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Abstract—This paper proposes a novel label ranker
network to learn the relationship between labels to
solve ranking and classification problems. The Preference
Neural Network (PNN) uses spearman correlation gra-
dient ascent and two new activation functions, positive
smooth staircase (PSS), and smooth staircase (SS) that
accelerate the ranking by creating almost deterministic
preference values. PNN is proposed in two forms, fully
connected simple Three layers and Preference Net (PN),
where the latter is the deep ranking form of PNN to
learning feature selection using ranking to solve images
classification problem. PN uses a new type of ranker
kernel to generate a feature map. PNN outperforms five
previously proposed methods for label ranking, obtaining
state-of-the-art results on label ranking, and PN achieves
promising results on CFAR-100 with high computational
efficiency.

Index Terms—Preference Learning, Deep Label Rank-
ing, Neural Network.

I. INTRODUCTION

REFERENCE learning (PL) is an extended paradigm

in machine learning that induces predictive prefer-
ence models from experimental data [1]-[3]. PL has appli-
cations in various research areas such as knowledge dis-
covery and recommender systems [4]. Objects, instances,
and label ranking are the three main categories of PL
domain. Of those, label ranking (LR) is a challenging prob-
lem that has gained importance in information retrieval by
search engines [5], [6]. Unlike the common problems of re-
gression and classification [7]-[13], label ranking involves
predicting the relationship between multiple label orders.
For a given instance x from the instance space x, there is a
label £ associated with x, £ € m, where 7 ={A1,..,A,}, and
n is the number of labels. LR is an extension of multi-
class and multi-label classification, where each instance
x is assigned an ordering of all the class labels in the
set L. This ordering gives the ranking of the labels for
the given x object. This ordering can be represented by a
permutation set 7 = {1,2,---,n}. The label order has the fol-
lowing three features. irreflexive where A, i A, ,transitive
where (Aq > Ap) A(Ap > A.) = Aq > A, and asymmetric
Ao > Ap = Ap # Ag. Label preference takes one of two
forms, strict and non-strict order. The strict label order
(Ag > Ap > A¢ > Ag) can be represented as 7 =(1,2,3,4) and
for non-restricted total order 7 =(1, > Ap = A, > 14) can be
represented as 7 =(1,2,2,3), where a,b,c,and,d are the
label indexes and A4,15,1, and A4 are the ranking values
of these labels.
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For the non-continuous permutation space, The order is
represented by the relations mentioned earlier and the L
incomparability binary relation. For example the partial
order A, > Ay > Ag can be represented as 7 = (1,2,0,3)
where 0 represents an incomparable relation since A, is
not comparable to (14,1p,14).

Various label ranking methods have been introduced
in recent years [14], such as decomposition-based meth-
ods, statistical methods, similarity, and ensemble-based
methods. Decomposition methods include pairwise com-
parison [15], [16], log-linear models and constraint classi-
fication [17]. The pairwise approach introduced by Hiiller-
meier [18] divides the label ranking problem into several
binary classification problems to predict the pairs of la-
bels A; > A; or A; < A; for an input x. Statistical meth-
ods includes decision trees [19], instance-based methods
(Plackett-Luce) [20] and Gaussian mixture model based
approaches. For example, Mihajlo uses Gaussian mixture
models to learn soft pairwise label preferences [21].

The artificial neural network (ANN) for ranking was
first introduced as (RankNet) by Burge to solve the prob-
lem of object ranking for sorting web documents by a
search engine [22]. Rank net uses gradient descent and
probabilistic ranking cost function for each object pair.
The multilayer perceptron for label ranking (MLP-LR) [23]
employs a network architecture using a sigmoid activation
function to calculate the error between the actual and
expected values of the output labels. However, It uses a
local approach to minimize the individual error per output
neuron by subtracting the actual-predicted value and us-
ing Kendall error as a global approach. Neither direction
uses a ranking objective function in backpropagation (BP)
or learning steps.

The deep neural network (DNN) is introduced for
object ranking to solve document retrieval problems.
RankNet [22], RankBoost [24], and Lambda MART [25],
and deep pairwise label ranking models [26], are convo-
lution neural Network (CNN) approaches for the vector
representation of the query and document-based. CNN
is used for image retrieval [27] and label classification
for remote sensing and medical diagnosing [28]-[35]. A
multi-valued activation function has been proposed by
Moraga and Heider [36] to propose a Generalized Mul-
tiple-valued Neuron with a differentiable soft staircase
activation function, which is represented by a sum of a set
of sigmoidal functions. In addition, Aizenberg proposed a
generalized multiple-valued neuron using a convex shape
to support complex numbers neural network and multi-
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values numbers [37]. Visual saliency detection using the
Markov chain model is one approach that simulates the
human visual system by highlighting the most important
area in an image and calculating superpixels as absorbing
nodes [38]-[40]. However, this approach needs a saliency
optimization on the results and has calculation cost [41],
[42].

Particle Swarm Optimization in movement detection is
based on the concept of variation and inter-frame dif-
ference for feature selection. The swarm algorithms are
mainly used in human motion detection in sports, and it
is used based on probabilistic optimization algorithm [43]—
[46] and CNN [47].

Some of the methods mentioned above and their vari-
ants have some issues that can be broadly categorized into
three types:

1) The ANN Predictive probability can be enhanced by
limiting the output ranking values in the SS functions
to a discrete value instead of a range of values of
the rectified linear unit (Relu), Sigmoid, or Softmax
activation functions. The predictive is enhanced by
using the SS function slope as a step function to
create discrete values, accelerating the learning by
reducing the output values to accelerate the ranking
convergence.

2) The drawback of ranking based on the classification
technique ignores the relation between multiple la-
bels: When the ranking model is constructed using bi-
nary classification models, these methods cannot con-
sider the relationship between labels because the acti-
vation functions do not provide deterministic multiple
values. Such ranking based on minimizing pairwise
classification errors differs from maximizing the label
ranking’s performance considering all labels. This is
because pairs have multiple models that may reduce
ranking unification by increasing ranking pairs con-
flicts where there is no ground truth, which has no
generalized model to rank all the labels simultane-
ously. For example, D =(1,1,1) for 7=y > Ap > A¢)
and D =(1,1,1) for © = (1, > Ac > Ap) the ranking
is unique; however, pairwise classification creates no
ground truth ranking for the pair 1y > 1. and A, > 1
which adds more complexity to the learning process.

3) Ignoring the relation between features. The convolu-
tion kernel has a fixed size that detects one feature
per kernel. Thus, it ignores the relationship between
different parts of the image. For example, CNN de-
tects the face by combining features (the mouth, two
eyes, the face oval, and a nose) with a high proba-
bility of classifying the subject without learning the
relationship between these features. For example, the
proposed PN kernel start attention to the important
features that have a high number of pixel ranking
variation.

The main contribution of the proposed neural network is

. Solving the label ranking as a machine learning
problem.

. Solving the deep learning classification problem by
employing computational ranking in feature selection
and learning.

Where PNN has several advantages over existing label
ranking methods and CNN classification approaches.

1) PNN uses the smooth staircase SS as an activation
function that enhances the predictive probability over
the sigmoid and Softmax due to the step shape that
enhances the predictive probability from a range from
-1 to 1 in the sigmoid to almost discrete multi-values.

2) PNN uses gradient ascent to maximize the spear-
man ranking correlation coefficient. In contrast, other
classification-based methods such as MLP-LR use the
absolute difference of root mean square error (RMS)
by calculating the differences between actual and
predicted ranking and other RMS optimization, which
may not give the best ranking results.

3) PNN is implemented directly as a label ranker. It uses
staircase activation functions to rank all the labels
together in one model. The SS or PSS functions pro-
vide multiple output values during the conversions;
however, MLP-LR and RankNet use sigmoid and
Relu activation functions. These activation functions
have a binary output. Thus, it ranks all the labels
together in one model instead of pairwise ranking by
classification.

4) PN uses a novel approach for learning the feature
selection by ranking the pixels and using different
sizes of weighted kernels to scan the image and
generate the features map.

The next section explains the Ranker network experiment,
problem formulation, and the PNN components (Activa-
tion functions, Objective function, and network structure)

that solve the Ranker problems and comparison between
Ranker network and PNN.

II. PNN COMPONENTS
A. Initial Ranker

The proposed PNN is based on an initial experiment
to implement a computationally efficient label ranker
network based on the Kendall 7 error function and sigmoid
activation function using simple structure as illustrated in
section IV Fig. 6.

The ranker network is a fully connected, three-layer
net. The input represents one instance of data with three
inputs, and there are six neurons in the hidden layer and
three output neurons representing the labels’ index. Each
neuron represents the ranking value. A small toy data set
is used in this experiment. The ranker uses RMS gradient
descent as an error function to measure the difference
between the predicted and actual ranking values. The
ranker has Kendall 7 as a stopping criterion. The same
ANN structure, number of neurons and learning rate
using SS activation function, and spearman error function
and gradient ascent of p will be discussed in section IV.
The ranking convergence reaches 7 =~ 1 after 160 epochs
using the Sigmoid function [48]. The sigmoid and ReLU
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shapes have a slightly high rate of change of y, and it
produces a larger output range of data. Therefore, we
consider ranking performance as one of the disadvantages
of sigmoid function in the ranker network.

The ranker network has two main problems.

1) The ranker uses two different error functions, RMS
for learning and Kendall 7 for stopping -criteria.
Kendall 7 is not used for learning because it is not
continuous or differentiable. Both functions are not
consistent as stopping criteria measure the relative
ranking, and RMS does not, which may lead to incor-
rect stopping criteria. Enhancing the RMS may not
also increase the error performance, as illustrated in
Fig. 3 in a comparison between the ranker network.
evaluation using p and RMS.

2) The convergence performance takes many iterations
to reach the ranking 7 =1 based on the shape of sig-
moid or Relu functions and learning rate as shown in
the experiment video link [48] due to the slope shape
between -1 or 0 and 1. The prediction probability
almost equals the values from -1 or 0 to 1.

B. Problem Formulation

For multi-class and multi-label problems, learning the
data’s preference relation predicts the class classification
and label ranking. i.e. data instance D € {x1,x9,...,X,}.
the output labels are predicted as ranked set labels that
have preference relations £ = {A,,,...,A,,}. PNN creates
a model that learns from an input set of ranked data
to predict a set of new ranked data. The next section
presents the initial experiment to rank labels using the
usual network structure.

C. Activation Functions

The usual ANN activation functions have a binary
output or range of values based on a threshold. However,
these functions do not produce multiple deterministic
values on the y-axis. This paper proposes new functions
to slow the differential rate around ranking values on the
y-axis to solve ranking instability. The proposed functions
are designed to be non-linear, monotonic, continuous, and
differentiable using a polynomial of the tanh function.
The step width maintains the stability of the ranking
during the forward and backward processes. Moraga [36]
introduced a similar multi-valued function. However, the
proposed exponential derivative was not applied to an
ANN implementation. Moraga exponential function is ge-
ometrically similar to the step function [49]. However,
The newly proposed functions consist of tanh polynomial
instead of exponential due to the difficulty in implementa-
tion. The new functions detect consecutive integer values,
and the transition from low to high rank (or vice versa) is
fast and does not interfere with threshold detection.

1) Positive Smooth Staircase (PSS): As a non-linear and
monotonic activation function, a positive smooth staircase
(PSS) is represented as a bounded smooth staircase func-
tion starting from x=0 to co. Thus, it is not geometrically

symmetrical around the y-axis as shown in Fig. 1. PSS is
a polynomial of multiple tanh functions and is therefore
differentiable and continuous. The function squashes the
output neurons values during the FF into finite multiple
integer values. These values represent the preference
values from {0 to n} where 0 represents the incomparable
relation 1 and values from 1 to n represent the label
ranking. The activation function is given in Eq. 1. PSS
is scaled by increasing the step width w

30-

25-

20-

0.5

(a)

(b)

Fig. 1: PSS activation function where n = 3 and step width
w=1 and ¢ =100 and 5 in (a) and (b) respectively

n-1

Y tanh(c(wi-=x))—n »
0

1=

y:

Where n is the number of stair steps equal to the
number of labels to rank, w is the step width, and c is the
stair curvature ¢ = 100 and 5 for the sharp and smooth
step, respectively. and s is the scaling factor for reducing
the height of each step to range to rank value with decimal
place for the regression problems. s=10 and s=100 for 1
and 2 decimal places, respectively, s is calculated as in
Eq. 2.

n=Ymaxs (2)
and w is the step width as shown in Eq. 3.

2b=w(n-1) 3)

2) Smooth Staircase (SS): The proposed (SS) represents
a staircase similar to (PSS). However, SS has a variable
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boundary value used as a hyperparameter in the learn-
ing process. The derivative of the activation function is
discussed in section III and the performance comparison
between SS and PSS is mentioned in Section V.

wh

L L
-3 -2 -1 1 2

(a)

30

251

20F

L L
10 20 30

(c)

Fig. 2: SS activation function where n =6, 30 and 20 and
boundary b5 =1, 30 and 1 and scale factor for the decimal
place is s =1,1 and 10 for ranking/classification, extreme
label ranking/classification and regression in (a), (b) and
(c) respectively.

The activation function is given in Eq. 4.
1 (n=1
y=-—| ) tanh(c(b-x-wi))—n 4
25\ {5
where c is step curvature, n = number of ranked labels, b
is the boundary value on the x-axis, and (SS) lies between
—b and b.
where Y,,4, is the max. value to rank. i.e. Y;,4,=3 and
values have one decimal place. n =30 The (SS) function
has the shape of smooth stair steps, where each step
represents an integer number of label ranking on the

y-axis from 0 to oo as shown in Fig. 1, The SS step
is not flat, but it has a differential slope. The function
boundary value on the x-axis is from -6 to & Therefore,
input values must be scaled from -b to b. The step width
is 1 when n= 2b. The convergence rate is based on the step
width. However, it may take less time to converge based
on network hyper parameters. Fig. 2 (a) and (b). The SS
is scaled by increasing the boundary value b

D. Ranking Loss Function

Two main error functions have been used for label
ranking; Kendall 7 [50] and spearman p [51]. However, the
Kendall 7 function lacks continuity and differentiability.
Therefore, the spearman p correlation coefficient is used
to measure the ranking between output labels. spearman
p error derivative is used as a gradient ascent process for
BP, and correlation is used as a ranking evaluation func-
tion for convergence stopping criteria. 74, is the average
7 per label divided by the number of instances m, as shown
in line 8 of Algorithm 1. spearman p measures the relative
ranking correlation between actual and expected values
instead of using the absolute difference of root means
square error (RMS) because gradient descent of RMS may
not reduce the ranking error. For example, 71 =(1,2.1,2.2)
and 79 =(1,2.2,2.1), have a low RMS = 0.081 but a low
ranking correlation p =0.5 and 7=0.3.

061 0.4 —e— ANN
—m— PNN

0.5 0.35
0.4 0.3
0.3 0.25
0.2

Il Il Il Il Il 0-2 Il Il Il Il

0 20 40 60 80 20 40 60 80

#iterations #iterations
(a) Spearman p (b) RMS

Fig. 3: Ranker network and PNN evaluation in terms of
RMS and spearman correlation error functions

Fig 3 shows the comparison between the initial ranker
network and PNN,; the ranker network uses Kendall
7 which has lower performance as a stopping criterion
compared to PNN spearman because the stopping criteria
are based on the RMS per iteration; however, PNN uses
spearman for both ranking step and stopping criteria.

The spearman error function is represented by Eq.5

1 86X, (yi —yt;)
m(m?2-1)
where y;, yt;j, i and m represent rank output value,

expected rank value, label index and number of instances,
respectively.

pe 5)

E. PNN Structure

1) One middle layer: The ANN has multiple hidden
layers. However, we propose PNN with a single middle
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layer instead of multi-hidden layers because ranking per-
formance is not enhanced by increasing the number of
hidden layers due to fixed multi-valued neuron output,
as shown in Fig. 4; Seven benchmark data sets [52]
was experimented using SS function using one, two, and
three hidden layers with the following hyper parameters;
learning rate (1.r.)=0.05, and each layer has neuron i = 100
and b = 10). We found that by increasing the number of
hidden layers, the ranking performance decreases, and
more iterations are required to reach p = 1. The low
performance because of the shape of SS produces mul-
tiple deterministic values, which decrease the arbitrarily
complex decision regions and degrees of freedom per extra
hidden layer.

PNN Ranking performance by multiple layers

mm onel.
* Twio |
0& . . o
. . A Three |
. . o .
. .
0.6 . . - .
. . -
=% . . o .
. . o
04 . . - .
. . o
- . I - J
02 - = d 5
. N=i i | B
. . - .

Stock wisconsine

Fried
Ds

Iris Wine Heat Glass

Fig. 4: Multiple layer label ranking comparison of bench-
mark data sets [52] results using the PNN and SS func-
tions after 100 epochs and learning rate = 0.007.

2) Preference Neuron: Preference Neuron are a multi-
valued neurons uses a PSS or SS as an activation function.
Each function has a single output; however, PN output
is graphically drawn by n number of arrow links that
represent the multi-deterministic values. The PN in the
middle layer connects to only n output neurons stp =n+1;
where stp is the number of SS steps. The PN in the
output layer represents the preference value. The middle
and output PNs produce a preference value from 0 to co
as illustrated in Fig. 5.

The PNN is fully connected to multiple-valued neurons

Aa
Preference Neuron

a1

a
Weights

Wr

k An =¢4(Zf:1ai~wz‘)

Fig. 5: The structure of preference neuron where ¢,-4.

and a single-hidden layer ANN. The input layer represents
the number of features per data instance. The hidden
neurons are equal to or greater than the number of output
neurons, H, = L,, to reach error convergence after a finite
number of iterations. The output layer represents the label
indexes as neurons, where the labels are displayed in a
fixed order, as shown in Fig. 6.

Output layer

Middle layer
#300h.n.

Input layer

aoue)suy au()
] [g]

[7]

(2] [¢]

Fig. 6: PNN where ¢,-16, fin = 16 and Ay, = 16, per
(x1,7m1), L€{Aq,Ap,Ac,Aq} where m1 ={1,2,3,4,...,16}.

The ANN is scaled up by increasing the hidden layers
and neurons; however, increasing the hidden layers in
PNN does not enhance the ranking correlation because
it does not arbitrarily increase complex decision regions
and degrees of freedom to solve more complex ranking
problems. This limitation is due to the multi-semi discrete-
valued activation function, limiting the output data vari-
ation. Therefore, instead of increasing the hidden layer,
PNN is scaling up by increasing the number of neurons in
the middle layer and scaling input data boundary value
and increasing the PSS step width and SS boundaries
which are equal to the input data scaling value, which
leads to increased data separability.

PNN reaches ranking p =1 after 24 epochs compared
to the initial ranker network that reaches the same result
in 200 iterations, The video link demonstrates the ranking
convergence as shown in Fig. 7 and video [48]. A summary
of the three networks is presented in Table I.

The output labels represent the ranking values. The
differential PSS and SS functions to accelerate the con-
vergence after a few iterations due to the staircase shape,
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which achieves stability in learning. PNN simplifies the
calculation of FF and BP, and updates weights into two
steps due to single middle layer architecture. Therefore,
the batch weight updating technique is not used in PNN,
and pattern update is used in one step. The network bias
is low due to the limited preference neuron output of data
variance; thus it is not calculated. Each neuron uses the
SS or PS activation function in FF step, and calculates
the preference number from 1 to n, where n is the number
of label classes. During BP. The processes of FF and BP
are executed in two steps until pa,; = 1 or the number
of iterations reaches (10%) as mentioned in the algorithm
section.

The SS step width decreases by increasing the number
of labels; thus, we increase function boundary b to increase
the step width to = 1 to make the ranking convergence;
In addition, a few complex data sets may need more data
separability to enhance the ranking. Therefore, we use the
b value as a hyperparameter to keep the stair width >=1
and normalize input data from —b to b.

Ranking Convergence

1 [ .

0.8 |- -

0.6 |- -

;04 -
02| —e— Ranker NN

ol ‘ | ‘+ ‘ PNN‘ |

0 50 100 150 200

#iterations

Fig. 7. The structure used in both ranker ANN and
PNN where ¢,-3, fin =3 and A,y = 3, per (x1,7m1),
L €{Ag,Ap, A} where w1 ={1,2,3}. and comparison of the
convergence for both NN’s. The demo video of convergence
of two NN in the link [48].

Table I shows a brief comparison between Ranker ANN
and PNN.

TABLE I: ANN types used in initial experiment.

Type Ranker ANN PNN
Activation Fun. ReLU,Sigmoid | PSS, SS
Gradient Descent Ascent
Objective Fun. RMS o
Stopping Criteria. T o

The following section describes the data preprocessing
steps, feature selections, and components of PN.

III. PN COMPONENTS
A. Image Preprocessing
1) Greyscale Conversion: Data scaling as red, green,
and blue (RGB) colors is not considered for ranking be-
cause PN measures the preference values between pixels.
Thus, The image is converted from RGB color to Greyscale.

2) Pixels’ Sorting: Ranking the image from 7 =
{A1,.,Am} to m={A1,..,A2} where the maximum greyscale
value A,, =255 and 1;, is the maximum ranked pixel value
as illustrated in Fig. 8 (a).

28 X 28 28 X 28
0-255 1-156
02105951 1]3]9]6]20]2
8 [10h4d 2 [68] 3 9 [22]3]17] 4 (@)
13d 3 bssad 6 |54 21| 4 |28[27] 7 |13
530155 1 p5564[195 12|23 2 |28(15]25
5 | 4 |561167230 42 6|5 |14]24|26[11
0 65| 2 [9469]12 1 [16] 3 [19]18]10
3X 3
il%
61912] 3x3 (b)
5]4[7] 19
AE

Fig. 8: Image pixel sorting for the flattened windows in (a)
and (b) respectively.

3) Pixels Averaging: Ranking image pixels has an al-
most low ranking correlation due to noise, scaling, light,
and object movement; therefore, window averaging is pro-
posed by calculating the mean of pixel values of the small
flattened window size of 2x2 of 4 pixels as shown in Fig. 9.
The overall image p of pixels increased from 0.2 to 0.79
in (a and b), from 0.137 to 0.75 for noisy images in (s and
d), and scaled images from -0.18 to 0.71 in (e and f).

The two approaches, Pixel ranking and Averaging has
been tested in remote sensing and faces images to detect
the similarity, and it shows high ranking correlations
using different window size as shown in Fig 10. It detects
the high correlation by starting from the large window
size = image size. It reduces the size and scans until it
reaches the highest correlation.

B. Feature Selection By Attention

Feature selection for the kernel proceeded by selecting
the features with a high group of pixel ranking variations
indicating the importance of the scanned kernel area. This
kind of hard attention makes the selection based on the
threshold of pixel ranking values. to reduce the dimension
of the input image.

C. Feature Extraction

This paper proposes a new approach for image feature
selection based on the preference values between pixels
instead of the convolution of pixels array as implemented
in CNN. The PN’s features are based on ranking com-
putational space. Therefore, the kernel window size is
considered a factor for feature selection.

1) Pixels Resorting: The flattened window’s values are
sorted for each kernel window in the image. The Fig. 8 (b)
shows the window size 3X3 range from A, =23 to A, =9.
Pixel sorting reduces the data margin, Thus, it reduces the
computational complexity.
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(a) p=0.216 (b) p=0.79
(c) p=0.137 (d) p=0.75
(e) p=-0.18 ) p=0.71

Fig. 9: Sample of moving objects in (a) and (b) without
and with averaging by window 2x2. The ranking of two
flattened images are p = 0.216 and 0.79 in (a) and (b),
respectively. Sample of moving noisy object in (¢) and (d)
without and with image averaging by a window of 2x2.
The ranking of two flattened images are p =0.137, 0.75
and 0.75 in (c¢) and (d) respectively. ranking scaled circle
in (e) and (f), respectively.

0.84

o

-

Fig. 10: Detecting the similarity in remote sensing and
face recognition by ranking the image pixels after averag-
ing the pixels using a 2x2 window.

2) Weighted Ranker Kernel: The kernel weights are ran-
domly initialized from -0.05 to 0.05. The kernel learns the
features by BP of its weights to select the best feature. the
partial change in the kernel is calculated by differentiating
the spearman correlation as in Eq. 6

n3—n

-6
Different kernel sizes could be used for big images’ size.
We use three different kernels to capture the relations
between different features.

3) Max Pooling: Max. pooling is used to reduce the
features map’s size and select the highest correlation
values to feed to the PNN.

dKw=2-Img, —dp-

(6)

D. PN Structure

PN is the deep learning structure of PNN for image
classification. It consists of five layers, a ranking features
map and a max. pooling and three PNN layers. PN has
one or multiple different sizes of PNNs connected by one
output layer. Each PNN has SS or PSS where ¢,-2 for
binary ranking to map the classification. The number of
output neurons is the number of classes. The structure is
shown in Fig 11. PN have one or more ranker kernels with
different sizes, Each kernel has one corresponding PNN.
PN uses the weighted kernel ranking to scan the image
and extract the features map of spearman correlation val-
ues of the kernel with the scanned ranked image window
as p(my,my) where m;, is the kernel preference values and
7, is the scanned window image preference values. Each
kernel scans the image by one step and creates a spearman
features list. Max. Pooling is used to minimize the feature
map used as input to PNN.

One 5X5 kernel is used for fashion Mnist data set [53].
Three kernels with sizes (3, 10, and 20) are used for CFAR-
100 [54].

E. Choosing The Kernel Size

Kernel size is chosen based on the hard attention of the
highest group of pixels that has high ranking variation.
The process scans the image sequentially starting from a
small size to find the size with the highest pixels ranking
variation. For example for the Mnist dataset where the
image has a size of 28X28, The meaningful features are
extracted using kernel sizes 10x10, 15x15, 20x20 and
25x25.

IV. ALGORITHMS
A. Baseline Algorithm
Algorithm 1 represents the three functions of the net-
work learning process; feed-forward (FF), BP, and updat-
ing weights (UW). Algorithm 2 represents the learning
flow of PN. Algorithm 3 represents the simplified BP
function in two steps.

Algorithm 1: PNN learning flow
Data: D € {x1,x9,...,%4}
Result: me{l,,,...,4y,}
1 Randomly initialize weights w; ; € {~0.05,0.05}
2 repeat
3 forall (x;,7;) €D do
aili-1=X"  ¢(a; )l // FF
PNN BP()
Winew = Wiglg —1-6; IUW

S oUWk

7 until py,, = 1 or #iterations = 10%;

B. Ranking Visualization

PNN ranking convergence is visualized using the SS
function by displaying the normalized input data points
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Fig. 11: The PN structure has three kernels and three PNNs where ¢,-2, f1in = 16, f2in =81, f3in, = 169 and A,,; = 15,

per {(x1,71),mw € {A1,A2,A3---,A15}.

with corresponding actual ranked five labels represented
in 5 different colours, The plotting of input value and SS
output values per iteration is shown in Fig. 12, which
illustrates the distribution of SS output values against
the actual colour values at iterations 0 and 3900 and 1 is
enhanced from 0.39 to 0.85.

C. Complexity Analysis
1) Time Complexity:
« FF time complexity corresponds to FF of middle and
output layers, and m and n are the number of nodes
in the middle and output layers. W,, and W, are

weighted matrix and SS; is the activation function of
number of instances ¢. The time complexity in Eq. 7

O(m-o-t) (7

« BB starts with calculating the error of output layer
E,: = p, Delta, = Eo-SS' and Deltan, = Ep;-SS’
then UW

W =Wp, —Deltapn, 8

This time complexity is then multiplied by the num-
ber of epochs p

O(p-m-o-t) 9)

2) Input Neurons: The number of PN input neurons is
represented by Eq. 10

#Input=Umg,-K,+1)-Umgp —-Kp+1) (10)

where w and & are width and height of kernel and image.

V. NETWORK EVALUATION

This section evaluates the PNN against different activa-
tion functions and architectures. All weights are initialized
= 0 to compare activation functions and A and B have the
same initialized random weights to evaluate the structure.

A. Activation Functions Evaluation

PNN is tested on iris and stock data sets using four
activation functions. SS, PSS, ReLU, sigmoid, and tanh.
PNN has one middle layer and the number of hidden
neurons (h.n.) is 50, while L.r.= 0.05. Fig. 13 shows the
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Algorithm 2: PN Learning flow

8 Converting image to greyscale

9 Flattening image

10 Pixels sorting

11 2D Image

12 Pixels averaging by a 2X2 window

13 Flattening image

14 Select one/more kernel sizes.

15 Random init. Kernel Ko, , € {-0.05,0.05}
16 Random init. PNN w; ;j € {~0.05,0.05}

17 repeat

18 2D Image

19 Scanned window pixel ranking Img,,
20 Compute p(Img,,,Kw) feature map
21 Max. Pooling.

22 Flattening image

23 PNN FF()

24 PNN BP()

25 PNN UW()

26 Max. Pooling BP()

27 Ranker kernel BP and UW()

28 until py,, = 1 or #iterations = 10%;

Algorithm 3: PNN BP
29 Step 1: for each pn; in Output layer do

30 L Erri=p=-6- % //spearman error
31

6i=Err-q/

32 Step 2: for each pn; in middle layer do
33 | Erri=Y]" w0}

34 0;=Err-¢!

convergence after 500 iterations using four activation
functions (SS, PSS, sigmoid, ReLU and tanh) respectively.
We noticed that PSS and SS have a stable rate of ranking
convergence compared to sigmoid, tanh, and ReLU. This
stability is due to the stairstep width, which leads each
point to reach the correct ranking during FF and BP in
fewer epochs.

1) PSS and SS Evaluation: As shown in Fig 13, PSS
reaches convergence and remains stable for a long number
of iterations compared to SS. However, SS has better p
than PSS. This good performance of SS is due to the
reason:

« The symmetry of SS function on the x axis. The SS
shape handles both positive and negative normalized
data. It reduces the number of iterations to reach the
correct ranking values.

To have the same performance for SS and PSS, the input
data should be scaled from 0 to step width X #steps and
from -b to b for PSS and SS respectively.

2) Missing Labels Evaluation: Activation functions are
evaluated by removing a random number of labels per
instance. PNN marked the missing label as -1; PNN ne-
glects error calculation during BP, § = 0. Thus, the missing

5
=3
37
Label Ranking 0 Kendal Tau=0.3921
PR n Epoch =0
e 2
e 3
4 (G @ | IDC X T@cX
5
f(.
3 .l"
'J 1
-.-__"j, ! . . . y
-4 -3 -2 -1 0 1 2 3 4

Sum weights X output|l-1

(a)

SS output
~

Kendal Tau=0.8506
Epoch =3900

Label Ranking
[ ]
[ J
[ ]

UuR WN R
O] o
L L

IS
L

d .

T T T T
-4 -2 0 2 4
Sum weights X output|l-1

(b)

Fig. 12: Visualizing the ranking of stock dataset [562] has
five labels using SS activation function of stock data set
at epoch 0 and 3900 in (a) and (b) respectively.

label weights remain constants per learning iteration. The
missing label approach is applied to the data set by 20%
and 60% of the training data. The ranking performance
decreases when the number of missing labels increases.
However, SS and PSS have more stable convergence than
other functions. This evaluation is performed on the iris
data set, as shown in Fig. 13.

3) Statistical Test: The PNN results were evaluated
using receiver operating characteristic (ROC) curves. The
true positive and negative for each rank are evaluated per
label of wine dataset as shown in Fig. 14. The confusion
matrix on wine and glass DS are shown in Fig. 15 where
7 = 0.947, 0.84, Accuracy = 0.935 and 0.8 in (a) and (b)
respectively.

4) Dropout Regularization: Dropout is applied as a
regularization approach to enhance the PNN ranking
stability by reducing over-fitting. We drop out the weights
that have a probability of less than 0.5. these dropped
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Fig. 13: PNN activation function comparison using com-
plete labels and 60% missing labels in (a) and (b), respec-
tively.
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Fig. 14: ROC of three labels ranking on the wine data set
using PNN h.n=100 and 50 epochs.

weights are removed from FF, BP, and UW steps. The
comparison between dropout and non-dropout of PNN are
shown in Fig. 16. The gap between the training model and
ten-fold cross-validation curves has been reduced using
dropout regularization using hyperparameters (1.r.=0.05,
h.n.=100) on the iris data set. The dropout technique is
used with all the data ranking results in the next section.

The following section is the evaluation of ranking ex-
periments using label benchmark data sets.

VI. EXPERIMENTS

This section describes the classification and label rank-
ing benchmark data sets, the results using PN and PNN,
and a comparison with existing classification and ranking
methods.

A. Data sets

1) Image Classification Data sets: PN is evaluated us-
ing CFAR-100 [54] and Fashion-MNIST [55] data sets.

0 1 2 3 4 5
o{ 35 5 2 1 0 0
1{ 8 32 3 0 0 0
n
2241 5 10 27 1 0 0
o
s
531 0 2 11 28 2 0
<
a1 0 2 7 9 25 0
s1 0 0 0 11 6 26
Precision | 0.729 | 0.627 0.54 0.56 0.757 1.0
Recall 0.813 | 0.744 | 0.627 | 0.651 | 0.581 | 0.604
F1 Score | 0.769 | 0.680 | 0.580 | 0.602 | 0.657 | 0.753
(b)

Fig. 15: The confusion matrix of testing the wine, glass
data sets where 7 = 0.947, 0.84, Accuracy = 0.935 and 0.8
in (a) and (b) respectively.

2) Label Ranking Data sets: PNN is experimented with
using three different types of benchmark data sets to eval-
uate the multi-label ranking performance. The first type
of data set focuses on exception preference mining [56],
and the ‘algae’ data set is the first type that highlights
the indifference preferences problem, where labels have
repeated preference value [57]. German elections 2005,
2009, and modified sushi are considered new and re-
stricted preference data sets. The second type is real-world
data related to biological science [18]. The third type of
data set is semi-synthetic (SS) taken from the KEBI Data
Repository at the Philipps University of Marburg [52]. All
data sets do not have ranking ground truth, and all labels
have a continuous permutation space of relations between
labels. Table II summarizes the main characteristics of the
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Fig. 16: Training and validation performance without and
with dropout regulation approach in (a) and (b) respec-
tively.

TABLE II: Benchmark data sets for label ranking; pref-
erence mining [57], real-world data sets [58] and semi-
synthetic (s-s) [52].

Type DS Cat. #Inst. | #Attr. | #lbl.
algae chemical stat. 317 11 7
tén german.2005 user pref. 413 31 5
g german.2009 user pref. 413 31 5
= sushi user pref. 5000 13 7
top7movies user pref. 602 7 7
cold biology 2,465 24 4
_ diau biology 2,465 24 7
s dtt biology 2,465 24 4
=] heat biology 2,465 24 6
Spo biology 2,465 24 11
authorship A 841 70 4
bodyfat B 252 7 7
calhousing B 20,640 4 4
cpu-small B 8192 6 5
- elevators B 16,599 9 9
S fried B 40,769 9 5
B glass A 214 9 6
5 housing B 506 6 6
& iris A 150 4 3
o pendigits A 10,992 16 10
g segment A 2310 18 7
“ stock B 950 5 5
vehicle A 846 18 4
vowel A 528 10 11
wine A 178 13 3
wisconsin B 194 16 16
data sets.
B. Results

1) Image Classification Results: PN has 3 kernel sizes
of 5,10 and 20 and is tested on the CFAR-100 [54] data
set and 1 kernel with a size 5 for Fashion-MNIST data
set [565]. Table III shows the results compared to other
convolutions networks.

2) Label Ranking Results: PNN is evaluated by re-
stricted and non-restricted label ranking data sets.
The results are derived using spearman p and con-
verted to Kendall 1t coefficient for comparison with
other approaches. For data validation, we used 10-
fold cross-validation. To avoid the over-fitting problem,
We used hyperparameters, i.e. L.r.= (0.0008,0.0005,0.005,
0.05, 0.1) hidden neuron = no.inputs+(5, 10, 50, 100,

TABLE III: Comparison of classification on CIFAR-
100 [54] and Fashion-Mnist data set [55] using different
convolution models

DS Model Baseline | MixUp
ResNet [59] 72.22 78.9
= WRN [60] 78.26 82.5
= Dense [61] 81.73 83.23
Eé EfficientNetV2-M [62] 92.2 -
B EffNet-L2 (SAM) [63] 96.08
o CvT [64] 94.39
PrefNet 80.6
MLP 0.871
g RandomForest 0.873
Z LogisticRegression 0.842
= sve 0.897
g SGDClassifier 0.81
;g LSTM [65] 0.8757
i DART [66] 0.965
PrefNet 0.91

200,300,400,450) neurons and scaling boundaries from 1
to 250) are chosen within each cross-validation fold by
using the best 1.r. on each fold and calculating the average
7 of ten folds. Grid searching is used to obtain the best
hyperparameter. For type B, we use three output groups
and L.r.=0.001 and wp = 0.01.

3) Benchmark Results: Table IV summarizes PNN
ranking performance of 16 strict label ranking data sets
by lLr. and m.n. The results are compared with the four
methods for label ranking; supervised clustering [58],
supervised decision tree [52], MLP label ranking [23], and
label ranking tree forest (LRT) [67]. Each method’s results
are generated by ten-fold cross-validation. The comparison
selects only the best approach for each method.

During the experiment, it was found that ranking per-
formance increases by increasing the number of central
neurons up to a maximum of 20 times the number of
features. As shown in Table VI, The real datasets are
ranked using PNN with dropout regulation due to com-
plexity and over-fitting. The dropout requires increasing
the number of epochs to reach high accuracy. All the
results are held using a single hidden layer with various
hidden neurons (100 to 450) and SS activation function.
The Kendall 7 error converges and reaches close to 1 after
2000 iterations, as shown in Fig. 17.

Table IV compares PNN with similar approaches
used for label ranking. These approaches are; Decision
trees [58], MLP-LR [23] and label ranking trees forest
LRT [67]. In this comparison, we choose the method that
has the best results for each approach.

4) Preference Mining Results: The ranking performance
of the new preference mining data set is represented in
table II. Two hundred fifty hidden neurons are used To
enhance the ranking performance of the algae data set’s
repeated label values. However, restricted labels ranking
data sets of the same type, i.e., (German elections and
sushi), did not require a high number of hidden neurons
and incurred less computational cost.

Experiments on the real-world biological data set were
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Fig. 17: Ranking performance comparison of PNN with other approaches.

TABLE IV: PNN performance comparison with various
approaches: supervised clustering [58], supervised decision
tree [52], MLP label ranking [23] and label ranking tree
forest (LRT) [67]

Label Ranking Methods
DS S.Clust. DT MLP-LR LRT | PNN
authorship 0.854 0.936(IBLR) 0.889(LA) 0.882 | 0.918
bodyfat 0.09 0.281(CC) 0.075(CA) 0.117 | 0.5591
calhousing 0.28 0.351(IBLR) | 0.130(SSGA) | 0.324 | 0.34
cpu-small 0.274 0.50(IBLR) 0.357(CA) | 0.447 | 0.46
elevators 0.332 0.768(CC) 0.687(LA) | 0.760 | 0.73
fried 0.176 0.99(CC) 0.660(CA) 0.890 0.91
glass 0.766 0.883(LRT) 0.818(LA) 0.883 | 0.8175
housing 0.246 0.797(LRT) 0.574(CA) 0.797 | 0.712
iris 0.814 0.966(IBLR) 0.911(LA) 0.947 | 0.917
pendigits 0.422 0.944(IBLR) 0.752(CA) 0.935 0.86
segment 0.572 0.959(IBLR) 0.842(CA) 0.949 | 0.916
stock 0.566 0.927(IBLR) 0.745(CA) 0.895 | 0.834
vehicle 0.738 0.862(IBLR) 0.801(LA) 0.827 | 0.754
vowel 0.49 0.90(IBLR) 0.545(CA) 0.794 | 0.85
wine 0.898 0.949(IBLR) 0.931(LA) 0.882 0.90
wisconsin 0.09 0.629(CC) 0.235(CA) | 0.343 | 0.612
[ Average | 0475 | 0.9 | 0621 [0.730 ] 0.755 |

conducted using supervised clustering (SC) [58], Table V
presents the comparison between PNN and supervised
clustering on biological real world data in terms of Lossrg
as given in Eq. 11.

1=1-2-LossLp (11)

where 7 is Kendall 7 ranking error and Losspr is the
ranking loss function.

SS function with 16 steps is used to rank Wisconsin
data set with 16 labels. By increasing the number of steps
in the interval and scaling up the features between -100
and 100, The step width is small. To enhance ranking
performance, the data set has many labels. The number
of hidden neurons is increased to exceed 7 =0.5.

TABLE V: Comparison between PNN and supervised
clustered on biological real world data in terms of Lossyr

Biological real world data
DS S.Clustering PNN
cold 0.198 0.11
diau 0.304 0.255
dtt 0.124 0.01
heat 0.072 0.013
Spo 0.118 0.014
[ Average | 0.1632 [ 0.0804 |

C. Computational Platform

PNN and PN is implemented from scratch without
the Tensorflow API and developed using Numba API to
speed the execution on the GPU and use Cuda 10.1 and
Tensorflow-GPU 2.3 for GPU execution and executed at
the University of Technology Sydney High-Performance
Computing cluster based on Linux RedHat 7.7, which
has an NVIDIA Quadro GV100 and memory of 32 G.B.
For a non-GPU version of PNN is located at GitHub
Repository [68].

D. Discussion and Future Work

It can be noticed from table II that PN is perform-
ing better than ResNet [569] and WRN [60]. Different
types of architectures of PN could be used to enhance
the results and reach state-of-the-art in terms of image
classification [69]-[71]. It can be noticed from table III
that PNN outperforms on SS data sets with 74,5 = 0.8,
whereas other methods such as, supervised clustering,
decision tree, MLP-ranker and LRT, have results 74,, =
0.79,0.73,0.62,0.475, respectively. Also, the performance
of PNN is almost 50% better than supervised clustering
in terms of ranking loss function Lossrr on real-world
biological data set, as shown in table V. The superiority
of PNN is used for classification and ranking problems.
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TABLE VI: PNN label ranking performance in terms of 7 coefficient, learning step and the number of middle layer

13

neurons (#m.n). The training per fold and testing time is given in the last two columns. ‘s’, ‘m’, ‘h’ denote seconds,
minutes and hours, respectively.

Type DS Avg. 7 | #m.n. Lr. #Iterations. | Dropout | Scaling. | Training t. | Testing t.
cold 0.4 10 0.0008 2000 yes -4:4 2.8h 1.2s
diau 0.466 400 0.0005 2500 yes -2:2 2.9h 4s

— dtt 0.60 400 0.0001 5000 yes -4:4 5.7h 1.88s
3 heat 0.876 450 0.0005 5000 yes -2:2 6.2h 1.18s
F Spo 0.8 300 0.0005 5000 yes -4:4 7.4h 0.98s
German2005 0.8 300 0.0005 1000 no -4:4 35.15m 0.0879s
German2009 0.67 300 0.0005 500 no -4:4 7.087m 0.105s
authorship 0.931 200 0.0008 200 no -4:4 3.82m 0.34s
bodyfat 0.559 100 0.0005 2500 yes -2:2 16.92m 0.44s
calhousing 0.34 200 0.0007 1000 no -2:2 5.03h 4.127s
cpu-small 0.46 200 0.005 1000 no -2:2 2.089h 1.717
2 elevators 0.73 20 0.003 100 no -2:2 27.03m 3.7s
5 fried 0.89 100 0.005 100 no -2:2 1.02h 8.45s
2 glass 0.948 100 0.005 100 no -3:3 14.8s 0.04s
= housing 0.7615 25 0.005 100 no -3:3 37.21s 0.1s
m?’ iris 0.956 100 0.005 100 no -3:3 29.39s 0.066s
‘g pendigits 0.86 100 0.005 100 no -3:3 34.6m 5.69s
3 segment 0.956 20 0.007 100 no -3:3 440.8s 0.94s
stock 0.868 100 0.005 100 no -3:3 142.48s 0.87s
vehicle 0.869 100 0.005 100 no -3:3 91s 0.2s
vowel 0.85 100 0.005 100 no -3:3 88.37s 0.312s
wine 0.90 100 0.005 100 no -3:3 19.19s 0.063s
wisconsin 0.61 300 0.0005 2500 yes -4:4 13.56m 0.1332s

The ranking is used in input data as a feature selection
criteria is a novel approach for deep learning.

Encoding the labels’ preference relation to numeric
values and ranking the output labels simultaneously in
one model is an advanced step over pairwise label ranking
based on classification. PNN could be used to solve new
preference mining problems. One of these problems is
incomparability between labels, where Label ranking has
incomparable relation L1, i.e., ranking space (1, > Ay LA.)
is encoded to (1, 2, -1) and (A, > Ap)L(A. > A4) is encoded
to (1, 2, -1, -2). PNN could be used to solve new problem
of non-strict partial orders ranking, i.e., ranking space
(Ag > Ap = A¢) is encoded to (1, 2, 3) or (1, 2, 2). Future
research may enhance PN by adding kernel size and SS
parameters as part of the deep learning to choose the best
kernel size and SS step width, which could enhance the
image attention. Modifying PNN architecture by adding
bias and solving noisy label ranking problems.

VII. CONCLUSION

This paper proposed a novel method to rank a complete
multi-label space in output labels and features extraction
in both simple and deep learning.PN is a new research
direction for image recognition based on new kernel and
pixel calculations. PNN and PN are native ranker net-
works for image classification and label ranking problems
that uses SS or PSS to rank the multi-label per instance.
This neural network’s novelty is a new kernel mechanism,
activation, and objective functions. This approach takes
less computational time with a single middle layer. It is
indexing multi-labels as output neurons with preference
values. The neuron output structure can be mapped to
integer ranking value; thus, PNN accelerates the ranking
learning by assigning the rank value to more than one

output layer to reinforce updating the random weights.
PNN is implemented using python programming language
3.6 [68], and activation functions are modelled using
wolframe Mathematica software [72]. A video demo that
shows the ranking learning process using toy data is
available to download [48].
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