OF NN-NDD, ENN-NDD, Q-NDD, PQDR, AND RLDRS

Number Number Number Minimum Maximum Average Total
Algorithm of of of memory memory CPU CPU time

nodes links flows usage (MB) usage (MB) usage (%) (mm:ss)

NN-NDD
500 1,500 1,200 264 271 8.1 8:28.23

1,000 3,000 2,400 983 1,001 14.03 32:47.91

ENN-NDD
500 1,500 1,200 264 294 7.74 12:03.48

1,000 3,000 2,400 989 1,050 12.69 42:40.16

Q-NDD
500 1,500 1,200 264 271 8.22 8:25.29

1,000 3,000 2,400 987 1,000 13.56 32:35.44

PQDR
500 1,500 1,200 264 290 9.83 13:28.11

1,000 3,000 2,400 987 1,048 15.93 52:58.90

RLDRS
500 1,500 1,200 264 276 9.53 14:27.04

1,000 3,000 2,400 987 1,013 15.41 56:13.34

Performance of the NN-NDD, ENN-NDD, and Q-NDD
algorithms was compared with the existing RLDRS and the
PQDR algorithm. We implemented these algorithms within the
iDef framework. For simulations, we employed the National
Science Foundation (NSF) network topology and random
graphs that consisted of 10, 20, 50, 100, 200, 500, and
1,000 nodes. These graphs were generated using the Waxman
algorithm.

In simulations using the NSF network topology, NN-NDD
achieves the lowest burst loss probability in the cases of
low to moderate loads. Simulations with Waxman topologies
indicate that NN-NDD and Q-NDD achieve smaller burst-
loss probabilities while they deflect bursts less frequently.
However, bursts travel through additional hops and thus ex-
perience longer end-to-end delays. Therefore, smaller burst-
loss probability and smaller number of deflections come at
the cost of selecting longer paths, which are less likely to
be congested. RLDRS and the PQDR algorithm consider the
number of hops to destination when deflecting bursts. This,
in turn, causes the bursts to travel through shorter paths.
However, the probability of congestion along shorter paths is
usually higher because the majority of the routing protocols
tend to route data through such paths. Consequently, burst-
loss probability and probability of deflecting bursts are higher
along the paths that RLDRS and the PQDR algorithm select
for deflection. The proposed NDD signaling algorithm also
requires less memory and CPU resources, which are more
significant as the size of the network grows.

Most existing deflection routing algorithms have been eval-
uated using various simulation and analytical methods. They
suggest that deflection routing is an effective approach to
reduce burst-loss. However, experimental performance eval-
uation using testbeds remains an open research topic.

ACKNOWLEDGMENT

The authors thank W. W.-K. Thong and G. Chen from City
University of Hong Kong and M. Arianezhad from Simon
Fraser University for their contributions at the early stage of
this project.

REFERENCES

[1] C. Qiao and M. Yoo, “Optical burst switching (OBS)—a new paradigm
for an optical Internet,” J. of High Speed Netw., vol. 8, no. 1, pp. 69–84,
Mar. 1999.

[2] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing
networks: a reinforcement learning approach,” in Advances in Neural
Inform. Process. Syst., J. Jack, D. Cowan, G. Tesauro, and J. Alspector,
Eds. San Francisco, CA, USA: Morgan Kaufmann Publishers, 1994,
vol. 6, pp. 671–678.

[3] S. P. M. Choi and D. Y. Yeung, “Predictive Q-routing: a memory-based
reinforcement learning approach to adaptive traffic control”, in Advances
in Neural Inform. Process. Syst., D. S. Touretzky, M. C. Mozer, and
M. E. Hasselmo, Eds. Cambridge, MA, USA: The MIT Press, 1996,
vol. 8, pp. 945–951.

[4] L. Peshkin and V. Savova, “Reinforcement learning for adaptive routing,”
in Proc. Int. Joint Conf. Neural Netw., Honolulu, HI, USA, May 2002,
vol. 2, pp. 1825–1830.

[5] C. J. C. H. Watkins and P. Dayan, “Technical note, Q-learning,” Machine
Learning, vol. 8, no. 3, pp. 279–292, May 1992.

[6] (2014, Oct.) The ns-3 network simulator [Online]. Available:
http://www.nsnam.org/

[7] (2014, Oct.) iDef ns-3 implementation repository [Online]. Available:
http://bitbucket.org/shaeri/hmm-deflection/

[8] S. Haeri, W. W-K. Thong, G. Chen, and Lj. Trajković, “A reinforcement
learning-based algorithm for deflection routing in optical burst-switched
networks,” in Proc. IEEE Int. Conf. Inf. Reuse and Integration, San
Francisco, USA, Aug. 2013, pp. 474–481.

[9] A. Belbekkouche, A. Hafid, and M. Gendreau, “Novel reinforcement
learning-based approaches to reduce loss probability in buffer-less OBS
networks,” Comput. Netw., vol. 53, no. 12, pp. 2091–2105, Aug. 2009.

[10] S. Haeri, M. Arianezhad, and Lj. Trajković, “A predictive Q-learning-
based algorithm for deflection routing in buffer-less networks,” in Proc.
IEEE Int. Conf. Systems, Man, and Cybernetics, Manchester, UK,
Oct. 2013, pp. 764–769.

[11] H. G. Perros, Connection-Oriented Networks: SONET/SDH, ATM,
MPLS and Optical Networks. Chichester, UK: John Wiley & Sons,
2005.

[12] Y. Xiong, M. Vandenhoute, and H. C. Cankaya, “Control architecture in
optical burst-switched WDM networks,” IEEE J. Sel. Areas Commun.,
vol. 18, no. 10, pp. 1838–1851, Aug. 2000.

[13] A. Zalesky, H. Vu, Z. Rosberg, E. Wong, and M. Zukerman, “OBS
contention resolution performance,” Perform. Eval., vol. 64, no. 4, pp.
357–373, May 2007.

[14] H.-L. Liu, B. Zhang, and S.-L. Shi, “A novel contention resolution
scheme of hybrid shared wavelength conversion for optical packet
switching,” J. Lightwave Technol., vol. 30, no. 2, pp. 222–228, Jan.
2012.

[15] X. Wang, X. Jiang, and A. Pattavina, “Efficient designs of optical LIFO
buffer with switches and fiber delay lines,” IEEE Trans. Commun., vol.
59, no. 12, pp. 3430–3439, Dec. 2011.



IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015 12

[16] A. I. Abd El-Rahman, S. I. Rabia, and H. M. H. Shalaby, “MAC-
layer performance enhancement using control packet buffering in optical
burst-switched networks,” J. Lightwave Technol., vol. 30, no. 11, pp.
1578–1586, June 2012.

[17] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: a survey,” J. of Artificial Intelligence Research, vol. 4, pp.
237–285, 1996.

[18] S. Li, M. Wang, E. W. M. Wong, V. Abramov, and M. Zukerman,
“Bounds of the overflow priority classification for blocking probability
approximation in OBS networks,” J. Opt. Commun. Netw., vol. 5, no. 4,
pp. 378–393, Apr. 2013.

[19] S. Bregni, A. Caruso, and A. Pattavina, “Buffering-deflection tradeoffs
in optical burst switching,” Photon. Netw. Commun., vol. 20, no. 2, pp.
193–200, Aug. 2010.

[20] M. Levesque, H. Elbiaze, and W. Aly, “Adaptive threshold-based
decision for efficient hybrid deflection and retransmission scheme in
OBS networks,” in Proc. 13th Int. Conf. Optical Network Design and
Modeling, Braunschweig, Germany, Feb. 2009, pp. 55–60.

[21] E. W. M. Wong, J. Baliga, M. Zukerman, A. Zalesky, and G. Raskutti, “A
new method for blocking probability wvaluation in OBS/OPS networks
with deflection routing,” J. Lightwave Technol., vol. 27, no. 23, pp.
5335–5347 Dec. 2009.

[22] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509-512, Oct. 1999.

[23] S. Haeri and Lj. Trajković, “Deflection routing in complex networks,”
in Proc. IEEE Int. Symp. Circuits and Systems, Melbourne, Australia,
June 2014, pp. 2217–2220.

[24] F. Borgonovo, “Deflection routing,” in Routing in Communications
Networks. New Jersey: Prentice-Hall, 1995, pp. 263–306.

[25] X. Yang and D. Wetherall, “Source selectable path diversity via routing
deflections,” in Proc. ACM SIGCOMM, New York, NY, USA, Oct. 2006,
pp. 159–170.

[26] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, “An approach to alleviate
link overload as observed on an IP backbone,” in Proc. IEEE INFOCOM,
Stanford, CA, USA, Mar. 2003, vol. 1, pp. 406–416.

[27] W. W.-K. Thong and G. Chen, “Jittering performance of random
deflection routing in packet networks,” Communications in Nonlinear
Science and Numerical Simulation, vol. 18, no. 3, pp. 616–624, Mar.
2013.

[28] J. Perelló, F. Agraz, S. Spadaro, J. Comellas, and G. Junyent, “Using
updated neighbor state information for efficient contention avoidance in
OBS networks,” Comput. Commun., vol. 33, no. 1, pp. 65–72, Jan. 2010.

[29] W. W.-K. Thong, G. Chen, and Lj. Trajković, “RED-f routing protocol
for complex networks,” in Proc. IEEE Int. Symp. Circuits and Systems,
Seoul, Korea, May 2012, pp. 1644–1647.

[30] Y. Kiran, T. Venkatesh, and C. Murthy, “A reinforcement learning
framework for path selection and wavelength selection in optical burst
switched networks,” IEEE J. Sel. Areas Commun., vol. 25, no. 9, pp.
18–26, Dec. 2007.

[31] X. Gao and M. Bassiouni, “Improving fairness with novel adaptive
routing in optical burst-switched networks,” J. Lightw. Technol., vol. 27,
no. 20, pp. 4480–4492, Oct. 2009.

[32] R. J. Williams and J. Peng, “Function optimization using connectionist
reinforcement learning algorithms,” Connection Science, vol. 3, no. 3,
pp. 241–268, 1991.

[33] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, no. 3,
pp. 229–256, May 1992.

[34] G.-B. Huang and H. A. Babri, “Upper bounds on the number of hidden
neurons in feedforward networks with arbitrary bounded nonlinear
activation functions,” IEEE Trans. Neural Netw., vol. 9, no. 1, pp. 224–
229, Jan. 1998.

[35] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
a new learning scheme of feedforward neural networks,” in Proc. IEEE
Int. Joint Conf. Neural Netw., Budapest, Hungary, July 2004, pp. 985–
990.

[36] G. Wu, W. Dai, X. Li, and J. Chen, “A maximum-efficiency-first multi-
path route selection strategy for optical burst switching networks,”
Optik—Int. J. Light and Electron Optics, vol. 125 no. 10, pp. 2229-
2233, May 2014.

[37] A. Belbekkouche, A. Hafid, M. Tagmouti, and M. Gendreau, “Topology-
aware wavelength partitioning for DWDM OBS networks: a novel
approach for absolute QoS provisioning,” Computer Networks, vol. 54,
no. 18, pp. 3264–3279, Dec. 2010.

[38] B. G. Bathula and V. M. Vokkarane, “QoS-based manycasting over
optical burst-switched (OBS) networks,” IEEE/ACM Trans. Netw., vol.
18, no. 1, pp. 271–283, Feb. 2010.

[39] B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas
Commun., vol. 6, no. 9, pp. 1617–1622, Dec. 1988.

[40] X. Mountrouidou and H. Perros, “On the departure process of the burst
aggregation algorithms in optical burst switching,” J. of Comput. Netw.,
vol. 53, no. 3, pp. 247–264, Feb. 2009.

[41] A. Zalesky, H. Vu, Z. Rosberg, E. W. M. Wong, and M. Zukerman,
“Modelling and performance evaluation of optical burst switched net-
works with deflection routing and wavelength reservation,” in Proc. IN-
FOCOM, Hong Kong SAR, China, Mar. 2004, vol. 3, pp. 1864–1871.

[42] X. Yu, J. Li, X. Cao, Y. Chen, and C. Qiao, “Traffic statistics and
performance evaluation in optical burst switched networks,” J. Lightw.
Technol., vol. 22, no. 12, pp. 2722–2738, Dec. 2004.

[43] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and C. Diot, “Packet-level traffic measurements from the Sprint
IP backbone,” IEEE Netw., vol. 17, no. 6, pp. 6–16, Dec. 2003.

[44] (2014, Oct.) BRITE [Online]. Available: http://www.cs.bu.edu/brite/
[45] E. W. Zegura, K. L. Calvert, and M. J. Donahoo “A quantitative

comparison of graph-based models for Internet topology,” IEEE/ACM
Trans. Netw., vol. 5, no. 6, pp. 770–783, Dec. 1997.

Soroush Haeri (S’11) received the undergradu-
ate degree from Multimedia University, Cyberjaya,
Malaysia. He is currently pursuing the Ph.D. degree
from the School of Engineering Science, Simon
Fraser University, Burnaby, BC, Canada.

He is a member of the Communication Networks
Laboratory, Simon Fraser University. He was a
Software Engineer with Wavelet Solutions, Subang
Jaya, Malaysia, from 2010 to 2011. In 2013, he
was a developer of Android applications at Simon
Fraser University Radio Station CJSF, Burnaby, BC,

Canada. His current research interests include communication networks,
applications of machine-learning algorithms to routing in computer networks,
and scalable routing architectures.

Ljiljana Trajković (S’78–M’86–F’05) received the
Dipl.Ing. degree from the University of Pristina,
Pristina, Yugoslavia, in 1974, the M.Sc. degrees
in electrical engineering and computer engineering,
both from Syracuse University, Syracuse, NY, USA,
in 1979 and 1981, respectively, and the Ph.D. de-
gree in electrical engineering from the University of
California, Los Angeles, Los Angeles, CA, USA, in
1986.

She is currently a Professor with the School
of Engineering Science, Simon Fraser University,

Burnaby, BC, Canada. From 1995 to 1997, she was a National Science
Foundation Visiting Professor with the Electrical Engineering and Computer
Sciences Department, University of California, Berkeley, Berkeley, CA, USA.
She was a Research Scientist with Bell Communications Research, Morris-
town, NJ, USA, from 1990 to 1997 and a Technical Staff Member with AT&T
Bell Laboratories, Murray Hill, NJ, USA, from 1988 to 1990. Her current
research interests include high-performance communication networks, control
of communication systems, computer-aided circuit analysis and design, and
theory of nonlinear circuits and dynamical systems.

Dr. Trajković serves as the President of the IEEE Systems, Man, and
Cybernetics Society (2014–2015) and has served as the President-Elect (2013),
the Vice President Publications (2010 to 2011 and 2012 to 2013), the Vice
President Long-Range Planning and Finance (2008 to 2009), a member of the
Board of Governors (2004 to 2006). She is a Chair of the IEEE Circuits and
Systems Society Joint Chapter of the Vancouver/Victoria Sections. She was
the President (2007) and a member of the Board of Governors of the IEEE
Circuits and Systems Society (2001 to 2003 and 2004 to 2005), a Chair of
the IEEE Technical Committee on Nonlinear Circuits and Systems (1998),
a Technical Program Co-Chair of International Symposium on Circuits and
Systems (ISCAS) 2005, a Technical Program Chair and a Vice General Co-
Chair of ISCAS 2004, an Associate Editor of the IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMSPART I (1993 to 1995 and 2004 to 2005),
the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMSPART II (1999
to 2001 and 2002 to 2003), and the IEEE CIRCUITS AND SYSTEMS
MAGAZINE (2001 to 2003), and a Distinguished Lecturer of the IEEE
Circuits and Systems Society (2002 to 2003 and 2010 to 2011).


