
Accountable Fine-grained Blockchain Rewriting in the
Permissionless Setting

Yangguang Tian

Osaka University

Japan

Bowen Liu

Singapore University of

Technology and Design

Singapore

bowen_liu@mymail.sutd.edu.sg

Yingjiu Li

University of Oregon

USA

yingjiul@uoregon.edu

Pawel Szalachowski

Singapore University of

Technology and Design

Singapore

pjszal@gmail.com

Jianying Zhou

Singapore University of

Technology and Design

Singapore

jianying_zhou@sutd.edu.sg

ABSTRACT
Blockchain rewriting with fine-grained access control allows a user

to create a transaction associated with a set of attributes, while an-

other user (or modifier) who possesses enough rewriting privileges

from a trusted authority satisfying the attribute set can rewrite the

transaction. However, it lacks accountability and is not designed for

open blockchains that require no trust assumptions. In this work,

we introduce accountable fine-grained blockchain rewriting in a

permissionless setting. The property of accountability allows the

modifier’s identity and her rewriting privileges to be held account-

able for the modified transactions in case of malicious rewriting

(e.g., modify the registered content from good to bad). We first

present a generic framework to secure blockchain rewriting in the

permissionless setting. Second, we present an instantiation of our

approach and show its practicality through evaluation analysis.

Last, we demonstrate that our proof-of-concept implementation

can be effectively integrated into open blockchains.

KEYWORDS
Blockchain Rewriting, Accountability, Open Blockchains

ACM Reference Format:
Yangguang Tian, Bowen Liu, Yingjiu Li, Pawel Szalachowski, and Jianying

Zhou. 2021. Accountable Fine-grained Blockchain Rewriting in the Permis-

sionless Setting. In Proceedings of ACM Conference (Conference’17). ACM,

New York, NY, USA, 17 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Blockchains have received tremendous attention from research

communities and industries in recent years. The concept was first

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

introduced in the context of Bitcoin [42], where all payment trans-

actions are appended in a public ledger, and each transaction is

ordered and verified by network nodes in a peer-to-peer manner.

Blockchain ledgers grow by one block at a time, where the new

block in the chain is decided by a consensus mechanism (e.g., Proof-

of-Work in Bitcoin [31]) executed by the network nodes. Usually,

blockchains deploy hash-chains as an append-only structure, where

the hash of a block is linked to the next block in the chain. Each

block includes a set of valid transactions which are accumulated

into a single hash value using the Merkle tree [41], and each trans-

action contains certain content which needs to be registered in the

blockchain.

Blockchains are designed to be immutable, such that the regis-

tered content cannot be modified once they are appended. However,

blockchain rewriting is often required in practice, or even legally

necessary in data regulation laws such as GDPR in Europe [4]. Since

the platform is open, it is possible some users append transactions

into a chain containing illicit content such as sensitive informa-

tion, stolen private keys, and inappropriate videos [39, 40]. The

existence of illicit content in the chain could pose a challenge to

law enforcement agencies like Interpol [53].

Blockchain rewriting is usually realized by replacing a stan-

dard hash function, used for generating transaction hash in the

blockchain, by a trapdoor-based chameleon hash [34]. Then the

users, who have the same privilege (i.e., hold the trapdoor), can

modify a transaction. In other words, the same transaction can

be modified by users with the same privileges only. Nonetheless,

for most real-life blockchain applications, blockchain rewriting

with fine-grained access control is desired so that various rewriting

privileges can be granted to different modifiers and that the same

transaction can be modified by users with different privileges. For

blockchain rewriting with fine-grained access control, a user first

associates his transaction with a set of attributes. Then, any user

possessing a chameleon trapdoor can modify the transaction if her

access privilege corresponding to the chameleon trapdoor satisfies

the embedded attribute set. It is possible that multiple users with

different access privileges can modify a same transaction if their

privileges satisfy the set of attributes associated with the transac-

tion.

ar
X

iv
:2

10
4.

13
54

3v
1

 [
cs

.C
R

]
 2

8
A

pr
 2

02
1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Tian and Liu, et al.

Motivation. Blockchain rewriting with fine-grained access control

has been recently studied in the permissioned setting [19]; however,

the proposed solution is not suitable for permissionless (i.e., open)

blockchains for two reasons: 1) It requires a trusted authority to

distribute rewriting privileges. 2) It lacks accountability as modifiers

may rewrite the blockchain without being identified. The main

motivation of this work is to extend blockchain rewriting with

fine-grained access control to open blockchains such as Bitcoin [1]

and Ethereum [2], which assume no trusted authority for managing

access privileges.

Blockchain rewriting with fine-grained access control requires

accountability especially in the permissionless setting. It is more

critical for open blockchains, as there is no trusted authority to

identify which modifier is responsible for any maliciously modified

transaction (e.g., a modifier may rewrite the registered content in

a transaction from good to bad). Besides, if modifiers attempt to

generate an access device (or blackbox) that accumulates various

kinds of rewriting privileges, and distribute or sell it to the public,

it is more challenging to identify the responsible rewriting privi-

leges given a modified transaction. This is because any user may

rewrite a transaction successfully if he holds that access blackbox.

Therefore, public accountability in this work encompasses two as-

pects: 1) identify a modifier in case of malicious modification on a

transaction, and 2) identify the modifier’s rewriting privileges even

if an access blackbox is used.

Let us consider an open blockchain system that includes multiple

committees, and each committee contains multiple users appointed

for granting rewriting privileges. For ease of exposition, we assume

there exists only one committee and one modifier for modifying mu-

table transactions during an epoch (i.e., a fixed interval of time). We

have two blockchain rewriting cases: 1) a modifier rewrites a trans-

action using her access privilege granted from a committee, and

the modifier may have various access privileges by joining differ-

ent committees at different epochs. 2) an unauthorized user has no

rewriting privilege from any committee; he may still rewrite a trans-

action using an access blackbox that accumulates various modifiers’

access privileges. In such cases, it is desired to hold the rewriting

privileges accountable for the modified transactions. Overall, if a

transaction is maliciously modified, any public user can identify

the responsible rewriting privilege that links to either a designated

modifier or an unauthorized user with an access blackbox. Public

accountability allows the modifiers (including the unauthorized

users with access blackboxes) and the rewriting privileges to be

held accountable for the modified transactions in open blockchain

systems.

This Work. We introduce a new framework of accountable fine-

grained blockchain rewriting, which is used to secure blockchain

rewriting in a permissionless setting. The proposed framework

achieves strong securitywithout trusted authority and achieves pub-

lic accountability simultaneously. Strong security without trusted

authority indicates that the proposed framework remains secure

even when attackers can compromise a threshold number of users

in any committee. Public accountability means that any user in

the public can link a modified transaction to a modifier and the

responsible rewriting privilege.

We now explain our key technical insights. First, we rely on

dynamic proactive secret sharing (DPSS) [38] to remove the trusted

authority and achieve strong security. We replace the trusted au-

thority by a committee of multiple users, where each user holds a

share of the trust. We allow any user to join in and leave from a com-

mittee in any time epoch. Since we use key-policy attribute-based

encryption (KP-ABE) [29] to ensure fine-grained access control,

we highlight the following points: 1) The master secret key is split

into multiple key shares so that each user in a committee holds

a single key share. 2) A certain number of shareholders in a com-

mittee collaboratively recover the master secret key and distribute

access privileges to modifiers. 3) Any user can freely join/leave a

committee, and the master secret key remains fixed across different

committees. We achieve strong security because the master secret

key remains secure even if the attackers are allowed to compromise

a threshold number of shareholders in any committee.

Second, we achieve public accountability using a digital signature

scheme, a commitment scheme, and KP-ABEwith public traceability

(ABET). We show the purpose of using those primitives as follows:

1) The digital signature helps the public link a modified transaction

to a modifier (or modifier’s public key), as she signs the modified

transaction using her signing key, and the signed transaction is

publicly verifiable. 2) The commitment scheme helps the public link

modifiers’ public keys with committees. The intention is to show a

modifier is indeed obtained a rewriting privilege from a committee.

3) If an unauthorized user holds an access blackbox, ABET helps

the public to obtain a set of rewriting privileges from interacting

with the access blackbox due to ABET’s public traceability. Since

there is no existing ABET can be applied to this work, we propose

a new ABET scheme, which is suitable for decentralized systems

such as open blockchains.

Our Contributions. The major contributions of this work are

summarized as follows.

• Generic Framework.We introduce a new generic framework of

accountable fine-grained blockchain rewriting, which is based

on the chameleon hash function. A unique feature of this frame-

work is that it allows the fine-grained blockchain rewriting to be

performed in the permissionless setting.

• Public Accountability.We introduce a new notion called public

accountability, such that modifiers’ public keys and rewriting

privileges are held accountable for the modified transactions,

which is essential to blockchain rewriting because it helps thwart

malicious rewriting.

• Practical Instantiation.We present a practical instantiation, and

our evaluation analysis validates its practicality. We present an

efficient ABET, which is of independent interest. The proposed

ABET scheme is the first KP-ABE scheme with public traceability

designed for decentralized systems.

• Integration to Open Blockchains. The proof-of-concept implemen-

tation shows that blockchain rewriting based on our approach

incurs almost no overhead to chain validation when compared

to the immutable blockchain.

Accountable Fine-grained Blockchain Rewriting in the Permissionless Setting Conference’17, July 2017, Washington, DC, USA

2 PRELIMINARY
In this section, we present the complexity assumptions and the

building blocks, which are used in our proposed generic construc-

tion and instantiation.

2.1 Complexity Assumptions
Bilinear Maps. Let (𝑔, ℎ) denote two group generators, which

takes a security parameter 𝜆 as input and outputs a description of a

group G,H. We define the output of (𝑔, ℎ) as (𝑞,G,H,G𝑇 , ê), where
𝑞 is a prime number, G, H and G𝑇 are cyclic groups of order 𝑞, and

ê : G×H→ G𝑇 is a bilinear map such that: (1) Bilinearity:∀𝑔, ℎ ∈ G
and 𝑎, 𝑏 ∈ Z𝑞 , we have ê(𝑔𝑎, ℎ𝑏) = 𝑒 (𝑔, ℎ)𝑎𝑏 ; (2) Non-degeneracy:
∃𝑔 ∈ G such that ê(𝑔, ℎ) has order 𝑞 in G𝑇 . We assume that group

operations in G, H and G𝑇 and bilinear map ê are computable in

polynomial time with respect to 𝜆. We refer to G and H as the

source groups and G𝑇 as the target group.

We introduce a new assumption below, which is used to prove

the semantic security of the proposed ABET scheme. The new

assumption is proven secure in the generic group model [50]. We

underline specific elements to show the differences between the

new assumption and the original one.

Definition 2.1 (Extended 𝑞-type Assumption). Given group gener-

ators 𝑔 ∈ G and ℎ ∈ H, define the following distribution:

Adv
𝑞′

A = | Pr[Adv(1𝜆, par, 𝐷,𝑇0) = 1]

− Pr[Adv(1𝜆, par, 𝐷,𝑇1) = 1] |,𝑤ℎ𝑒𝑟𝑒
par = (𝑞,G,H,G𝑇 , ê, 𝑔, ℎ) ← GroupGen(1𝜆)
𝑎, 𝑏, 𝑐, 𝑑 ← Z∗𝑞, 𝑠, {𝑧} ← Z𝑞 ;𝐷 = (𝑔𝑎, ℎ𝑏 , 𝑔𝑐 ,

𝑔 (𝑎𝑐)
2

, 𝑔𝑎𝑏𝑑 , 𝑔𝑑/𝑎𝑏 , ℎ𝑎𝑏𝑑 , ℎ𝑎𝑏𝑐𝑑 , ℎ𝑑/𝑎𝑏 , ℎ𝑐 , ℎ𝑐𝑑/𝑎𝑏 ,

𝑔𝑧𝑖 , 𝑔𝑎𝑐𝑧𝑖 , 𝑔𝑎𝑐/𝑧𝑖 , 𝑔𝑎
2𝑐𝑧𝑖 , 𝑔𝑏/𝑧

2

𝑖 , 𝑔𝑏
2/𝑧2𝑖 ,∀𝑖 ∈ [𝑞]

𝑔𝑎𝑐𝑧𝑖/𝑧 𝑗 , 𝑔𝑏𝑧𝑖/𝑧
2

𝑗 , 𝑔𝑎𝑏𝑐𝑧𝑖/𝑧 𝑗 , 𝑔 (𝑎𝑐)
2𝑧𝑖/𝑧 𝑗 ,∀𝑖, 𝑗 ∈ [𝑞],

𝑖 ≠ 𝑗);𝑇0 = 𝑔𝑎𝑏𝑐 ,𝑇1 = 𝑔𝑠 .

The extended 𝑞-type (or 𝑞′-type) assumption is secure if AdvA (𝜆)
is negligible 𝜆.

The detailed theorem and proof are shown in Appendix A. We also

present an Extended Decisional Diffie-Hellman Assumption [52],

which is used to prove the ciphertext anonymity of the proposed

ABET scheme.

Definition 2.2 (Extended Decisional Diffie-Hellman (eDDH)). Given
group generators 𝑔 ∈ G and ℎ ∈ H, define the following distribu-

tion:

AdveDDHA = | Pr[Adv(1𝜆, par, 𝐷,𝑇0) = 1]

− Pr[Adv(1𝜆, par, 𝐷,𝑇1) = 1] |,𝑤ℎ𝑒𝑟𝑒
par = (𝑞,G,H,G𝑇 , ê, 𝑔, ℎ) ← GroupGen(1𝜆)
𝑎, 𝑏, 𝑐 ← Z∗𝑞, 𝑠 ← Z𝑞 ;𝐷 = (𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏 , ℎ𝑐 , ℎ𝑎𝑏 ,

ℎ1/𝑎𝑏 , ℎ𝑎𝑏𝑐);𝑇0 = ℎ𝑐/𝑎𝑏 ,𝑇1 = ℎ𝑠 .

The eDDH assumption is secure if AdvA (𝜆) is negligible in 𝜆.

2.2 Attribute-based Encryption
Access Structure. LetU be an attribute universe. An access struc-

ture Λ is a collection of non-empty subsets ofU (i.e., Λ ⊆ 2
U\{𝜙}).

It is called monotone if ∀𝐵,𝐶 : if 𝐵 ∈ Λ and 𝐵 ⊆ 𝐶 then 𝐶 ∈ Λ.
Monotone Span Program (MSP). A secret-sharing scheme

∏
with domain of secrets realizing access structure is called linear

over Z𝑞 if: 1) The shares of a secret 𝑠 ∈ Z𝑞 for each attribute

form a vector over Z𝑞 ; 2) For each access structure Λ on 𝛿 , there

exists a matrix M with 𝑛1 rows and 𝑛2 columns called the share-

generating matrix for

∏
. For 𝜇 = 1, ..., 𝑛1, we define a function 𝜋

labels row 𝜇 ofMwith attribute 𝜋 (𝜇) from the attribute universeU.

We consider the column vector ®𝜈 = (𝑠, 𝑟2, ..., 𝑟𝑛2
)⊤, where 𝑠 ∈ Z𝑞 is

the secret to be shared and 𝑟2, ..., 𝑟𝑛2
∈ Z𝑞 are chosen at random.

ThenM®𝜈 ∈ Z𝑛1×1
𝑞 is the vector of 𝑛1 shares of the secret 𝑠 according

to

∏
. The share (M®𝜈)𝜇 belongs to attribute 𝜋 (𝜇), where 𝜇 ∈ [𝑛1].

According to [12], every linear secret-sharing scheme has the

linear reconstruction property, which is defined as follows: we

assume that

∏
is a MSP for the access structure Λ, 𝛿 ′ ∈ Λ is an

authorized set and let 𝐼 ⊂ {1, 2, ..., 𝑛1} be defined as 𝐼 = {𝜇 ∈
[𝑛1] ∧ 𝜋 (𝜇) ∈ 𝛿 ′}. There exists the constants {𝛾𝜇 ∈ Z𝑞}𝜇∈𝐼 such
that for any valid share {𝜆𝜇 = (M®𝜈)𝜇 }𝜇∈𝐼 of a secret 𝑠 according
to

∏
,

∑
𝜇∈𝐼 𝛾𝜇𝜆𝜇 = 𝑠 . Meanwhile, such constants {𝛾𝜇 }𝜇∈𝐼 can be

found in time polynomial in the size of the share-generating matrix

M. For any unauthorized set 𝛿 ′′, no such {𝛾𝜇 } exist.
Attribute-Based Encryption with Public Traceability. It con-
sists of the following algorithms.We assume an index space {1, · · · , 𝑘},
where 𝑘 denotes the maximal number of the index. This definition

is inspired by [36].

• Setup(1𝜆): It takes a security parameter 𝜆 as input, outputs a

master key pair (msk, mpk).
• KeyGen(msk,Λ): It takes the master secret key msk, an access

policy as input, outputs a decryption key 𝑠𝑠𝑘Λ𝑖
, which is assigned

by a unique index 𝑖 .

• Enc(mpk,𝑚, 𝛿, 𝑗): It takes the master public key mpk, a message

𝑚, a set of attributes 𝛿 ∈ U, and an index 𝑗 ∈ {1, 𝑘 + 1} as input,
outputs a ciphertext 𝐶 . Note that 𝐶 contains 𝛿 , not index 𝑗 .

• Dec(mpk,𝐶, 𝑠𝑠𝑘Λ𝑖
): It takes the master public key mpk, a cipher-

text𝐶 , and the decryption key 𝑠𝑠𝑘Λ𝑖
as input, outputs themessage

𝑚 if 1 = Λ𝑖 (𝛿) ∧ 𝑗 ≤ 𝑖 .

• Trace(mpk,D, 𝜖): It takes master public key pair mpk, a policy-
specific decryption device/blackbox D, and a parameter 𝜖 > 0

as input, outputs a set of indexes K𝑇 ∈ {1, · · · , 𝑘}, where 𝜖 is

polynomially related to 𝜆, and K𝑇 denotes the index set of the

accused decryption keys.

Public Traceability.Given a policy-specific decryption device/blackbox
that includes a set of decryption keys, the tracing algorithm, which

treats the decryption blackbox as an oracle, can identify the accused

decryption keys that have been used in constructing the decryption

blackbox. The decryption blackbox is associated with a specific ac-

cess policy ΛD . Informally speaking, any public user can generate

a ciphertext on a message under a set of attributes that satisfies

ΛD , and an index 𝑗 ∈ {1, · · · , 𝑘 + 1}. Then, the public sends the
ciphertext to the decryption blackbox and checks whether the de-

cryption is successful. If decryption succeeds, the public outputs the

accused index 𝑗 ; otherwise, the public generates a new ciphertext

Conference’17, July 2017, Washington, DC, USA Tian and Liu, et al.

under another attribute set and index. The public continues this

process until finding a set of accused indexes K𝑇 ∈ {1, · · · , 𝑘}. The
tracing algorithm’s formal definition is referred to [15, 16], which

is analogous to the traitor tracing algorithm used in the broadcast

encryption.

The ABET scheme requires that the encryptor generates a ci-

phertext on a message associated with a set of attributes and a

hidden index 𝑗 . The decryptor can decrypt the message if the set

of attributes is satisfied by her access policy, and 𝑗 ≤ 𝑖 . We stress

that the hidden index (or index-hiding) is critical to ABET. On the

one hand, the index-hiding ensures that a ciphertext generated by

the encryptor using an index 𝑗 reveals no information about 𝑗 . On

the other hand, the public user can pick a possible accused index

𝑗 ∈ {1, · · · , 𝑘 + 1} in generating ciphertext for public tracing. In

this work, we call index-hiding as ciphertext anonymity. We denote

policy-specific decryption blackbox as access blackbox because it

accumulates various rewriting privileges for blockchain rewriting.

2.3 Digital Signature
A digital signature scheme Σ = (Setup, KeyGen, Sign, Verify) is
homomorphic, if the following conditions are held.

• Simple Key Generation. It requires (sk, pk) ← KeyGen(𝑝𝑝) and
𝑝𝑝 ← Setup(1𝜆), where pk is derived from sk via a deterministic

algorithm pk← KeyGen′(𝑝𝑝, sk).
• Linearity of Keys. It requires KeyGen′(𝑝𝑝, sk+Δ(sk)) = 𝑀pk (𝑝𝑝,
KeyGen′(𝑝𝑝, sk),Δ(sk)), where𝑀pk denotes a deterministic al-

gorithm which takes 𝑝𝑝 , a verification key pk and a “shifted”

value Δ(sk) as input, outputs a “shifted” verification key pk′. Δ
denotes the difference or shift between two keys.

• Linearity of Signatures. Two distributions are identical: {𝜎 ′ ←
Sign(𝑝𝑝, sk + Δ(sk),𝑚)} and {𝜎 ′ ← 𝑀Σ (𝑝𝑝, pk,𝑚, 𝜎,Δ(sk))},
where 𝜎 ← Sign(𝑝𝑝, sk,𝑚), and 𝑀Σ denotes a deterministic

algorithm which takes 𝑝𝑝 , a verification key pk, a message-

signature pair (𝑚,𝜎) and a “shifted” valueΔ(sk) as input, outputs
a “shifted” signature 𝜎 ′.
• Linearity of Verifications. It requiresVerify(𝑝𝑝,𝑀pk (𝑝𝑝, pk,Δ(sk)),
𝑚,𝑀Σ (𝑝𝑝, pk,𝑚, 𝜎,Δ(sk))) = 1, and Verify(𝑝𝑝, pk,𝑚, 𝜎) = 1.

The Schnorr signature scheme [47] satisfies the homomorphic prop-

erties regarding keys and signatures. We rely on this homomorphic

property to find the connection between a transaction and its mod-

ified versions.

2.4 Dynamic Proactive Secret Sharing
A dynamic proactive secret sharing DPSS consists of Share, Redis-
tribute, and Open [11] protocols. It allows a dealer to share a secret

𝑠 among a group of 𝑛0 users such that the secret is secure against a

mobile adversary, and allow any group of 𝑛0-𝑡 users to recover the

secret, where 𝑡 denotes a threshold. The proactive security means

that the execution of the protocol is divided into phases (or epochs)

[44], and a mobile adversary is allowed to corrupt users across all

epochs, under the condition that no more than a threshold number

of users are corrupted in any given epoch. The Redistribute proto-
col prevents the mobile adversary from disclosing or destroying the

secret and allows the set of the users and the threshold to change.

Assuming that for each epoch 𝑖 , no more than 𝑡 users are corrupted

during epoch 𝑖 , the following three properties hold:

• Termination: All honest users engaged in the protocol complete

each execution of Share, Redistribute, and Open.
• Correctness: All honest users output a secret 𝑠 ′ upon completing

of Open, such that 𝑠 ′ = 𝑠 if the dealer was honest during the

execution of Share.
• Secrecy: If the dealer is honest, then 𝑠 leaks no information to the

adversary.

The definition described in [11] is for information-theoretically (or

perfectly) secure protocols. We merely require DPSS to be com-

putationally secure due to the instantiation used in this work has

computational security. Dynamic allows the set of users in a group

(or committee) to be dynamically changed, which is useful in the

permissionless blockchains. The Redistribute protocol has two pro-

cesses: resharing the key shares to change the committee member-

ship and threshold, and updating the key shares across epochs to

tackle mobile adversary.

• Resharing the Key Shares [20]. We rely on a bivariate polynomial

to share a secret 𝑠: 𝑓 (𝑥,𝑦) = 𝑠 + 𝑎0,1𝑥 + 𝑎1,0𝑦 + 𝑎1,1𝑥𝑦 + · · · +
𝑎𝑡𝑥 ,𝑡𝑦𝑥

𝑡𝑥𝑦𝑡𝑦 , where 𝑡𝑥 , 𝑡𝑦 denote different thresholds. So there

are two ways to share the secret 𝑠:

(1) If we fix𝑦 = 0, then the key shares include {𝑓 (𝑖0, 0), 𝑓 (𝑖1, 0), · · · ,
𝑓 (𝑖𝑡𝑥 , 0)};

(2) If we fix𝑥 = 0, then the key shares include {𝑓 (0, 𝑗0), 𝑓 (0, 𝑗1), · · · ,
𝑓 (0, 𝑗𝑡𝑦)}.

We show how to transfer the ownership of the shareholders

from committee𝐴 to committee 𝐵. First, we distribute key shares

{𝑓 (𝑖, 𝑦)} to all users in committee 𝐴. Second, each user in com-

mittee 𝐴 generates a set of temporary shares by running a secret

sharing scheme (SSS) (e.g., Shamir’s [49]) on his own key share.

In other words, his key share is the secret for SSS. Third, users in

committee 𝐴 send those temporary shares to users in committee

𝐵. Now, users in the committee 𝐵 accumulate the received tem-

porary shares and obtain another form of key shares {𝑓 (𝑥, 𝑗)}
via interpolation of 𝑡𝑦 temporary shares. To this end, the transfer

between the two committees is successful. Note that either key

shares {𝑓 (𝑖, 𝑦)} or {𝑓 (𝑥, 𝑗)} can be used to recover the secret 𝑠 .

• Updating the Key Shares [30]. Suppose that a bivariate polynomial

is used to share the secret 𝑠 : 𝑓 (𝑥,𝑦) = 𝑠 + 𝑎0,1𝑥 + 𝑎1,0𝑦 + 𝑎1,1𝑥𝑦 +
𝑎0,2𝑥

2 + 𝑎2,0𝑦2 + 𝑎2,2𝑥2𝑦2 + · · · + 𝑎𝑡𝑥 ,𝑡𝑦𝑥𝑡𝑥𝑦𝑡𝑦 . To update 𝑓 (𝑥,𝑦),
we need another bivariate polynomial: 𝑓 ′(𝑥,𝑦) = 0 + 𝑎′

0,1
𝑥 +

𝑎′
1,0
𝑦 + 𝑎′

1,1
𝑥𝑦 + · · · + 𝑎′𝑡𝑥 ,𝑡𝑦𝑥

𝑡𝑥𝑦𝑡𝑦 , which takes 0 as the secret.

The reason is that the secret 𝑠 in 𝑓 (𝑥,𝑦) will not be changed

after updating by 𝑓 ′(𝑥,𝑦). A crucial point is, we allow users in a

new committee to collaboratively generate a polynomial 𝑓 ′(𝑥,𝑦),
thus the shareholders between old and new committees become

independent (to ensure proactive security). Note that 𝑡𝑥 may not

equal to 𝑡𝑦 because the threshold between committees can be

different, and we call it asymmetric bivariate polynomial.

2.5 Polynomial Commitments
A simplified version of polynomial commitment scheme [32] is

shown as follows.

• Setup(1𝜆, 𝑡): It takes a security parameter 𝜆 and 𝑡 as input, out-

puts a key pair (msk, mpk), where msk = 𝛼 , mpk = (𝑔,𝑔𝛼 , · · · , 𝑔𝛼𝑡
,

ℎ, ℎ𝛼 , ê).

Accountable Fine-grained Blockchain Rewriting in the Permissionless Setting Conference’17, July 2017, Washington, DC, USA

• Commit(mpk, 𝑓 (𝑥)): It takes the public key mpk, and a polyno-

mial 𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + · · · + 𝑎𝑡𝑥

𝑡
as input, outputs

𝐶 =
∏𝑡

𝑗=0 (𝑔𝛼
𝑗)𝑎 𝑗

as the commitment to 𝑓 (𝑥).
• CreateWitness(mpk,𝐶, 𝑓 (𝑥)): It takes the public key mpk, and the
polynomial 𝑓 (𝑥) as input, outputs a tuple (𝑖, 𝑓 (𝑖),𝑤𝑖). Specifi-
cally, it computes a polynomial

𝑓 (𝑥)−𝑓 (𝑖)
𝑥−𝑖 (note that the coeffi-

cients of the resulting quotient polynomial are (𝑎0, 𝑎1, · · · , 𝑎𝑡)),
and a witness𝑤𝑖 =

∏𝑡
𝑗=0 (𝑔𝛼

𝑗)𝑎 𝑗
.

• VerifyEval(mpk,𝐶, 𝑖, 𝑓 (𝑖),𝑤𝑖): It takes the public key mpk, a com-

mitment𝐶 , and the tuple (𝑖, 𝑓 (𝑖),𝑤𝑖) as input, outputs 1 if ê(𝐶/𝑔𝑓 (𝑖) ,
ℎ) = ê(𝑤𝑖 , ℎ

𝛼/ℎ𝑖).

The witness 𝑤𝑖 proves that 𝑓 (𝑖) is a correct evaluation at 𝑖 ∈ Z𝑞 ,
without revealing the polynomial 𝑓 (𝑥). The binding property is

based on the 𝑡-Strong Diffie-Hellman assumption [32], while the

hiding property is based on the Discrete Logarithm (DL) assump-

tion. If the KZG commitment scheme is used in DPSS [38], we

can hold users accountable in a committee. In particular, the KZG

commitment scheme is publicly verifiable if we append users’ com-

mitments and witnesses to blockchain. We assume that they are

confirmed in the blockchain using Proof-of-Work (PoW) consensus

(it is not difficult to extend this assumption to other consensus like

Proof of Stake [6], Proof of Space [24]). In this work, a polynomial

commitment scheme is used in DPSS.

3 MODELS AND DEFINITIONS
3.1 System Model
The system model involves three types of entities: user, modifier,

and miner, in which the entities can intersect, such as a user can

be a modifier and/or a miner. The communication model considers

both on-chain and off-chain settings. The on-chain setting is the

permissionless blockchain, where read is public, butwrite is granted
to anyone who can show PoW. The off-chain setting assumes that

every user has a point-to-point (P2P) channel with every other

users. One may use Tor or transaction ghosting to establish a P2P

channel [38], and further detail is given in Appendix B. Such P2P

channel works in a synchronous model, i.e., any message sent via

this channel is received within a known bounded time-period.

The system proceeds in fixed time periods called epochs. In

the first epoch, a committee election protocol (e.g., Algorand’s

𝐵𝐴∗ protocol [28], or other methods [37, 56]) is executed, so that

a set of users can agree on an initial committee with Byzantine

fault tolerance (e.g., up to 1/3 malicious members). The secret 𝑠

in the initial committee can be generated by an honest user (e.g.,

committee leader) or in a distributed fashion [27]. The secret 𝑠 is

shared among the committee members. Similarly, the setup of the

commitment scheme can be performed by an honest user in the

initial committee.

In Figure 1, a blockchain is generated by users who append their

hashed contents to the blockchain. Later, modifiers with enough

rewriting privileges are required to rewrite the hashed contents.

We stress that the link of hash-chain remains intact after rewrit-

ing, and the secret remains fixed across different committees. We

assume at most 𝑛 users (i.e., protocol participants) exist in each

epoch. We consider 𝑘 dynamic committees, each of which has a

varying number of committee members, and we denote 𝑛0 ≤ 𝑛

Figure 1: Blockchain rewriting with dynamic committees.
Users may join in or leave from a committee, and a desig-
nated modifier in a committee can rewrite the blockchain.
The secret 𝑠 remains fixed across different committees.

as a committee’s size. The parameters 𝑛 and 𝑘 are independent.

We also consider dynamic churn (i.e., join/leave) of the protocol

participants. In particular, we do not assume that 𝑘 committees

exist in each different epoch (or we allow several committees to

exist in the same epoch).

Remark. To prevent a malicious user from controlling a committee

by launching Sybil attacks [22], we rely on the PoW-based identity

generation mechanism [9, 37]. The mechanism allows all users to

establish their identities in a committee, yet limiting the number of

Sybil identities created by a malicious user. In Elastico [37], each

user locally generates/establishes an identity consisting of a public

key, an IP address, and a PoW solution. The user must solve a

PoW puzzle which has publicly verifiable solutions to generate

the final component of the identity. A PoW solution also allows

other committee members to verify and accept the identity of a

user. Because solving PoW requires computation, the number of

identities that the malicious user can create is limited by a fraction

of malicious computational power. One can refer to [37, 55, 56] for

the detailed discussion on Byzantine fault resiliency.

3.2 Definition
An accountable fine-grained chameleon hash with dynamic com-

mittees consists of the following algorithms.

• Setup(1𝜆): It takes a security parameter 𝜆 as input, outputs a

master key pair (msk, mpk). Note that msk is shared by committee

members.

• KeyGen(C𝑒
𝑖
,Λ): It takes a committee C𝑒

𝑖
, and a policy Λ as input,

outputs a secret key skΛ𝑖
. The committee index 𝑖 ∈ {1, · · · , 𝑘},

where 𝑘 denotes the total number of committees.

• Hash(mpk,𝑚, 𝛿, 𝑗): It takes the master public key mpk, a message

𝑚 ∈ M, a set of attributes 𝛿 ∈ U, and an index 𝑗 ∈ {1, · · · , 𝑘 + 1}
as input, outputs a chameleon hash ℎ, a randomness 𝑟 , and a

signature 𝜎 . Note thatM = {0, 1}∗ denotes a general message

space.

Conference’17, July 2017, Washington, DC, USA Tian and Liu, et al.

Experiment ExpINDA (𝜆)
(C𝑒

𝑖
, mpk) ← Setup(1𝜆), 𝑏 ← {0, 1}

𝑏∗ ← AHashOrAdapt(C𝑒
𝑖
,··· ,𝑏) (msk)

where HashOrAdapt(C𝑒
𝑖
, · · · , 𝑏) on input𝑚,𝑚′, 𝛿,Λ, 𝑗, 𝑗′ :

skΛ𝑖 ← KeyGen(C𝑒
𝑖
,Λ)

(ℎ0, 𝑟0, 𝜎0) ← Hash(mpk,𝑚′, 𝛿, 𝑗′)
(ℎ1, 𝑟1, 𝜎1) ← Hash(mpk,𝑚, 𝛿, 𝑗)
𝑟1 ← Adapt(skΛ𝑖 ,𝑚,𝑚′, ℎ1, 𝑟1, 𝜎1)
return ⊥ if 𝑟0 = ⊥ ∨ 𝑟1 = ⊥
return (ℎ𝑏 , 𝑟𝑏 , 𝜎𝑏)

return 1, if 𝑏∗ = 𝑏; else, return 0.

Figure 2: Indistinguishability.

• Verify(mpk, ℎ,𝑚, 𝑟, 𝜎): It takes themaster public key mpk, chameleon

hash ℎ, message𝑚, randomness 𝑟 , signature 𝜎 as input, output a

bit 𝑏 ∈ {0, 1}.
• Adapt(skΛ𝑖

, ℎ,𝑚,𝑚′, 𝑟 , 𝜎): It takes the secret key skΛ𝑖
, chameleon

hash ℎ, messages𝑚 and𝑚′, randomness 𝑟 , and signature 𝜎 as

input, outputs 𝑟 ′ and 𝜎 ′ if 1 = Λ(𝛿) and 𝑖 ≤ 𝑗 .

• Judge(mpk,𝑇 ′): It takes the master public key mpk, a modified

transaction 𝑇 ′ as input, outputs a linked transaction-committee

pair (𝑇 ′,C𝑒
𝑖
), where 𝑇 ′ = (ℎ,𝑚′, 𝑟 ′, 𝜎 ′). It means a user with a

rewriting privilege from committee C𝑒
𝑖
has modified transaction

𝑇 = (ℎ,𝑚, 𝑟, 𝜎).
Correctness. The definition is correct if for all security parameters

𝜆, for all 𝛿 ∈ U, all keys (msk, mpk) ← Setup(1𝜆), for all 𝛿 ∈ Λ,
for all 𝑖 ≤ 𝑗 , for all skΛ𝑖

← KeyGen(C𝑒
𝑖
,Λ), for all 𝑚 ∈ M, for

all (ℎ, 𝑟, 𝜎) ← Hash(mpk,𝑚, 𝛿, 𝑗), for all 𝑚′ ∈ M, for all 𝑟 ′ ←
Adapt(skΛ𝑖

,𝑚,𝑚′, ℎ, 𝑟, 𝜎), we have 1 = Verify(mpk, ℎ,𝑚, 𝑟, 𝜎) =

Verify(mpk, ℎ,𝑚′, 𝑟 ′, 𝜎 ′).

3.3 Security Model
We consider three security guarantees, including indistinguishabil-

ity, adaptive collision-resistance, and accountability.

• Indistinguishability. Informally, an adversary cannot decidewhether

for a chameleon hash its randomness was freshly generated using

Hash algorithm or was created using Adapt algorithm even if

the secret key is known. We define a formal experiment between

an adversary A and a simulator S in Figure 2. The security ex-

periment allows A to access a left-or-right HashOrAdapt oracle,
which ensures that the randomness does not reveal whether it

was obtained from Hash or Adapt algorithm. The hashed mes-

sages are adaptively chosen from the same message spaceM by

A.

We require 1 = Λ(𝛿) andVerify(mpk,𝑚′, ℎ0, 𝑟0, 𝜎0) = Verify(mpk,𝑚,

ℎ1, 𝑟1, 𝜎1) = 1. Note that msk is shared by committee members,

such that C𝑒
𝑖
= {𝑠𝑒

𝑖
}𝑛0

. We define the advantage of the adversary

as

AdvINDA (𝜆) = |Pr[Exp
IND
A (1

𝜆) → 1] − 1/2|.

Definition 3.1. The proposed generic framework is indistinguish-

able if for any probabilistic polynomial-time (PPT)A, AdvINDA (𝜆)
is negligible in 𝜆.

• Adaptive Collision-Resistance. Informally, a mobile adversary can

find collisions for a chameleon hash if she possesses a secret key

satisfies an attribute set associated with the chameleon hash (this

condition is modelled by KeyGen’ oracle). We define a formal

Experiment ExpACRA (𝜆)
(C𝑒

𝑖
, mpk) ← Setup(1𝜆), Q1, Q2, Q3 ← ∅

(𝑚∗, 𝑟∗,𝑚∗′ , 𝑟∗′ , ℎ∗, 𝜎∗, 𝜎∗′) ← AO (mpk)
where O ← {KeyGen′,KeyGen′′,Hash′,Adapt′,Corrupt}
and KeyGen′ (C𝑒

𝑖
, ·) on input Λ :

mskΛ𝑖 ← KeyGen(C𝑒
𝑖
,Λ)

Q1 ← Q1 ∪ {Λ}
return mskΛ𝑖

and KeyGen′′ (C𝑒
𝑖
, ·) on input Λ :

mskΛ𝑖 ← KeyGen(C𝑒
𝑖
,Λ)

Q2 ∪ {(𝑖, mskΛ𝑖) }
𝑖 ← 𝑖 + 1

and Hash′ (mpk, · · ·) on input𝑚,𝛿, 𝑗 :
(ℎ, 𝑟, 𝜎) ← Hash(mpk,𝑚, 𝛿, 𝑗)
Q3 ← Q3 ∪ {(ℎ,𝑚, 𝛿) }
return (ℎ, 𝑟, 𝜎)

and Adapt′ (mpk, · · ·) on input𝑚,𝑚′, ℎ, 𝑟, 𝑖, 𝜎 :

return ⊥, if (𝑖, mskΛ𝑖) ∉ Q2 for some mskΛ𝑖
𝑟 ′ ← Adapt(mskΛ𝑖 ,𝑚,𝑚′, ℎ, 𝑟, 𝜎)
if (ℎ,𝑚, 𝛿) ∈ Q3 for some 𝛿,
let Q3 ← Q3 ∪ {(ℎ,𝑚′, 𝛿) }
return 𝑟 ′

and Corrupt(mpk, ·) on input C𝑒
𝑖
:

return {𝑠𝑒
𝑖
}𝑡

return 1, if

1 = Verify(mpk,𝑚∗, ℎ∗, 𝑟∗, 𝜎∗) = Verify(mpk,𝑚∗′ , ℎ∗, 𝑟∗′ , 𝜎∗′)
∧(ℎ∗, ·, 𝛿) ∈ Q3, for some 𝛿 ∧𝑚∗ ≠𝑚∗

′

∧𝛿 ∩ Q1 = ∅ ∧ (ℎ∗,𝑚∗, ·) ∉ Q3
else, return 0.

Figure 3: Adaptive Collision-Resistance.

Experiment ExpACTA (𝜆)
(C𝑒

𝑖
, mpk) ← Setup(1𝜆), Q ← ∅

𝑇 ∗ ← AJudge′ (C𝑒
𝑖
,···) (mpk)

where Judge′ (C𝑒
𝑖
, · · ·) on input𝑇,Λ,𝑚′ :

mskΛ𝑖 ← KeyGen(C𝑒
𝑖
,Λ)

𝑟 ′ ← Adapt(mskΛ𝑖 ,𝑇 ,𝑚
′)

Q ← Q ∪ {(𝑇,𝑇 ′) }
(𝑇 ′,C𝑒

𝑖
) ← Judge(C𝑒

𝑖
,𝑇 ′)

return (𝑇 ′,C𝑒
𝑖
)

return 1, if (𝑇 ∗,C∗) ∧ (𝑇 ∗ ∉ Q ∨ pk∗ ∉ C∗)
else, return 0.

Figure 4: Accountability.

experiment in Figure 3. We allowA to see collisions for arbitrary

access policies (i.e., KeyGen” and Adapt’ oracles). We also allow

A to corrupt a threshold number of shareholders (i.e., Corrupt
oracle) in a committee. Note that the key shares can be transferred

between committees while msk is fixed.
A is not allowed to corrupt more than a threshold number of

shareholders in any committee. We define the advantage of the

adversary as

AdvACRA (𝜆) = Pr[ExpACRA (1𝜆) → 1] .

Definition 3.2. The proposed generic framework is adaptively

collision-resistant if for any PPTA, AdvACRA (𝜆) is negligible in 𝜆.

• Accountability. Informally, an adversary cannot generate a bogus

message-signature pair for a chameleon hash, which links a user

to an accused committee, but the user has never participated in

the accused committee. We define a formal experiment in Figure

4. We allow A to see whether a modified transaction links to a

committee (i.e., Judge’ oracle). Let set Q record the transactions

produced by the Judge’ oracle.

Accountable Fine-grained Blockchain Rewriting in the Permissionless Setting Conference’17, July 2017, Washington, DC, USA

We denote 𝑇 = (ℎ,𝑚, 𝑟, 𝜎) and 𝑇 ′ = (ℎ,𝑚′, 𝑟 ′, 𝜎 ′) as original and
modified transactions with respect to chameleon hash ℎ. We also

denote the linked transaction-committee pair as (𝑇 ′,C𝑒
𝑖
). We

define the advantage of the adversary as

AdvACTA (𝜆) = Pr[ExpACTA (1𝜆) → 1] .

Definition 3.3. The proposed generic framework is accountable

if for any PPT A, AdvACTA (𝜆) is negligible in 𝜆.

4 GENERIC CONSTRUCTION
The proposed generic construction consists of the following build-

ing blocks.

• A chameleon hash scheme CH = (Setup, KeyGen, Hash, Verify,
Adapt).
• An attribute-based encryption scheme with public traceability

ABET = (Setup, KeyGen, Enc, Dec, Trace).
• A dynamic proactive secret sharing scheme DPSS = (Share, Re-
distribute, Open).
• A digital signature scheme Σ = (Setup, KeyGen, Sign, Verify).

High-level Description. We assume that every user has a key

pair (sk, pk) and that users’ public keys (i.e., users’ identities) are

known to all users in a committee. Meanwhile, each user possesses

a set of attributes. In particular, more than a threshold number of

users in a committee can collectively grant a rewriting privilege

to a modifier based on her attribute set. A user with pk creates a
transaction𝑇 that includes a chameleon hash, a ciphertext under his

attribute set, and a signature (i.e., signs 𝑇 using his secret key sk).
A modifier with pk′, who is granted the rewriting privilege from a

committee, is allowed to rewrite the transaction 𝑇 , and signs the

modified transaction using her secret key sk′. We assume the 𝑡-out-

of-𝑛0 DPSS scheme to be executed over off-chain P2P channels and

let all 𝑘 committees have the same parameters (𝑡, 𝑛0). The proposed

construction is shown below.

• Setup(1𝜆): A user takes a security parameter 𝜆 as input, outputs

a public parameter PP = (mpkABET, PPΣ, PPCH), and a secret key

mskABET, where (mskABET, mpkABET) ← SetupABET (1𝜆), PPΣ ←
SetupΣ (1𝜆), PPCH ← SetupCH (1𝜆). The key shares {𝑠0}𝑛0 ←
ShareDPSS (mskABET) are distributed to users within committee

C0
, where each user holds a key share, and a key pair (sk, pk) ←

KeyGenΣ (PPΣ).
• KeyGen(C𝑒

𝑖
,Λ): A group of 𝑡+1 users in committee C𝑒

𝑖
take their

secret shares {𝑠𝑒 }𝑡+1 and a policy Λ as input, output a secret key

skΛ𝑖
for a modifier, where skΛ𝑖

← KeyGenABET (mskABET,Λ),
mskABET ← OpenDPSS ({𝑠𝑒 }𝑡+1), and secret shares {𝑠𝑒 }𝑛0 ←
RedistributeDPSS ({𝑠𝑒−1}𝑛0). Note that one of 𝑡+1 users can be

the modifier.

• Hash(PP,𝑚, 𝛿, 𝑗): A user appends a message𝑚, a set of attributes

𝛿 , and an index 𝑗 to the blockchain, performs the following oper-

ations

(1) generate a chameleon hash (ℎCH, r) ← HashCH (pkCH,𝑚),
where (skCH, pkCH) ← KeyGenCH (PPCH).

(2) generate a ciphertext 𝐶 ← EncABET (mpkABET, skCH,
𝛿, 𝑗), where skCH denotes the encrypted message.

(3) generate a message-signature pair (𝑐, 𝜎Σ), where𝜎Σ ← SignΣ
(sk, 𝑐), and message 𝑐 is derived from sk and skCH.

(4) output (ℎ,𝑚, r, 𝜎), where ℎ ← (ℎCH, pkCH,𝐶), and 𝜎 ←
(𝑐, 𝜎Σ).

• Verify(PP, ℎ,𝑚, r, 𝜎): It outputs 1 if 1← VerifyCH (pkCH,𝑚,ℎCH, r)
and 1← VerifyΣ (pk, 𝑐, 𝜎Σ), and 0 otherwise.

• Adapt(skΛ𝑖
, ℎ,𝑚,𝑚′, r, 𝜎): A modifier with a secret key skΛ𝑖

and

a new message𝑚′, performs the following operations

(1) check 1

?

=Verify(PP, ℎ,𝑚, r, 𝜎).
(2) compute skCH ← DecABET (mpkABET,𝐶, skΛ𝑖

).
(3) compute a new randomness r′ ← AdaptCH (skCH,𝑚,𝑚′,

ℎ, r).
(4) generate a ciphertext 𝐶 ′ ← EncABET (mpkABET, skCH,

𝛿, 𝑗).
(5) generate amessage-signature pair (𝑐 ′, 𝜎 ′Σ), where 𝑐

′
is derived

from sk′ and skCH.
(6) output (ℎ,𝑚′, r′, 𝜎 ′), where ℎ ← (ℎCH, pkCH,𝐶 ′), and 𝜎 ′ ←
(𝑐 ′, 𝜎 ′Σ).

• Judge(PP,𝑇 ′): It takes the public parameter PP, and a modified

transaction 𝑇 ′ as input, outputs a transaction-committee pair

(𝑇 ′,C𝑒
𝑖
) if the modified transaction 𝑇 ′ links to a committee C𝑒

𝑖
,

where 𝑇 ′ = (ℎ,𝑚′, r′, 𝜎 ′).

Correctness. The Judge algorithm allows any public user to iden-

tify the responsible modifiers and committees given a modified

transaction. The modifier (or modifier’s public key) is publicly

known because a digital signature is used in the construction. Below,

we explain the judge process in detail.

First, any public user verifies a connection between a transaction

𝑇 and its modified version 𝑇 ′. The connection can be established,

as both message-signature pair (𝑐, 𝜎Σ) in 𝑇 and message-signature

pair (𝑐 ′, 𝜎 ′Σ) in 𝑇
′
, are derived from the same chameleon trapdoor

skCH. Since different modifiers may modify the same transaction,

the chameleon trapdoor skCH is used in many modified versions

of a transaction. Here, we consider a single modified transaction

𝑇 ′ for simplicity.

Second, any public user obtains a set of accused committees

from interacting with an access blackbox O, such that {C} ←
TraceABET (mpkABET,O, 𝜖). Specifically, the public sends a cipher-

text encrypted a message under a set of attributes (that satisfies

the access privilege involved in O) and a committee index 𝑗 ∈
{1, · · · , 𝑘 + 1} to O. Then, the public outputs the committee index

𝑗 (we call it accused committee) if decryption succeeds. The public

repeats this tracing procedure until output all accused committees.

Third, if a user with pk′ acts as a modifier in an accused com-

mittee, the public outputs (𝑇 ′,C). It means that a transaction 𝑇 ′

is indeed modified by the user pk′ whose rewriting privilege is

granted from committee C. Because we allow the commitment

scheme to be used in DPSS, the user pk′ is held accountable in

a committee. More specifically, user pk′ joins in committee C by

showing a commitment on his key share to other committee mem-

bers, and further detail is given in the instantiation. If user pk′

acts as modifiers for many accused committees, the public outputs

(𝑇 ′, {C}). However, if user pk′ did not join in any accused commit-

tees, the public still outputs the indexes of the accused committees.

This is the second case of blockchain rewriting: an unauthorized

user has no granted rewriting privileges from any committee but

holds an access blackbox.

Conference’17, July 2017, Washington, DC, USA Tian and Liu, et al.

To conclude, we achieve public accountability via three steps: 1)

Verify a modified transaction; 2) Find an accused committee; 3) Link

the modified transaction to the accused committee. We also con-

sider a committee has multiple modifiers with different rewriting

privileges, but they should have the same committee index. In this

case, the public still identifies the modifiers (i.e., holding different

rewriting privileges) in the same committee as the modifiers sign

the modified transactions using their secret keys.

Remark.Onemay notice that amodifier pk′ can assign a new set of

attributes 𝛿 ′ to a modified transaction𝑇 ′ in the Adapt algorithm. In

other words, the attribute set associated with a mutable transaction

can be dynamically updated to satisfy different security require-

ments in case blockchain system evolves. Therefore, we remark

that the proposed generic construction supports fine-grained and

flexible blockchain rewriting. Besides, the modifier can use a new

index to create 𝑇 ′. One may also notice that such flexibility could

be misused. The modifier pk′ may intend to rewrite the transaction

𝑇 with malicious content and change the rewriting privileges to

disallow others to modify the transaction. We argue that more than

a threshold number of committee members can collectively reset

the transaction𝑇 ’s attribute set if such malicious behavior happens.

If flexibility is not desired in accountable blockchain rewriting, one

can let the transaction owner sign the embedded attribute set so

that the modifier rewrites the transaction 𝑇 only without changing

its rewriting privilege.

The second remark is that we only allow blockchain rewriting

that does not affect a transaction’s past and future events. If a mod-

ifier removes a transaction entirely or changes spendable data of a

transaction, it may lead to serious transaction inconsistencies in

the chain [21]. The last remark is, the committee members can re-

construct the secret mskABET as DPSS includes the Open algorithm.

If any committee member rewrites blockchain maliciously, he/she

is held accountable because the modified transaction is signed by

him/her.

Security Analysis.We show the security result of our proposed

construction, and the detailed proofs are referred to Appendix C.

Theorem 4.1. The proposed generic framework is indistinguish-
able if the CH scheme is indistinguishable.

Theorem 4.2. The proposed generic framework is adaptively collision-
resistant if the ABET scheme is semantically secure, the CH scheme
is collision-resistant, and the DPSS scheme has secrecy.

Theorem 4.3. The proposed generic framework is accountable if
the Σ scheme is existential unforgeability under chosen message attack
(EUF-CMA) secure, and the DPSS scheme has correctness.

5 INSTANTIATION
5.1 The Proposed ABET Scheme
For constructing a practical ABET, we require that the underlying

KP-ABE scheme should have minimal number of components in

master secret key, while the size of the ciphertext is constant (i.e.,

independent of the number of committees). Therefore, we rely on

a KP-ABE scheme [46] and a hierarchy identity-based encryption

(HIBE) scheme [14]. The KP-ABE [46] can be viewed as the stepping

stone to construct ABET. It has a single component in master secret

key msk, which requires a single execution of the DPSS. It works in

prime-order group, and its security is based on𝑞-type assumption in

the standard model. One may use more efficient ABE schemes such

as [7]. However, the master secret key msk has several components,

which requires multiple executions of the DPSS. The HIBE [14]

has constant-size ciphertext. The ciphertext has just three group

elements, and the decryption requires only two pairing operations.

In particular, HIBE has one master secret key, which can be shared

with KP-ABE. The ABET has been studied in [35, 36, 43, 52]. Their

schemes are based on cipher-policy ABE. They cannot be applied to

open blockchains with decentralized access control (i.e., a threshold

number of committee members grant decryption keys to users).

Our proposed ABET scheme makes it possible based on the KP-ABE

scheme.

The intertwined ABET scheme is not anonymous because its

ciphertext reveals user’s committee information to the public. We

extend the intertwined ABET scheme into an anonymous one us-

ing asymmetric pairings, i.e., ê : G × H → G𝑇 (as described in

[23]). The basic idea is, the index-based elements in a modifier’s

decryption key belong to group G. The index-based elements in a

ciphertext belong to group H so that the ciphertext can conceal the

committee’s index if the master secret key is unknown. The con-

crete construction of ABET is embedded in the instantiation. Below,

we present Theorem 5.1 to show the proposed ABET scheme has

semantic security and ciphertext anonymity. The security analysis

is referred to Appendix D.

Theorem 5.1. The proposed ABET scheme achieves semantic secu-
rity and ciphertext anonymity, if the 𝑞′-type assumption and eDDH
assumptions hold in the asymmetric pairing groups.

5.2 Instantiation
First, we use the proposed ABET scheme to construct our instantia-

tion. Specifically, the Setup and KeyGen algorithms in ABET are

directly used in the instantiation. The Enc and Dec algorithms in

ABET are part ofHash and Adapt, respectively. Second, we rely on a
recent work [38] to initiate the DPSS scheme. We particularly show

an instantiation of DPSS with pessimistic case, which allows users

to be held accountable in a committee using KZG commitment [32].

We denote an index space as {𝐼1, · · · , 𝐼𝑘 } ∈ (Z𝑞)𝑘 , which is

associated with 𝑘 committees. We define a hierarchy as follows:

index 𝑖 is close to the root node 𝑘 , and index 𝑗 is close to the leaf

node. We assume each committee has 𝑛0 users, and the threshold

is 𝑡 , where 𝑡 < 𝑛0/2 according to [38]. Let H : {0, 1}∗ → Z𝑞 be a

hash function, and the size of hash output H is assumed to be 𝑙 . Let

ê : G ×H→ G𝑇 be a bilinear pairing. The concrete instantiation is

shown below.

• Setup(1𝜆): It takes a security parameter 𝜆 as input, outputs a mas-

ter public key mpk = (𝑔,𝑢, 𝑣,𝑤, ℎ, ê(𝑔, ℎ)𝛼 , {𝑔𝛼
1
, · · ·𝑔𝛼

𝑘
}, {ℎ𝛼

1
, · · ·ℎ𝛼

𝑘
},

𝑔𝛽 , ℎ1/𝛼 , ℎ𝛽/𝛼 , ê(𝑔, ℎ)𝜃/𝛼), and amaster secret key msk = (𝛼, 𝛽, 𝜃),
where (𝛼, 𝛽, 𝜃) ∈ Z∗𝑞 {𝑧1, · · · , 𝑧𝑘 } ∈ Z𝑞 , 𝑔 is generator of group

G, ℎ is generator of group H, (𝑢, 𝑣,𝑤) ∈ G, {𝑔1, · · · , 𝑔𝑘 } =

{𝑔𝑧1 , · · · , 𝑔𝑧𝑘 }, {ℎ1, · · · , ℎ𝑘 } = {ℎ𝑧1 , · · · , ℎ𝑧𝑘 }. Note that the key
shares of 𝛼 and 𝜃 are distributed to users in committee C0

, and

these key shares can be redistributed between dynamic commit-

tees (see correctness below).

Accountable Fine-grained Blockchain Rewriting in the Permissionless Setting Conference’17, July 2017, Washington, DC, USA

• KeyGen(C𝑒
𝑖
, (M, 𝜋)): It inputs a committeeC𝑒

𝑖
with index (𝐼1, · · · , 𝐼𝑖),

and an access structure (M, 𝜋) (M has 𝑛1 rows and 𝑛2 columns),

outputs a secret key skΛ𝑖
for a modifier. Specifically, a group of

𝑡+1 users in the committee C𝑒
𝑖
first recover secrets 𝛼 and 𝜃 . Then,

they pick {𝑡1, · · · , 𝑡𝑛1
} ∈ Z𝑞 , for all 𝜏 ∈ [𝑛1], compute sk(𝜏,1) =

𝑔𝑠𝜏𝑤𝑡𝜏 , sk(𝜏,2) = (𝑢𝜋 (𝜏)𝑣)−𝑡𝜏 , sk(𝜏,3) = ℎ𝑡𝜏 , where 𝑠𝜏 is a key

share from 𝛼 . Eventually, they pick {𝑟1, · · · , 𝑟𝑛1
} ∈ Z𝑞 , compute

sk0 = (𝑔𝑡∗/𝛼 , 𝑔𝑟 ∗), sk1 = 𝑔𝜃 · �̂�𝑡∗ · 𝑔𝛽 ·𝑟 ∗ , sk2 = {𝑔𝛼 ·𝑡∗
𝑖−1 , · · ·𝑔

𝛼 ·𝑡∗
1
},

where 𝑡∗ =
∑
𝜏 ∈ |𝑛1 | (𝑡𝜏), 𝑟

∗ =
∑
𝜏 ∈ |𝑛1 | (𝑟𝜏), and �̂� = 𝑔

𝛼𝐼1
𝑘
· · ·𝑔𝛼𝐼𝑖

𝑖
·

𝑔 ∈ G is associated with a committee C𝑒
𝑖
with index (𝐼1, · · · , 𝐼𝑖).

The secret key is skΛ𝑖
= ({sk𝜏 }𝜏 ∈[𝑛1] , sk0, sk1, sk2).

• Hash(mpk,𝑚, 𝛿, 𝑗): To hash a message𝑚 ∈ Z𝑞 under a set of at-

tributes 𝛿 , and an index (𝐼1, · · · 𝐼 𝑗), a user performs the following

operations

(1) choose a randomness r ∈ Z∗𝑞 , and a trapdoor R, compute a

chameleon hash 𝑏 = 𝑔𝑚 · 𝑝 ′r where 𝑝 ′ = 𝑔𝑒 , 𝑒 = H(R). Note
that R denotes a short bit-string.

(2) generate a ciphertext on message 𝑀 = R under a set of at-

tributes 𝛿 = {𝐴1, · · · , 𝐴 |𝛿 |} and index (𝐼1, · · · 𝐼 𝑗). It first picks
𝑠, 𝑟1, 𝑟2, · · · , 𝑟 |𝛿 | ∈ Z𝑞 , for 𝜏 ∈ |𝛿 | computes 𝑐𝑡 (𝜏,1) = ℎ𝑟𝜏 and

𝑐𝑡 (𝜏,2) = (𝑢𝐴𝜏 𝑣)𝑟𝜏𝑤−𝑠 . Then, it computes 𝑐𝑡 = (R| |0𝑙−|R |) ⊕
H2 (ê(𝑔, ℎ)𝛼𝑠 | |ê(𝑔, ℎ)𝜃𝑠/𝛼), 𝑐𝑡0 = (ℎ𝑠 , ℎ𝑠/𝛼 , ℎ𝛽 ·𝑠/𝛼), and 𝑐𝑡1 =

�̂�𝑠 , where �̂� = ℎ
𝛼𝐼1
𝑘
· · ·ℎ𝛼𝐼 𝑗

𝑗
· ℎ ∈ H. Eventually, it sets 𝐶 =

(𝑐𝑡, {𝑐𝑡 (𝜏,1) , 𝑐𝑡 (𝜏,2) }𝜏 ∈[𝛿] , 𝑐𝑡0, 𝑐𝑡1).
(3) generate a signature 𝑒𝑝𝑘 = 𝑔𝑒𝑠𝑘 , 𝜎 = 𝑒𝑠𝑘 + sk · H(𝑒𝑝𝑘 | |𝑐),

where (𝑒𝑠𝑘, 𝑒𝑝𝑘) denotes an ephemeral key pair, and 𝑐 =

𝑔sk+(R | |0
𝑙−|R|)

denotes a signed message.

(4) output (𝑚, 𝑝 ′, 𝑏, r,𝐶, 𝑐, 𝑒𝑝𝑘, 𝜎).
• Verify(mpk,𝑚, 𝑝 ′, 𝑏, r, 𝑐, 𝑒𝑝𝑘, 𝜎): Any public user can verifywhether
a given hash (𝑏, 𝑝 ′) is valid, it outputs 1 if 𝑏 = 𝑔𝑚 · 𝑝 ′r, and
𝑔𝜎 = 𝑒𝑝𝑘 · pkH(𝑒𝑝𝑘 | |𝑐) .
• Adapt(skΛ𝑖

,𝑚,𝑚′, 𝑝 ′, 𝑏, r,𝐶, 𝑐, 𝑒𝑝𝑘, 𝜎): A modifier with a secret

key skΛ𝑖
, and a new message𝑚′ ∈ Z𝑞 , performs the following

operations

(1) check 1

?

=Verify(mpk,𝑚, 𝑝 ′, 𝑏, r, 𝑐, 𝑒𝑝𝑘, 𝜎).
(2) run the following steps to decrypt trapdoor R:

(a) generate a delegated key w.r.t an index (𝐼1, · · · 𝐼𝑖+1). It
picks 𝑡 ′ ∈ Z𝑞 , computes sk0 = (𝑔 (𝑡∗+𝑡 ′)/𝛼 , 𝑔𝑟 ∗), sk1 =

𝑔𝜃 · �̂�𝑡∗ · 𝑔𝛽 ·𝑟 ∗ · (𝑔𝛼 ·𝑡∗
𝑖−1)

𝐼𝑖+1 · (𝑔𝛼 ·𝐼1
𝑘
· · ·𝑔𝛼 ·𝐼𝑖+1

𝑖−1 · 𝑔)𝑡 ′, sk2 =

{𝑔𝛼 ·𝑡∗
𝑖−2 · 𝑔

𝛼 ·𝑡 ′
𝑖−2 , · · ·𝑔

𝛼 ·𝑡∗
1
· 𝑔𝛼 ·𝑡 ′

1
}. The delegated secret key

is skΛ𝑖+1 = ({sk𝜏 }𝜏 ∈[𝑛1] , sk0, sk1, sk2).
(b) if the attribute set 𝛿 involved in the ciphertext satis-

fies the policy MSP (M, 𝜋), then there exists constants

{𝛾𝜇 }𝜇∈𝐼 that satisfy the equation in Section 2.2. It com-

putes 𝐵 as follows.

𝐵 =
∏
𝜇∈𝐼
(ê(sk(𝜇,1) , 𝑐𝑡 (0,1))ê(sk(𝜇,2) , 𝑐𝑡 (𝜇,1))

ê(𝑐𝑡 (𝜇,2) , sk(𝜇,3)))𝛾𝜇

= ê(𝑔, ℎ)𝑠
∑

𝜇∈𝐼 𝛾𝜇𝑠𝜇 = ê(𝑔, ℎ)𝛼𝑠 ,
𝑤ℎ𝑒𝑟𝑒

∑︁
𝜇∈𝐼

𝛾𝜇𝑠𝜇 = 𝛼.

(c) check (R| |0𝑙−|R |) ?=𝑐𝑡 ⊕ H(𝐵 | |𝐴), where 𝐴 =
ê(sk1,𝑐𝑡 (0,2))

ê(sk(0,1) ,𝑐𝑡1) ê(sk(0,2) ,𝑐𝑡 (0,3)) . The format “| |0𝑙−|R |" is used
to check when the encrypted value R is decrypted suc-

cessfully with certainty 1− 2𝑙−|R | . If the encrypted value
is decrypted, then the delegation procedure terminates

(note that 𝐵 is computed once). Note that sk(0,1) , sk(0,2)
denote the first, and second element of sk0, and the same

rule applies to 𝑐𝑡0.

(3) compute a new randomness r′ = r + (𝑚 − 𝑚′)/𝑒 , where
𝑒 = H(R).

(4) generate a new ciphertext 𝐶 ′ on the same message 𝑀 = R
using the attribute set 𝛿 and index (𝐼1, · · · , 𝐼 𝑗).

(5) generate a signature 𝑒𝑝𝑘 ′ = 𝑔𝑒𝑠𝑘
′
, 𝜎 ′ = 𝑒𝑠𝑘 ′+sk′ ·H(𝑒𝑝𝑘 ′ | |𝑐 ′),

where 𝑐 ′ = 𝑔sk
′+(R | |0𝑙−|R|)

.

(6) output (𝑚′, 𝑝 ′, 𝑏, r′,𝐶 ′, 𝑐 ′, 𝑒𝑝𝑘 ′, 𝜎 ′).
Correctness of DPSS scheme. Two secrets need to be distributed:
(𝛼, 𝜃). We specifically show users in committeeC𝑒−1

securely hand-
off their key shares of secret 𝛼 to users in committee C𝑒

. According

to the DPSS scheme in [38], an asymmetric bivariate polynomial is

used: 𝑓 (𝑥,𝑦) = 𝛼 +𝑎0,1𝑥 +𝑎1,0𝑦 +𝑎1,1𝑥𝑦 +𝑎1,2𝑥𝑦2 + · · · +𝑎𝑡,2𝑡𝑥𝑡𝑦2𝑡 .
Each user in committee C𝑒−1

holds a full key share after running

Share protocol. For example, a user with pk holds a key share 𝑓 (𝑖, 𝑦),
which is a polynomial with dimension 𝑡 . Overall, the handoff (i.e.,

Redistribute protocol) includes three phases: share reduction, proac-
tivization, and full-share distribution.

• Share Reduction. It requires each user in committee C𝑒−1
reshares

its full key share. For example, user pk derives a set of reduced
shares {𝑓 (𝑖, 𝑗)} 𝑗 ∈[1,𝑛0] from its key share 𝑓 (𝑖, 𝑦) using SSS. Then,
each user distributes the reduced shares to users in committeeC𝑒

,

which includes a user with pk′. As a result, each user in C𝑒
ob-

tains a reduced share 𝑓 (𝑥, 𝑗) by interpolating the received shares
{𝑓 (𝑖, 𝑗)}𝑖∈[1,𝑡] . Note that the dimension of 𝑓 (𝑥, 𝑗) is 2𝑡 , and 2𝑡+1
of these reduced key shares {𝑓 (𝑥, 𝑗)} 𝑗 ∈[1,2𝑡+1] can recover 𝛼 (see

Section 2.4). The goal of this dimension-switching (from 𝑡 to 2𝑡)

is to achieve optimal communication overhead, such that only

2𝑡+1 users in committee C𝑒
are required to update 𝑓 (𝑥, 𝑗).

• Proactivization. It requires 𝐹 (𝑥, 𝑗) = 𝑓 (𝑥, 𝑗) + 𝑓 ′(𝑥, 𝑗), where
𝑓 ′(𝑥,𝑦) is a new asymmetric bivariate polynomial with dimen-

sion (𝑡, 2𝑡) and 𝑓 ′(0, 0) = 0. We provide more details of 𝑓 ′(𝑥,𝑦)
later.

• Full-share Distribution. It requires each user in committee C𝑒
to

recover its full key share with dimension 𝑡 . For example, a full

key share 𝐹 (𝑖, 𝑦) is recovered by interpolating the reduced shares
{𝐹 (𝑖, 𝑗)} 𝑗 ∈[1,2𝑡+1] in committee C𝑒

. This full key share 𝐹 (𝑖, 𝑦)
belongs to user pk′, and 𝑡+1 of these full key shares can recover

𝛼 .

Now we show the generation of an asymmetric bivariate poly-

nomial 𝑓 ′(𝑥,𝑦) with dimension (𝑡, 2𝑡) such that 𝑓 ′(0, 0) = 0, which

is used to update the reduced key shares 𝑓 (𝑥, 𝑗) during proactiviza-
tion. We denote a subset of C𝑒

asU ′, which includes 2𝑡+1 users.

The generation of 𝑓 ′(𝑥,𝑦) requires two steps: univariate zero share,
and bivariate zero share.

• Univariate Zero Share. It requires each user in U ′ to generate

a key share 𝑓 ′
𝑗
(𝑦) from a common univariate polynomial with

dimension 2𝑡 . First, each user 𝑖 generates a univariate polynomial

Conference’17, July 2017, Washington, DC, USA Tian and Liu, et al.

𝑓 ′
𝑖
(𝑦) = 0+𝑎′

1
𝑦 +𝑎′

2
𝑦2 + · · · +𝑎′

2𝑡
𝑦2𝑡 , and broadcasts it to all users

inU ′. Second, each user inU ′ generates a common univariate

polynomial 𝑓 ′(𝑦) = ∑
𝑖∈[1,2𝑡+1] 𝑓

′
𝑖
(𝑦) by combining all received

polynomials, and obtains a key share 𝑓 ′
𝑗
(𝑦) from 𝑓 ′(𝑦).

• Bivariate Zero Share. It requires each user in committee C𝑒
to

generate a key share 𝑓 ′(𝑥, 𝑗) from a common bivariate polyno-

mial with dimension (𝑡, 2𝑡). First, each user in U ′ generates a
set of reduced shares {𝑓 ′(𝑖, 𝑦)}𝑖∈[1,𝑛0] with dimension 𝑡 from

its key share 𝑓 ′
𝑗
(𝑦) (i.e., resharing process), where 𝑓 ′(𝑖, 𝑦) =

0 + 𝑎′
1,0
𝑦 + 𝑎′

2,0
𝑦2 + · · · + 𝑎′

2𝑡,0
𝑦2𝑡 . Since the reduced shares are

distributed to all users in committee C𝑒
, a common bivariate

polynomial with dimension (𝑡, 2𝑡) is established: 𝑓 ′(𝑥,𝑦) = 0 +
𝑎′
0,1
𝑥 +𝑎′

1,0
𝑦+𝑎′

1,1
𝑥𝑦+𝑎′

1,2
𝑥𝑦2+· · ·+𝑎′

𝑡,2𝑡
𝑥𝑡𝑦2𝑡 . Second, each user

in committee C𝑒
obtains a reduced key share 𝑓 ′(𝑥, 𝑗) by inter-

polating the received shares {𝑓 ′(𝑖, 𝑗)} 𝑗 ∈[1,2𝑡+1] . The key share

𝑓 ′(𝑥, 𝑗) = 0+𝑎′
0,1
𝑥 +𝑎′

0,2
𝑥2 + · · · +𝑎′

0,𝑡
𝑥𝑡 is used to update 𝑓 (𝑥, 𝑗)

in the proactivization.

The asymmetric bivariate polynomial 𝑓 ′(𝑥,𝑦) can be reused

in another proactivization when sharing secret 𝜃 . In other words,

multiple handoff protocols with respect to different secrets can

be updated using the same bivariate polynomial, with the condi-

tion that these handoff protocols are executed within the same

committee.

Correctness of Judge algorithm.We show the judge process in

detail. First, any public user verifies the connection between a

transaction and its modified version, and this connection is pub-

licly verifiable. For example, given two chameleon hash outputs:

(𝑚,𝑚′, 𝑏, 𝑝 ′,𝐶,𝐶 ′, 𝑐, 𝑐 ′, 𝑒𝑝𝑘, 𝜎, 𝑒𝑝𝑘 ′, 𝜎 ′), the public performs the fol-

lowing operations

• verify chameleon hash 𝑏 = 𝑔𝑚 · 𝑝 ′r = 𝑔𝑚 · 𝑝 ′r′ .
• verifymessage-signature pair (𝑐, 𝜎) under (𝑒𝑝𝑘, pk), andmessage-

signature pair (𝑐 ′, 𝜎 ′) under (𝑒𝑝𝑘 ′, pk′).
• verify pk′ = pk · Δ(sk), where Δ(sk) = 𝑐 ′/𝑐 = 𝑔sk

′−sk
(the

meaning of Δ(sk) is referred to Section 2.3). Note that (𝑐, 𝑐 ′) are
derived from the same chameleon trapdoor R.

Second, any public user obtains a set of accused committees from

interacting with an access blackbox O. We note that the modifier’s

delegated secret keys are disallowed to be used in generating O. If
some modifiers use their delegated secret keys to generate O, the
public cannot identify the accused committees correctly because

the delegated secret keys may share the same committee index. We

argue that it is challenging to prevent such malicious modifiers

from using their delegated secret keys to generate O, as some ABET

schemes [35, 36] (including our proposed one) support a delegation

process. The delegation allows a user to obtain some delegated

decryption keys by re-randomizing the given decryption key.

Eventually, the public outputs a transaction-committee pair (𝑇 ′,C𝑒).
In particular, we rely on the KZG commitment and PoW consensus

to hold a modifier pk′ accountable in an accused committee C𝑒
.

Now we provide more details.

• Share Reduction. We require user pk′ in committee C𝑒
to gen-

erate a commitment 𝐶𝑓 (𝑥,𝑗) , which is a KZG commitment to

the reduced key shares {𝑓 (𝑖, 𝑗)} 𝑗 ∈[1,2𝑡+1] , and a set of witnesses

{𝑤 𝑓 (𝑖, 𝑗) } 𝑗 ∈[1,2𝑡+1] . A witness𝑤 𝑓 (𝑖, 𝑗) means the witness to eval-

uation of 𝑓 (𝑥, 𝑗) at 𝑖 . Note that 𝑖 ∈ [1, 2𝑡 + 1] indicates the order

of user pk′’s public key in committee C𝑒
(we order nodes lexico-

graphically by users’ public keys and choose the first 2𝑡 + 1).
• Full-share Distribution.We require user pk′ in committee C𝑒

to

generate a commitment 𝐶𝐹 (𝑥,𝑗) , which is a KZG commitment to

the reduced key shares {𝐹 (𝑖, 𝑗)} 𝑗 ∈[1,2𝑡+1] , and a set of witnesses

𝑤𝐹 (𝑖, 𝑗) . A witness 𝑤𝐹 (𝑖, 𝑗) means the witness to evaluation of

𝐹 (𝑥, 𝑗) at 𝑖 .
• PoWConsensus.We require user pk′ to hash the KZG commitment

and the set of witnesses, store them to an immutable transaction,

and put them on-chain for PoW consensus.

Overall, the commitment and witness can ensure the correctness

of handoff. Specifically, new committee members can verify the

correctness of reduced shares from old committee members, thus

the correctness of dimension-switching. Meanwhile, the proof of

correctness is publicly verifiable, such that any public user can ver-

ify that 𝑓 (𝑖, 𝑗) (or 𝐹 (𝑖, 𝑗)) is the correct evaluation at 𝑖 (i.e., user pk′)
of the polynomial committed by 𝐶𝑓 (𝑥,𝑗) (or 𝐶𝐹 (𝑥,𝑗)) in committee

C𝑒
.

6 IMPLEMENTATION AND EVALUATION
In this section, we evaluate the performance of the proposed solu-

tion based on a proof-of-concept implementation in Python and

Flask framework [3]. We create a mutable open blockchain system

with basic functionalities and a PoW consensus mechanism. The

simulated open blockchain system is “healthy", satisfying the prop-

erties of persistence and liveness [26]. The system is specifically

designed to include ten blocks, each block includes 100 transactions.

Please note, that our implementation can easily extend it to real-

world applications such as a block containing 3500 transactions.

We simulate ten nodes in a peer-to-peer network, each of them is

implemented as a lightweight blockchain node. They can also be re-

garded as the users in a committee. A chain of blocks is established

with PoW mechanism by consolidating transactions broadcast by

the ten nodes. The implementation code is available on GitHub [5].

First, if users append mutable transactions to blockchain, they

use the proposed solution to hash the registered message𝑚. Later,

a miner uses the conventional hash function SHA-256 H to hash the

chameleon hash output ℎ and validates H(ℎ) using a Merkle tree.

Note that the non-hashed components such as randomness r, are
parts of a mutable transaction𝑇 = (pkCH,𝑚,ℎ, r,𝐶, 𝑐, 𝜎). As a conse-
quence, a modifier can replace 𝑇 by 𝑇 ′ = (pkCH,𝑚′, ℎ, r′,𝐶 ′, 𝑐 ′, 𝜎 ′)
without changing the hash output H(ℎ).

Second, we mimic a dynamic committee that includes five users,

we split the master secret key into five key shares so that each user

in a committee holds a key share. We simulate the basic function-

ality of DPSS, including resharing and updating key shares. Any

user can join in or leave from a committee by transmitting those

key shares between committee members. In particular, we simulate

three users in a committee can collaboratively recover the master

secret key and grant access privileges to the modifiers.

Now, we conclude that: 1) The proposed solution incurs no over-

head to chain validation. This is because, rewrite the message in

𝑇 has no effect on the PoW mechanism, as the chameleon hash

output ℎ is used for computing the transaction hash for Merkle

tree leaves. 2) The proof-of-concept implementation indicates that

the proposed solution can act as an additional layer on top of any

Accountable Fine-grained Blockchain Rewriting in the Permissionless Setting Conference’17, July 2017, Washington, DC, USA

open blockchains to perform accountable rewriting. Specifically,

we append mutable transactions using the proposed solution to

the blockchain, and we allow dynamic committees to grant ac-

cess privileges for rewriting those mutable transactions. 3) The

proposed solution is compatible with existing blockchain systems

for the following reasons. The only change which CH-based ap-

proach requires is to replace the standard the hash function H by
CH for generating a chameleon hash value ℎ before validating the

transactions in each block [10]. Besides, DPSS is designed for open

blockchains, and decentralized systems [38].

6.1 Evaluation
We implement our proposed solution using the Charm framework

[8] and evaluate its performance on a PCwith Intel Core i5 (2.7GHz×2)
and 8GBRAM.We useMultiple PrecisionArithmetic Library, Pairing-

Based Cryptography (PBC) Library, and we choose MNT224 curve

for pairing, which is the best Type-III paring in PBC. We instantiate

the hash function and the pseudo-random generator with the cor-

responding standard interfaces provided by the Charm framework.

First, the Setup algorithm takes about 0.52 seconds (s). The run-

ning time of KeyGen, Hash, and Adapt algorithms are measured

and shown in Figure 5 (a-c). The performance of these algorithms is

linear to the number of attributes or the size of policies. Specifically,

the run-time of KeyGen takes only 2.37s, even if the size of the pol-

icy is 100. We discover that the dominating operation is parsing the

access policy (M, 𝜋), and we argue that a better designed parsing

interface can reduce the overall cost of KeyGen. Moreover, it only

takes 2.44s and 3.87s respectively for Hash and Adapt to handle

100 attributes. The run-time cost of such algorithms mainly comes

from processing the attributes list and access policy (M, 𝜋), i.e., the

coefficient calculation of every attribute and the cost of determining

whether a given attribute set satisfies the access policy.

Second, we evaluate the running time of a 𝑡-out-of-𝑛0 DPSS pro-

tocol, where 𝑛0 indicates the number of users in a committee and

𝑡 is the threshold. Let 𝑡 < 𝑛0/2 be a safe threshold. The overhead
includes the distribution cost between committee members, and

the polynomial calculation cost. Figure 5 (d) shows that the overall

running time is linear to the square number of users 𝑛2 in a commit-

tee, since more shares need to be distributed and more polynomials

need to calculated among 𝑛0 users. Our implementation can scale

up to larger committees. For example, the running times for 𝑡 = 20

and 𝑡 = 30 are about 3.09s and 7.34s, respectively.

To conclude, the implementation performs the resharing twice

and updating once regarding two shared secrets. Besides, the num-

ber of updating process is constant in a committee, independent

of the number of shared secrets used in ABET. Since only two

secrets are needed to be shared and recovered, we argue that

the proposed ABET scheme is the most practical one. It is suit-

able for decentralized systems when applying DPSS to the pro-

posed ABET scheme. On the security-front, because every com-

mittee has at most
𝑛0

3
malicious members [37] and

𝑛0

2
+1 com-

mittee members recover the shared secrets [38], the malicious

committee members cannot dictate the committee and control

the rewriting privileges. For the storage cost, we mention that

the number of mutable transactions ranges from 2% to 10% in-

side a block [21]. Each mutable transaction needs to store 𝑇 =

(pkCH,𝑚,ℎ, r,𝐶, 𝑐, 𝜎). The storage cost of a mutable transaction

includes: 1) 2LZ𝑞 + 3LG regarding DL-based chameleon hash; 2)

LZ𝑞 + |𝛿 | × LG + (|𝛿 | + 4) × LH regarding ABET; 3) LZ𝑞 + 2LG
regarding digital signature. The committee’s on-chain storage cost

regarding DPSS [38] is 2(𝑡 + 1) × [LG + (2𝑡 + 1) (LZ𝑞 + LH)].

7 RELATEDWORK
Blockchain Rewriting. Blockchain rewriting was first introduced
by Ateniese et al. [10]. They propose to replace the regular SHA256

hash function with a chameleon hash (CH) in blockchain generation

[34]. The hashing of CH is parametrized by a public key pk, and CH
behaves like a collision-resistant hash function if the chameleon

secret key sk (or trapdoor) is unknown. A trapdoor holder (or

modifier) can find collisions and output a newmessage-randomness

pair without changing the hash value.

Camenisch et al. [17] introduced a new cryptographic primitive:

chameleon hash with ephemeral trapdoor (CHET). CHET requires

that a modifier must have two trapdoors to find collisions: one

trapdoor sk is associated with the public key pk; the other one

is an ephemeral trapdoor 𝑒𝑡𝑑 chosen by the party who initially

computed the hash value. CHET provides more control in rewriting

in the sense that the party, who computed the hash value, can

decide whether the holder of sk shall be able to rewrite the hash

by providing or withholding the ephemeral trapdoor 𝑒𝑡𝑑 .

Derler et al. [19] proposed policy-based chameleon hash (PCH)

to achieve fine-grained rewriting in the blockchain. The proposed

PCH replaces the public key encryption scheme in CHET by a

ciphertext-policy ABE scheme, such that a modifier must satisfy

a policy to find collisions given a hash value. Recently, Tian et al.

proposed an accountable PCH for blockchain rewriting (PCHBA)

[52]. The proposed PCHBA enables the modifiers of transactions

to be held accountable for the modified transactions. In particular,

PCHBA allows a third party (e.g., key generation center) to resolve

any dispute over modified transactions.

In another work, Puddu et al. [45] proposed 𝜇chain: a muta-

ble blockchain. A transaction owner introduces a set of transac-

tions, including an active transaction and multiple inactive transac-

tions, where the inactive transactions are possible versions of the

transaction data (namely, mutations) encrypted by the transaction

owner, and the decryption keys are distributed among miners using

Shamir’s SSS [49]. The transaction owner enforces access control

policies to define who is allowed to trigger mutations in which

context. Upon receiving a mutation-trigger request, a set of miners

runs a Multi Party Computation (MPC) protocol to recover the

decryption key, decrypt the appropriate version of the transaction

and publish it as an active transaction. 𝜇chain incurs considerable

overhead due to the use of MPC protocols across multiple miners.

It works at both permissioned and permissionless blockchains.

Deuber et al. [21] introduced an efficient redactable blockchain

in the permissionless setting. The proposed protocol relies on a

consensus-based e-voting system [33], such that the modification

is executed in the chain if a modification request from any public

user gathers enough votes from miners (we call it V-CH for conve-

nience). In a follow-up work, Thyagarajan et al. [51] introduced a

protocol called Reparo to repair blockchains, which acts as a pub-

licly verifiable layer on top of any permissionless blockchain. The

Conference’17, July 2017, Washington, DC, USA Tian and Liu, et al.

10 20 30 40 50 60 70 80 90 100

0.5

1.0

1.5

2.0

2.5

(a) Size of Policies

R
u
n
t
i
m
e
(
s
)

10 20 30 40 50 60 70 80 90 100

0.5

1.0

1.5

2.0

2.5

(b) Number of Attributes

R
u
n
t
i
m
e
(
s
)

10 20 30 40 50 60 70 80 90 100

1.0

2.0

3.0

4.0

(c) Number of Attributes

R
u
n
t
i
m
e
(
s
)

2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

(d) Size of threshold

R
u
n
t
i
m
e
(
s
)

Figure 5: Run-time of KeyGen, Hash, Adapt algorithms, and DPSS scheme.

Table 1: The comparison between various blockchain rewrit-
ing solutions. CH-based indicates CH-based blockchain
rewriting. Fine-grained means that each mutable transac-
tion is associated with an access policy such that the trans-
action can be modified by anyone whose rewriting privilege
satisfy the policy.

CH [10] 𝜇chain [45] PCH [19] V-CH [21] PCHBA [52] Ours

CH-based ✓ × ✓ × ✓ ✓
Permissionless ✓ ✓ × ✓ × ✓
Fine-grained × × ✓ × ✓ ✓
Accountability ✓ ✓ × ✓ ✓ ✓

unique feature of Reparo is that it is immediately integrable into

open blockchains in a backward compatible fashion (i.e., any exist-

ing blockchains already containing illicit contents can be redacted

using Reparo).

There are mainly two types of blockchain rewritings in the lit-

erature: CH-based [10, 17–19, 52], and non CH-based [21, 45, 51].

CH-based blockchain rewritings allow one or more trusted modi-

fiers to rewrite blockchain. The non-CH-based solution requires a

threshold number of parties (or miners) to rewrite the blockchain.

We stress that both of them aim to rewrite blockchains securely and

efficiently. One can apply both of them to redactable blockchains.

Table 1 shows a comparison between blockchain rewriting re-

lated solutions. In this work, we use chameleon hash cryptographic

primitive to secure the blockchain rewriting. Our proposed so-

lution supports a fine-grained and controlled rewriting for open

blockchains. It holds both the modifiers’ public keys and the rewrit-

ing privileges accountable for the modified transactions. Overall,

this work can be viewed as a step forward from PCH and PCHBA.

Dynamic Proactive Secret Sharing. Proactive security was first

introduced by Ostrovsky and Yung [44], which is refreshing secrets

to withstand compromise. Later, Herzberg et al. [30] introduced

proactive secret sharing (PSS). The PSS allows the distributed key

shares in a SSS to be updated periodically, so that the secret re-

mains secure even if an attacker compromises a threshold number

of shareholders in each epoch. However, it did not support dynamic

committees because users may join in or leave from a committee

dynamically. Desmedt and Jajodia [20] introduced a scheme that

redistributes secret shares to new access structure (or new com-

mittee). Specifically, a resharing technique is used to change the

committee and threshold in PSS. However, the scheme is not ver-

ifiable, which disallows PSS to identify the faulty (or malicious)

users. The property of verifiability is essential to PSS (i.e., verifiable

secret sharing such as Feldman [25]), which holds malicious users

accountable. So, the dynamic proactive secret sharing (DPSS) we

considered in this work includes verifiability.

There exist several DPSS schemes in the literature. Wong et

al. [54] introduced a verifiable secret redistribution protocol that

supports dynamic committee. The proposed protocol allows new

shareholders to verify the validity of their shares after redistri-

bution between different committees. Zhou et al. [57] introduced

an APSS, a PSS protocol for asynchronous systems that tolerate

denial-of-service attacks. Schultz et al. [48] introduced a resharing

protocol called MPSS. The MPSS supports mobility, which means

the group of shareholders can change during resharing. Baron et al.

[11] introduced a DPSS protocol that achieves a constant amortized

communication overhead per secret share. In CCS’19, Maram et al.

[38] presented a practical DPSS: CHURP. CHURP is designed for

open blockchains, and it has very low communication overhead per

epoch compared to the existing schemes [11, 48, 54, 57]. Specifically,

the total number of bits transmitted between all committee mem-

bers in an epoch is substantially lower than in existing schemes.

Recently, Benhamouda et al. [13] introduced anonymous secret

redistribution. The benefit is to ensure sharing and resharing of

secrets among small dynamic committees.

DPSS can be used to secure blockchain rewriting, such as 𝜇chain

[45]. 𝜇chain relies on encryption with secret sharing (ESS) to hide

illegal content, as certain use-cases aim to prevent distribution of

illegal content (e.g., child pornography) via the blockchain. ESS

allows all the mutable transactions containing illegal content to be

encrypted using transaction-specific keys. The transaction-specific

keys are split into shares using DPSS [11], and these resulting shares

are distributed to a number of miners, which then reshare the keys

among all online miners dynamically. In this work, we use KP-ABE

with DPSS to ensure blockchain rewiring with fine-grained access

control. The master secret key in KP-ABE is split into key shares,

and these key shares are distributed to all users in a committee. The

key shares can be securely redistributed across dynamic committees.

To the best of our knowledge, ours is the first attempt to distribute

the master secret key in KP-ABE for decentralized systems.

8 CONCLUSION
In this paper, we proposed a new framework of accountable fine-

grained blockchain rewriting. The proposed framework is designed

for open blockchains that require no trust assumptions. Besides,

Accountable Fine-grained Blockchain Rewriting in the Permissionless Setting Conference’17, July 2017, Washington, DC, USA

the proposed framework achieves public accountability, which can

thwart the malicious rewriting of blockchain. Specifically, public

accountability allows the modifiers’ public keys and the rewriting

privileges to be held accountable for the modified transactions. We

presented a practical instantiation, and showed that the proposed

solution is suitable for open blockchain applications. In particu-

lar, the proof-of-concept implementation demonstrated that our

proposed solution can be easily integrated into the existing open

blockchains.

9 ACKNOWLEDGMENTS
This work was supported by the Ministry of Education, Singapore,

under its MOE AcRF Tier 2 grant (MOE2018-T2-1-111). Yingjiu Li

was supported in part by the Ripple University Blockchain Research

Initiative.

REFERENCES
[1] [n.d.]. Bitcoin. https://bitcoin.org/en/.

[2] [n.d.]. Ethereum. https://ethereum.org/en/.

[3] [n.d.]. Flask Framework. https://flask.palletsprojects.com/en/1.1.x/.

[4] [n.d.]. General Data Protection Regulation. https://eugdpr.org.

[5] [n.d.]. Our Source Code. https://github.com/lbwtorino/Fine-Grained-Blockchain-

Rewriting-in-Permissionless-Setting.

[6] [n.d.]. Proof of Stake. https://en.wikipedia.org/wiki/Proof_of_stake.

[7] Shashank Agrawal and Melissa Chase. 2017. FAME: fast attribute-based message

encryption. In CCS. 665–682.
[8] Joseph A Akinyele, Christina Garman, Ian Miers, Matthew W Pagano, Michael

Rushanan, Matthew Green, and Aviel D Rubin. 2013. Charm: a framework for

rapidly prototyping cryptosystems. Journal of Cryptographic Engineering 3, 2

(2013), 111–128.

[9] Marcin Andrychowicz and Stefan Dziembowski. 2015. Pow-based distributed

cryptography with no trusted setup. In CRYPTO. 379–399.
[10] Giuseppe Ateniese, Bernardo Magri, Daniele Venturi, and Ewerton Andrade. 2017.

Redactable blockchain–or–rewriting history in bitcoin and friends. In EuroS&P.
111–126.

[11] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. 2015.

Communication-optimal proactive secret sharing for dynamic groups. In ACNS.
23–41.

[12] Amos Beimel. 1996. Secure schemes for secret sharing and key distribution. Ph.D.
Dissertation. PhD thesis, Israel Institute of Technology, Technion, Haifa, Israel.

[13] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo

Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. 2020. Can a Public

Blockchain Keep a Secret?. In TCC. 260–290.
[14] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. 2005. Hierarchical identity based

encryption with constant size ciphertext. In CRYPTO. 440–456.
[15] Dan Boneh, Amit Sahai, and Brent Waters. 2006. Fully collusion resistant traitor

tracing with short ciphertexts and private keys. In EUROCRYPT. 573–592.
[16] Dan Boneh and Brent Waters. 2006. A fully collusion resistant broadcast, trace,

and revoke system. In CCS. 211–220.
[17] Jan Camenisch, David Derler, Stephan Krenn, Henrich C Pöhls, Kai Samelin, and

Daniel Slamanig. 2017. Chameleon-hashes with ephemeral trapdoors. In PKC.
152–182.

[18] David Derler, Kai Samelin, and Daniel Slamanig. 2020. Bringing Order to Chaos:

The Case of Collision-Resistant Chameleon-Hashes. In PKC. 462–492.
[19] David Derler, Kai Samelin, Daniel Slamanig, and Christoph Striecks. 2019. Fine-

Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone

Attribute-Based. In NDSS.
[20] Yvo Desmedt and Sushil Jajodia. 1997. Redistributing secret shares to new access

structures and its applications. Technical Report.
[21] Dominic Deuber, Bernardo Magri, and Sri Aravinda Krishnan Thyagarajan. 2019.

Redactable blockchain in the permissionless setting. In IEEE S&P. 124–138.
[22] John R Douceur. 2002. The sybil attack. In International workshop on peer-to-peer

systems. 251–260.
[23] Léo Ducas. 2010. Anonymity from asymmetry: New constructions for anonymous

HIBE. In CT-RSA. 148–164.
[24] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof

Pietrzak. 2015. Proofs of space. In CRYPTO. 585–605.
[25] Paul Feldman. 1987. A practical scheme for non-interactive verifiable secret

sharing. In FOCS. 427–438.
[26] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The bitcoin backbone

protocol: Analysis and applications. In EUROCRYPT. 281–310.

[27] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. 1999. Secure

distributed key generation for discrete-log based cryptosystems. In EUROCRYPT.
295–310.

[28] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In

Proceedings of the 26th Symposium on Operating Systems Principles. 51–68.
[29] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. 2006. Attribute-

based encryption for fine-grained access control of encrypted data. In CCS. 89–98.
[30] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. 1995. Proac-

tive secret sharing or: How to cope with perpetual leakage. In CRYPTO. 339–352.
[31] Markus Jakobsson and Ari Juels. 1999. Proofs of work and bread pudding proto-

cols. In Secure information networks. 258–272.
[32] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size

commitments to polynomials and their applications. In ASIACRYPT. 177–194.
[33] Tadayoshi Kohno, Adam Stubblefield, Aviel D Rubin, and Dan S Wallach. 2004.

Analysis of an electronic voting system. In IEEE S&P. 27–40.
[34] Hugo Krawczyk and Tal Rabin. 2000. Chameleon Signatures. In NDSS.
[35] Junzuo Lai and Qiang Tang. 2018. Making any attribute-based encryption ac-

countable, efficiently. In ESORICS. 527–547.
[36] Zhen Liu, Zhenfu Cao, and Duncan S Wong. 2013. Blackbox traceable CP-ABE:

how to catch people leaking their keys by selling decryption devices on ebay. In

CCS. 475–486.
[37] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and

Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In CCS.
17–30.

[38] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang,

Ari Juels, and Dawn Song. 2019. Churp: Dynamic-committee proactive secret

sharing. In CCS. 2369–2386.
[39] RomanMatzutt, Jens Hiller, Martin Henze, Jan Henrik Ziegeldorf, Dirk Müllmann,

Oliver Hohlfeld, and Klaus Wehrle. 2018. A quantitative analysis of the impact

of arbitrary blockchain content on bitcoin. In FC. 420–438.
[40] Roman Matzutt, Oliver Hohlfeld, Martin Henze, Robin Rawiel, Jan Henrik Ziegel-

dorf, and Klaus Wehrle. 2016. Poster: I don’t want that content! on the risks of

exploiting bitcoin’s blockchain as a content store. In CCS. 1769–1771.
[41] Ralph C Merkle. 1989. A certified digital signature. In CRYPTO. 218–238.
[42] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[43] Jianting Ning, Zhenfu Cao, Xiaolei Dong, Junqing Gong, and Jie Chen. 2016.

Traceable CP-ABE with short ciphertexts: How to catch people selling decryption

devices on ebay efficiently. In ESORICS. 551–569.
[44] Rafail Ostrovsky and Moti Yung. 1991. How to withstand mobile virus attacks.

In ACM PODC. 51–59.
[45] Ivan Puddu, Alexandra Dmitrienko, and Srdjan Capkun. 2017. 𝜇chain: How to

Forget without Hard Forks. IACR Cryptology ePrint Archive 2017 (2017), 106.
[46] Yannis Rouselakis and Brent Waters. 2013. Practical constructions and new proof

methods for large universe attribute-based encryption. In CCS. 463–474.
[47] Claus-Peter Schnorr. 1991. Efficient signature generation by smart cards. Journal

of cryptology 4, 3 (1991), 161–174.

[48] David A Schultz, Barbara Liskov, and Moses Liskov. 2008. Mobile proactive secret

sharing. In ACM PODC. 458–458.
[49] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[50] Victor Shoup. 1997. Lower bounds for discrete logarithms and related problems.

In EUROCRYPT. 256–266.
[51] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Bernardo Magri, Daniel

Tschudi, and Aniket Kate. 2020. Reparo: Publicly Verifiable Layer to Repair

Blockchains. arXiv preprint arXiv:2001.00486 (2020).
[52] Yangguang Tian, Nan Li, Yingjiu Li, Pawel Szalachowski, and Jianying Zhou.

2020. Policy-based Chameleon Hash for Blockchain Rewriting with Black-box

Accountability. In ACSAC. 813–828.
[53] Giannis Tziakouris. 2018. Cryptocurrencies—a forensic challenge or opportunity

for law enforcement? an interpol perspective. IEEE S&P 16, 4 (2018), 92–94.

[54] Theodore M Wong, Chenxi Wang, and Jeannette M Wing. 2002. Verifiable secret

redistribution for archive systems. In First International IEEE Security in Storage
Workshop, 2002. Proceedings. 94–105.

[55] Haifeng Yu, Ivica Nikolić, Ruomu Hou, and Prateek Saxena. 2020. Ohie:

Blockchain scaling made simple. In IEEE (S&P). 90–105.
[56] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. Rapidchain:

Scaling blockchain via full sharding. In CCS. 931–948.
[57] Lidong Zhou, Fred B Schneider, and Robbert Van Renesse. 2005. APSS: Proactive

secret sharing in asynchronous systems. ACM (TISSEC) 8, 3 (2005), 259–286.

A SECURITY ANALYSIS OF NEW
ASSUMPTION

Theorem A.1. Let (𝜖1, 𝜖2, 𝜖𝑇) : Z𝑞 → {0, 1}∗ be three random
encodings (injective functions) where Z𝑞 is a prime field. 𝜖1 maps all
𝑎 ∈ Z𝑞 to the string representation 𝜖1 (𝑔𝑎) of 𝑔𝑎 ∈ G. Similarly, 𝜖2

Conference’17, July 2017, Washington, DC, USA Tian and Liu, et al.

for H and 𝜖𝑇 for GT. If (𝑎, 𝑏, 𝑐, 𝑑, {𝑧𝑖 }𝑖∈[1,𝑞′])
R←− Z𝑞 and encodings

𝜖1, 𝜖2, 𝜖𝑇 are randomly chosen, then we define the advantage of the
adversary in solving the 𝑞′-type with at most Q queries to the group
operation oracles O1,O2,O𝑇 and the bilinear pairing ê as

Adv
𝑞′-𝑡𝑦𝑝𝑒
A (𝜆) = |Pr[A(𝑞, 𝜖1 (1), 𝜖1 (𝑎), 𝜖1 (𝑐), 𝜖1 ((𝑎𝑐)2),

𝜖1 (𝑎𝑏𝑑), 𝜖1 (𝑑/𝑎𝑏), 𝜖1 (𝑧𝑖), 𝜖1 (𝑎𝑐𝑧𝑖),
𝜖1 (𝑎𝑐/𝑧𝑖), 𝜖1 (𝑎2𝑐𝑧𝑖), 𝜖1 (𝑏/𝑧2𝑖),
𝜖1 (𝑏2/𝑧2𝑖), 𝜖1 (𝑎𝑐𝑧𝑖/𝑧 𝑗), 𝜖1 (𝑏𝑧𝑖/𝑧

2

𝑗),

𝜖1 (𝑎𝑏𝑐𝑧𝑖/𝑧 𝑗), 𝜖1 ((𝑎𝑐)2𝑧𝑖/𝑧 𝑗),
𝜖2 (1), 𝜖2 (𝑏), 𝜖2 (𝑎𝑏𝑑), 𝜖2 (𝑎𝑏𝑐𝑑),
𝜖2 (𝑑/𝑎𝑏), 𝜖2 (𝑐), 𝜖2 (𝑐𝑑/𝑎𝑏),

= 𝑏 : (𝑎, 𝑏, 𝑐, 𝑑, {𝑧𝑖 }𝑖∈[1,𝑞′] , 𝑠
R←− Z𝑞, 𝑏 ∈ (0, 1),

𝑡𝑏 = 𝑎𝑏𝑐, 𝑡
1−𝑏 = 𝑠)]

−1/2| ≤ 16(Q + 𝑞′ + 22)2
𝑞

Proof. Let S play the following game forA. S maintains three

polynomial sized dynamic lists:𝐿1 = {(𝑝𝑖 , 𝜖1,𝑖)}, 𝐿2 = {(𝑞𝑖 , 𝜖2,𝑖)}, 𝐿𝑇 =

{(𝑡𝑖 , 𝜖𝑇,𝑖)}, the 𝑝𝑖 ∈ Z𝑞 [𝐴, 𝐵,𝐶, 𝐷, 𝑍𝑖 , 𝑍 𝑗 ,𝑇0,𝑇1] are 8-variate poly-
nomials over Z𝑞 (note that 𝑖 ≠ 𝑗), such that 𝑝0 = 1, 𝑝1 = 𝐴, 𝑝2 =

𝐶, 𝑝3 = (𝐴𝐶)2, 𝑝4 = 𝐴𝐵𝐷, 𝑝5 = 𝐷/𝐴𝐵, 𝑝6 = 𝑍𝑖 , 𝑝7 = 𝐴𝐶𝑍𝑖 , 𝑝8 =

𝐴𝐶/𝑍𝑖 , 𝑝9 = 𝐴2𝐶𝑍𝑖 , 𝑝10 = 𝐵/𝑍 2

𝑖
, 𝑝11 = 𝐵2/𝑍 2

𝑖
, 𝑝12 = 𝐴𝐶𝑍𝑖/𝑍 𝑗 , 𝑝13 =

𝐵𝑍𝑖/𝑍 2

𝑗
, 𝑝14 = 𝐴𝐵𝐶𝑍𝑖/𝑍 𝑗 , 𝑝15 = (𝐴𝐶)2𝑍𝑖/𝑍 𝑗 , 𝑞0 = 1, 𝑞1 = 𝐵, 𝑞2 =

𝐴𝐵𝐷,𝑞3 = 𝐴𝐵𝐶𝐷,𝑞4 = 𝐷/𝐴𝐵,𝑞5 = 𝐶,𝑞6 = 𝐶𝐷/𝐴𝐵, 𝑝16 = 𝑇0, 𝑝17 =

𝑇1, 𝑡0 = 1, and ({𝜖1,𝑖 }16𝑖=0 ∈ {0, 1}
∗, {𝜖2,𝑖 }5𝑖=0 ∈ {0, 1}

∗, {𝜖𝑇,0} ∈
{0, 1}∗) are arbitrary distinct strings. Therefore, the three lists are

initialized as 𝐿1 = {(𝑝𝑖 , 𝜖1,𝑖)}17𝑖=0, 𝐿2 = {(𝑞𝑖 , 𝜖2,𝑖)}
6

𝑖=0
, 𝐿𝑇 = (𝑡0, 𝜖𝑇,0).

At the beginning of the game, S sends the encoding strings

({𝜖1,𝑖 }𝑖=0, · · · ,17, {𝜖2,𝑖 }𝑖=0, · · · ,6, 𝜖𝑇,0) toA, which includes𝑞′+26 strings.
Note that the number of encoding string 𝜖1,𝑖 is linear to the parame-

ter𝑞′. After this,S simulates the group operation oraclesO1,O2,O𝑇
and the bilinear pairing ê. We assume that all requested operands

are obtained from S.
• O1: The group operation involves two operands 𝜖1,𝑖 , 𝜖1, 𝑗 . Based

on these operands, S searches the list 𝐿1 for the correspond-

ing polynomials 𝑝𝑖 and 𝑝 𝑗 . Then S performs the polynomial

addition or subtraction 𝑝𝑙 = 𝑝𝑖 ± 𝑝 𝑗 depending on whether mul-

tiplication or division is requested. If 𝑝𝑙 is in the list 𝐿1, then

S returns the corresponding 𝜖𝑙 to A. Otherwise, S uniformly

chooses 𝜖
1,𝑙 ∈ {0, 1}∗, where 𝜖1,𝑙 is unique in the encoding string

𝐿1, and appends the pair (𝑝𝑙 , 𝜖1,𝑙) into the list 𝐿1. Finally, S re-

turns 𝜖
1,𝑙 toA as the answer. Group operation queries in O2,O𝑇

are treated similarly.

• ê: The group operation involves two operands 𝜖𝑇,𝑖 , 𝜖𝑇,𝑗 . Based on

these operands,S searches the list 𝐿𝑇 for the corresponding poly-

nomials 𝑡𝑖 and 𝑡 𝑗 . ThenS performs the polynomial multiplication

𝑡𝑙 = 𝑡𝑖 · 𝑡 𝑗 . If 𝑡𝑙 is in the list 𝐿𝑇 , then S returns the correspond-

ing 𝜖𝑇,𝑙 to A. Otherwise, S uniformly chooses 𝜖𝑇,𝑙 ∈ {0, 1}∗,
where 𝜖𝑇,𝑙 is unique in the encoding string 𝐿𝑇 , and appends the

pair (𝑡𝑙 , 𝜖𝑇,𝑙) into the list 𝐿𝑇 . Finally, S returns 𝜖𝑇,𝑙 to A as the

answer.

After querying at most Q times of corresponding oracles, A
terminates and outputs a guess 𝑏 ′ = {0, 1}. At this point, S chooses

random 𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑠 ∈ Z𝑞 and 𝑡𝑏 = 𝑎𝑏𝑐 and 𝑡
1−𝑏 = 𝑠 . S sets

𝐴 = 𝑎, 𝐵 = 𝑏,𝐶 = 𝑐, 𝐷 = 𝑑, 𝑍𝑖 = 𝑧𝑖 , 𝑍 𝑗 = 𝑧 𝑗 ,𝑇0 = 𝑡𝑏 ,𝑇1 = 𝑡
1−𝑏 . The

simulation by S is perfect (and reveal nothing toA about 𝑏) unless

the abort event happens. Thus, we bound the probability of event

abort by analyzing the following cases:

(1) 𝑝𝑖 (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1) = 𝑝 𝑗 (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1): The polyno-
mial 𝑝𝑖 ≠ 𝑝 𝑗 due to the construction method of 𝐿1, and (𝑝𝑖 −
𝑝 𝑗) (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1) is a non-zero polynomial of degree

[0, 6], or𝑞-2 (𝑞-2 is produced by𝑍𝑞−2
𝑗

). Since𝑍 𝑗 ·𝑍𝑞−2
𝑗

= 𝑍
𝑞−1
𝑗
≡

1(mod 𝑞), we have (𝐴𝐶)2𝑍𝑖𝑍 𝑗 ·𝑍𝑞−2
𝑗
≡ (𝐴𝐶)2𝑍𝑖𝑍 𝑗 (mod 𝑞).

By using Lemma 1 in [50], we have Pr[(𝑝𝑖−𝑝 𝑗) (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1) =
0] ≤ 6

𝑞 because the maximum degree of (𝐴𝐶)2𝑍𝑖/𝑍 𝑗 (𝑝𝑖 −
𝑝 𝑗) (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1) is 6. So, we have Pr[𝑝𝑖 (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1) =
𝑝 𝑗 (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1)] ≤ 6

𝑞 , and the abort probability is Pr[abort1] ≤
6

𝑞 .

(2) 𝑞𝑖 (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1) = 𝑞 𝑗 (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1): The polyno-
mial 𝑞𝑖 ≠ 𝑞 𝑗 due to the construction method of 𝐿2, and (𝑞𝑖 −
𝑞 𝑗) (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1) is a non-zero polynomial of degree

[0, 4], or 𝑞-2 (𝑞-2 is produced by (𝐴𝐵)𝑞−2). Since𝐴𝐵 · (𝐴𝐵)𝑞−2 =
(𝐴𝐵)𝑞−1 ≡ 1(mod 𝑞), we have 𝐶𝐷𝐴𝐵 · (𝐴𝐵)𝑞−2 ≡ 𝐶𝐷𝐴𝐵(
mod 𝑞). Themaximumdegree of𝐶𝐷/𝐴𝐵(𝑞𝑖−𝑞 𝑗) (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1)
is 4, so the abort probability is Pr[abort2] ≤ 4

𝑞 .

(3) 𝑡𝑖 (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1) = 𝑡 𝑗 (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1): The polyno-

mial 𝑝𝑖 ≠ 𝑝 𝑗 due to the construction method of 𝐿1, and (𝑝𝑖 −
𝑝 𝑗) (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1) is a non-zero polynomial of degree

[0, 6], or 𝑞-2. Since (𝐴𝐶)2𝑍𝑖 ·𝑍𝑞−2
𝑗
(𝑡𝑖 − 𝑡 𝑗) (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1)

has degree 6, we have Pr[(𝑝𝑖 − 𝑝 𝑗) (𝑎, 𝑏, 𝑐, 𝑑, 𝑧𝑖 , 𝑧 𝑗 , 𝑡0, 𝑡1) = 0] ≤
6

𝑞 . The abort probability is Pr[abort3] ≤ 6

𝑞 .

By summing over all valid pairs (𝑖, 𝑗) in each case (i.e., at most(Q𝜖
1
+18
2

)
+
(Q𝜖

2
+7

2

)
+
(Q𝜖𝑇 +1

2

)
pairs), and Q𝜖1 +Q𝜖2 +Q𝜖𝑇 = Q+𝑞′+26,

we have the abort probability is

Pr[abort] = Pr[abort1] + Pr[abort2] + Pr[abort3]

≤ [
(
Q𝜖1 + 18

2

)
+
(
Q𝜖2 + 7

2

)
+
(
Q𝜖𝑇 + 1

2

)
]

· (4
𝑞
+ 2 6

𝑞
) ≤ 16(Q + 𝑞′ + 26)2

𝑞
.

□

B P2P COMMUNICATION TECHNIQUE [38]
P2P channels can be implemented in different ways depending on

the deployment environment. In a permissionless setting, establish-

ing a direct off-chain connection between users is undesirable, as it

compromises users’ anonymity. Revealing network-layer identities

is also dangerous, as it may lead to targeted attacks. Here, we list

two approaches. The first approach is to use anonymizing overlay

networks such as Tor, at the cost of considerable additional setup

and engineering complexity. The second approach uses transaction

ghosting, a technique for P2P messaging on a blockchain, which is

an overlay on existing blockchain infrastructure. The key idea is to

overwrite transactions so that they are broadcast but subsequently

dropped by the network. Most of these transactions are broadcast

for free.

Accountable Fine-grained Blockchain Rewriting in the Permissionless Setting Conference’17, July 2017, Washington, DC, USA

Now, we use the Ethereum P2P network as an example; a similar

technique can apply to other blockchains such as Bitcoin. Suppose

Alice creates a transaction 𝑇 and sends it to network peers. Note

that 𝑇 includes a message (i.e., payload). The network peers add

𝑇 to their pool of unconfirmed transactions, known as𝑚𝑒𝑚𝑝𝑜𝑜𝑙 .

They propagate 𝑇 so that it can be included in all peers’ views of

the𝑚𝑒𝑚𝑝𝑜𝑜𝑙 . 𝑇 remains in the𝑚𝑒𝑚𝑝𝑜𝑜𝑙 until a miner includes it

in a block, at which point it is removed, and a transaction fee is

transferred from Alice to the miner. The key observation is, until

𝑇 is mined, Alice can overwrite it with another transaction 𝑇 ′

(embed empty message). When this happens, 𝑇 is dropped from

the 𝑚𝑒𝑚𝑝𝑜𝑜𝑙 . Thus, both 𝑇 and 𝑇 ′ are propagated to all users,

but Alice only pays for 𝑇 ′. One can see that 𝑇 is broadcast for

free, and we denote 𝑇 as pending transaction before overwrite.

To conclude, transaction ghosting guarantees that a sender and

a receiver can efficiently establish an Ethereum P2P channel via

pending transactions such as𝑇 . The core idea is that the sender can

transmit messages to the receiver by embedding them in pending

transactions.

C SECURITY ANALYSIS OF GENERIC
FRAMEWORK

In this section, we present the security analysis of the proposed

generic framework, including indistinguishability, adaptive collision-

resistance, and accountability.

C.1 Proof of Theorem C.1
Theorem C.1. The proposed generic framework is indistinguish-

able if the CH scheme is indistinguishable.

Proof. The reduction is executed between an adversary A and

a simulator S. Assume that A activates at most 𝑛(𝜆) chameleon

hashes. Let S denote a distinguisher against CH, who is given

a chameleon public key pk∗ and a HashOrAdapt oracle, aims to

break the indistinguishability of CH. In particular, S is allowed

to access the chameleon trapdoor 𝐷𝑙𝑜𝑔(pk∗) [19]. S randomly

chooses 𝑔 ∈ [1, 𝑛(𝜆)] as a guess for the index of the HashOrAdapt
query. In the 𝑔-th query, S’s challenger directly hashes a message

(ℎ, r) ← Hash(pk∗,𝑚), instead of calculating the chameleon hash

and randomness (ℎ, r) using Adapt algorithm.

S sets up the game for A by distributing a master secret key

to a group of users in a committee. S can honestly generate se-

cret keys for any modifier associated with an access privilege Λ.
If A submits a tuple (𝑚0,𝑚1, 𝛿) in the 𝑔-th query, then S first

obtains a chameleon hash (ℎ𝑏 , r𝑏) from his HashOrAdapt oracle.
Then, S simulates a message-signature pair (𝑐, 𝜎), and a ciphertext

𝐶 on message 𝐷𝑙𝑜𝑔(pk∗) according to the protocol specification.

Eventually, S returns (ℎ𝑏 , r𝑏 ,𝐶, 𝑐, 𝜎) to A. S outputs whatever A
outputs. If A guesses the random bit correctly, then S can break

the indistinguishability of CH.
□

C.2 Proof of Theorem C.2
Theorem C.2. The proposed generic framework is adaptively

collision-resistant if the ABET scheme is semantically secure, the
CH scheme is collision-resistant, and the DPSS scheme has secrecy.

Proof. We define a sequence of games G𝑖 , 𝑖 = 0, · · · , 4 and let

Adv𝐺𝐹
𝑖

denote the advantage of the adversary in game G𝑖 . Assume

that A issues at most 𝑛(𝜆) queries to Hash oracle.

• G0: This is the original game for adaptive collision-resistance.

• G1: This game is identical to game G1 except that S will output

a random bit if A outputs a correct master secret key when no

more than 𝑡 users in a committee are corrupted, and the setup is

honest (or the dealer is honest). The difference between G0 and
G1 is negligible if DPSS scheme has secrecy.���Adv𝐺𝐹

0
− Adv𝐺𝐹

1

��� ≤ AdvDPSSS (𝜆) . (1)

• G2: This game is identical to game G1 except the following dif-
ference: S randomly chooses 𝑔 ∈ [1, 𝑛(𝜆)] as a guess for the

index of the Hash′ oracle which returns the chameleon hash

(ℎ∗,𝑚∗, r∗,𝐶∗, 𝑐∗, 𝜎∗). S will output a random bit if A’s attack-

ing query does not occur in the 𝑔-th query. Therefore, we have

Adv𝐺𝐹
1

= 𝑛(𝜆) · Adv𝐺𝐹
2

(2)

• G3: This game is identical to game G2 except that in the 𝑔-th

query, the encrypted message skCH in𝐶∗ is replaced by “⊥” (i.e.,
an empty value). Below we show that the difference between G2
and G3 is negligible if ABET scheme is semantically secure.

Let S denote an attacker against ABET with semantic security,

who is given a public key pk∗ and a key generation oracle, aims

to distinguish between encryptions of𝑀0 and𝑀1 associated with

a challenge index 𝑗∗ and a challenge set of attributes 𝛿∗, which
are predetermined at the beginning of the game for semantic

security. S simulates the game for A as follows.

– S sets up mpkABET = pk∗ and completes the remainder of Setup
honestly, which includes user’s key pairs and chameleon key

pairs for hashing in CH. S returns all public information to

A.

– S can honestly answer the queries made by A regarding de-

cryption keys using his given oracle, such that Λ𝑖 (𝛿∗) ≠ 1, 𝑖 ≠

𝑗∗. In the 𝑔-th query, upon receiving a hash query w.r.t., a

hashed message 𝑚∗ from A. S first submits two messages

(i.e., [𝑀0 = skCH, 𝑀1 = ⊥]) to his challenger, and obtains a

challenge ciphertext𝐶∗ under index 𝑗∗ and 𝛿∗. Then,S returns

the tuple (ℎ∗,𝑚∗, r∗,𝐶∗, 𝑐∗, 𝜎∗) toA. Note that S can simulate

the message-signature pair (𝑐∗, 𝜎∗) honestly using user’s key

pairs. Besides, S can simulate the adapt query successfully

using skCH.
If the encrypted message in 𝐶∗ is skCH, then the simulation is

consistent with G2; Otherwise, the simulation is consistent with

G3. Therefore, if the advantage of A is significantly different

in G2 and G3, S can break the semantic security of the ABET.
Hence, we have���Adv𝐺𝐹

2
− Adv𝐺𝐹

3

��� ≤ AdvABETS (𝜆) . (3)

• G4: This game is identical to game G3 except that in the 𝑔-th

query, S outputs a random bit if A outputs a valid collision

(ℎ∗,𝑚∗′, r∗′,𝐶∗′, 𝑐∗′, 𝜎∗′), and it was not previously returned by

the Adapt’ oracle. Below we show that the difference between

G3 and G4 is negligible if CH is collision-resistant.

LetS denote an attacker againstCHwith collision-resistant, who

is given a chameleon public key pk∗ and an Adapt’ oracle, aims

Conference’17, July 2017, Washington, DC, USA Tian and Liu, et al.

to find a collision which was not simulated by the Adapt’ oracle.
S simulates the game for A as follows.

– S sets up pkCH = pk∗ for the 𝑔-th hash query, and completes

the remainder of Setup honestly, which includes user’s key

pairs and master key pair in ABET. S returns all public infor-

mation to A.

– S can simulate all queries made by A except adapt queries. If

A submits an adapt query in the form of (ℎ,𝑚, r,𝐶, 𝑐, 𝜎,𝑚′),
then S obtains a randomness r′ from his Adapt’ oracle, and
returns (ℎ,𝑚′, r′,𝐶 ′, 𝑐 ′, 𝜎 ′) toA. In particular, S simulates the

𝑔-th hash query as (ℎ∗,𝑚∗, r∗,𝐶∗, 𝑐∗, 𝜎∗) w.r.t. a hashed mes-

sage𝑚∗, where 𝐶∗ ← EncABET (mpk∗,⊥, 𝛿∗, 𝑗∗), 𝑐∗ is derived
from ⊥ because 𝐷𝑙𝑜𝑔(pk∗) is unknown.

– If A outputs a collision (ℎ∗,𝑚∗, r∗,𝐶∗, 𝑐∗, 𝜎∗,𝑚∗′,
r∗
′
,𝐶∗

′
, 𝑐∗
′
, 𝜎∗

′) with respect to the 𝑔-th query, and all relevant

checks are succeed, thenS output (ℎ∗,𝑚∗′, r∗′,𝐶∗′, 𝑐∗′, 𝜎∗′) as a
valid collision to CH; Otherwise, S aborts the game. Therefore,

we have ���Adv𝐺𝐹
3
− Adv𝐺𝐹

4

��� ≤ AdvCHS (𝜆). (4)

Combining the above results together, we have

Adv𝐺𝐹
A (𝜆) ≤ 𝑛(𝜆) · (AdvDPSSS (𝜆) + AdvABETS (𝜆)

+AdvCHS (𝜆)).
□

C.3 Proof of Theorem C.3
Theorem C.3. The proposed generic framework is accountable if

the Σ scheme is EUF-CMA secure, and the DPSS scheme has correct-
ness.

Proof. We define a sequence of games G𝑖 , 𝑖 = 0, · · · , 2 and let

Adv𝐺𝐹
𝑖

denote the advantage of the adversary in game G𝑖 .

• G0: This is the original game for accountability.

• G1: This game is identical to game G1 except that S will output

a random bit if all honest users in a committee outputs a master

secret key msk′ such that msk′ ≠ msk, and the setup is honest.

The difference between G0 and G1 is negligible if DPSS scheme

has correctness.���Adv𝐺𝐹
0
− Adv𝐺𝐹

1

��� ≤ AdvDPSSS (𝜆) . (5)

• G2: This game is identical to game G1 except that S will output

a random bit if A outputs a valid forgery 𝜎∗, where 𝜎∗ was not
previously simulated by S and the user is honest. The difference

between G1 and G2 is negligible if Σ is EUF-CMA secure.

Let F denote a forger against Σ, who is given a public key pk∗

and a signing oracle OSign, aims to break the EUF-CMA security

of Σ. Assume that A activates at most 𝑛 users in the system.

– F randomly chooses a user in the system and sets up its public

key as pk∗. F completes the remainder of Setup honestly.

Below we mainly focus on user pk∗ only.
– To simulate a chameleon hash for message𝑚, F first obtains a

signature 𝜎 from his signing oracle OSign. Then, F generates

chameleon hash and ciphertext honestly because F chooses

the chameleon secret key skCH, and returns (𝑚,ℎ, r,𝐶, 𝑐, 𝜎) to
A. Besides, the message-signature pairs and collisions can be

perfectly simulated by F for any adapt query. F records all

the simulated message-signature pairs by including them to a

set Q.
– When forging attack occurs, i.e.,A outputs (𝑚∗, ℎ∗, r∗,𝐶∗, 𝑐∗, 𝜎∗),
F checks whether:

∗ the forging attack happens to user pk∗;
∗ the ciphertext 𝐶∗ encrypts the chameleon trapdoor skCH;
∗ themessage-signature pair (𝑐∗, 𝜎∗) is derived from the chameleon

trapdoor skCH;
∗ the message-signature pair (𝑐∗, 𝜎∗) ∉ Q;
∗ 1 ← Σ.Verify(pk∗, 𝑐∗, 𝜎∗) and 1 ← Verify(pkCH,
𝑚∗, ℎ∗, r∗).

If all the above conditions hold, F confirms that it as a suc-

cessful forgery from A, then F extracts the forgery via 𝜎 ←
𝑀Σ (PP, pk∗, 𝜎∗,Δ(sk)) due to the homomorphic property of Σ
(regarding keys and signatures), where Δ(sk) is derived from

(𝑐, 𝑐∗). To this end, F outputs 𝜎 as its own forgery; Otherwise,

F aborts the game.���Adv𝐺𝐹
1
− Adv𝐺𝐹

2

��� ≤ 𝑛 · AdvΣF (𝜆) . (6)

Combining the above results together, we have

Adv𝐺𝐹
A (𝜆) ≤ AdvDPSSS (𝜆) + 𝑛 · AdvΣF (𝜆) .

□

D SECURITY ANALYSIS OF ABET
In this section, we present the security analysis of the proposed

ABET scheme, including semantic security and ciphertext anonymity.

D.1 Semantic Security
Informally, an ABE scheme is secure against chosen plaintext at-

tacks if no group of colluding users can distinguish between en-

cryption of𝑀0 and𝑀1 under an index and a set of attributes 𝛿∗ of
an attacker’s choice as long as no member of the group is autho-

rized to decrypt on her own. The selective security is defined as an

index, as well as a set of attributes 𝛿∗, are chosen by attackers at

the beginning security experiment. The semantic security model

here is based on the selective security model defined in [46].

Theorem D.1. The proposed ABET scheme is semantically secure
in the standard model if the 𝑞′-type assumption is held in the asym-
metric pairing groups.

Proof. Let S denote a 𝑞′-type problem attacker, who is given

the terms from the assumption, aims to distinguish 𝑔𝑎𝑏𝑐 and 𝑔𝑠 .

The reduction is performed as follows.

• S simulatesmaster public key mpk = (𝑔,𝑢, 𝑣,𝑤, ℎ, ê(𝑔, ℎ)𝛼 , {𝑔𝛼
1
, · · ·

𝑔𝛼
𝑘
}, {ℎ𝛼

1
, · · ·ℎ𝛼

𝑘
}, 𝑔𝛽 , ℎ1/𝛼 , ℎ𝛽/𝛼 , ê(𝑔, ℎ)𝜃/𝛼) as follows: ê(𝑔, ℎ)𝛼 =

ê(𝑔𝑎, ℎ𝑏), {𝑔𝛼
1
, · · ·𝑔𝛼

𝑘
} = {𝑔𝑎𝑏𝑑𝑧1 , · · · , 𝑔𝑎𝑏𝑑𝑧𝑘 }, {ℎ𝛼

1
, · · ·ℎ𝛼

𝑘
} = {ℎ𝑎𝑏𝑑𝑧1 ,

· · · , ℎ𝑎𝑏𝑑𝑧𝑘 },ℎ1/𝛼 = ℎ𝑑/𝑎𝑏 ,ℎ𝛽/𝛼 = ℎ𝛽𝑑/𝑎𝑏 , ê(𝑔, ℎ)𝜃/𝛼 = ê(𝑔𝜃 , ℎ𝑑/𝑎𝑏),
and (𝑢, 𝑣,𝑤) are simulated using the same method described in

[46]. Note that (𝛽, 𝜃, {𝑧1, · · · , 𝑧𝑘 }) are randomly chosen by S,
and 𝛼 (or 1/𝛼) is implicitly assigned as 𝑎𝑏 (or 𝑑/𝑎𝑏) from the 𝑞′-
type assumption. A submits a challenge index 𝑗∗ = {𝐼1, · · · , 𝐼 𝑗 }
and a set of attributes 𝛿∗ to S.

Accountable Fine-grained Blockchain Rewriting in the Permissionless Setting Conference’17, July 2017, Washington, DC, USA

• S simulates decryption keys skΛ𝑖
= ({sk𝜏 }𝜏 ∈[𝑛1] , sk0, sk1, sk2)

(note that Λ𝑖 (𝛿∗) ≠ 1) as follows: sk0 = (𝑔𝑑𝑡/𝑎𝑏 , 𝑔𝑟), sk1 =

𝑔𝜃 ·𝑖𝑡 ·𝑔𝛽 ·𝑟 , sk2 = {𝑔𝑎𝑏𝑑𝑡𝑖−1 , · · · , 𝑔𝑎𝑏𝑑𝑡
1
}, where �̂� = 𝑔

𝑎𝑏𝑑𝐼1
𝑘

· · ·𝑔𝑎𝑏𝑑𝐼𝑖
𝑖

·
𝑔. Note that {sk𝜏 }𝜏 ∈[𝑛1] is simulated using the same method

described in [46], and (𝑡, 𝑟) are randomly chosen by S.
• S simulates challenge ciphertext𝐶∗ = (𝑐𝑡, {𝑐𝑡𝜏,1, 𝑐𝑡𝜏,2}𝜏 ∈[𝛿] , 𝑐𝑡0, 𝑐𝑡1)
as follows: 𝑐𝑡 = 𝑀𝑏⊕H(𝑇 | |ê(𝑔, ℎ)𝜃𝑐𝑑/𝑎𝑏), 𝑐𝑡0 = (ℎ𝑐 , ℎ𝑐𝑑/𝑎𝑏 , ℎ𝛽𝑐𝑑/𝑎𝑏),
and 𝑐𝑡1 = 𝑗𝑐 = ℎ

𝑎𝑏𝑐𝑑𝐼1
𝑘

· · ·ℎ𝑎𝑏𝑐𝑑𝐼 𝑗
𝑗

· ℎ. Note that {𝑐𝑡𝜏,1, 𝑐𝑡𝜏,2}𝜏 ∈[𝛿]
are simulated using the same method described in [46], 𝑠 is im-

plicitly assigned as 𝑐 from the 𝑞′-type assumption, and 𝑇 can be

either ê(𝑔, ℎ)𝑎𝑏𝑐 or ê(𝑔, ℎ)𝑠 .
Finally, S outputs whatever A outputs. If A guesses the random

bit correctly, then S can break the 𝑞′-type problem.

□

D.2 Ciphertext Anonymity
Informally, ciphertext anonymity requires that any third party can-

not distinguish the encryption of a chosenmessage for a first chosen

index from the encryption of the same message for a second cho-

sen index. In other words, the attacker cannot decide whether a

ciphertext was encrypted for a chosen index or a random index. We

prove the ABET scheme has selective ciphertext anonymity (i.e.,

the index is chosen prior to the security experiment).

Theorem D.2. The proposed ABET scheme is anonymous if the
eDDH assumption is held in the asymmetric pairing groups.

Proof. Let S denote an eDDH problem distinguisher, who is

given terms from the assumption, aims to distinguish ℎ𝑐/𝑎𝑏 and ℎ𝑠 .

The reduction is performed as follows.

• S simulatesmaster public key mpk = (𝑔,𝑢, 𝑣,𝑤, ℎ, ê(𝑔, ℎ)𝛼 , {𝑔𝛼
1
, · · ·

𝑔𝛼
𝑘
}, {ℎ𝛼

1
, · · ·ℎ𝛼

𝑘
}, 𝑔𝛽 , ℎ1/𝛼 , ℎ𝛽/𝛼 , ê(𝑔, ℎ)𝜃/𝛼) as follows: ê(𝑔, ℎ)𝛼 =

ê(𝑔, ℎ)𝑎𝑏 , {𝑔𝛼
1
, · · · , 𝑔𝛼

𝑘
} = {𝑔𝑎𝑏

1
, · · · , 𝑔𝑎𝑏

𝑘
}, {ℎ𝛼

1
, · · · , ℎ𝛼

𝑘
} = {ℎ𝑎𝑏

1
, · · · ,

ℎ𝑎𝑏
𝑘
}, ℎ1/𝛼 = ℎ1/𝑎𝑏 , ℎ𝛽/𝛼 = ℎ𝛽/𝑎𝑏 , ê(𝑔, ℎ)𝜃/𝛼 = ê(𝑔, ℎ)𝜃/𝑎𝑏 . Note

that S randomly chooses (𝑢, 𝑣,𝑤) and (𝛽, 𝜃, {𝑧𝑖 }), and implicitly

sets 𝛼 = 𝑎𝑏. A submits a challenge index 𝑗∗ = {𝐼1, · · · , 𝐼 𝑗 } to S.
• S simulates a decryption key skΛ𝑖

= ({sk𝜏 }𝜏 ∈[𝑛1] , sk0, sk1, sk2)
with respect to index 𝑖 = {𝐼1, · · · , 𝐼𝑖 } as follows: sk0 = (𝑔𝑡 , 𝑔𝛽 ·𝑟 ·
𝑔−Σ(𝑧𝑖 𝐼𝑖)𝑡 ·𝑏), sk1 = 𝑔𝜃 ·𝑔𝑎 ·𝑟 , where (𝑡, 𝑟) ∈ Z𝑞 are randomly cho-

sen by S. The components ({sk𝜏 }𝜏 ∈[𝑛1] , sk2) are honestly sim-

ulated byS. The simulated components (𝑔𝑡 , 𝑔𝛽 ·𝑟 ·𝑔−Σ(𝑧𝑖 𝐼𝑖)𝑡 ·𝑏 , 𝑔𝜃 ·
𝑔𝑎 ·𝑟) are correctly distributed, because𝑔𝜃 ·𝑔𝑎 ·𝑟 = 𝑔𝜃 ·̂𝑖𝑡 ·𝑔𝑎 [𝛽 ·𝑟−Σ(𝑧𝑖 𝐼𝑖)𝑡 ·𝑏] =
𝑔𝜃 · �̂�𝑡 ·𝑔𝑎 ·𝑟 , where 𝑟 = 𝛽 · 𝑟 −Σ(𝑧𝑖 𝐼𝑖)𝑡 ·𝑏, and �̂� = 𝑔

𝑎𝑏𝐼1
𝑘
· · ·𝑔𝑎𝑏𝐼𝑖

𝑖
·𝑔.

So, the simulated components (𝑔𝑡 , 𝑔𝑟 , 𝑔𝜃 · �̂�𝑡 ·𝑔𝑎 ·𝑟) match the real

distribution.

• S simulates the challenge ciphertext 𝐶∗ = (𝑐𝑡, {𝑐𝑡𝜏,1, 𝑐𝑡𝜏,2}𝜏 ∈[𝛿] ,
𝑐𝑡0, 𝑐𝑡1)with respect to index 𝑗∗ as follows: 𝑐𝑡 = 𝑀𝑏⊕H(ê(𝑔, ℎ)𝑎𝑏𝑐 | |
ê(𝑔,𝑇)𝛽), 𝑐𝑡0 = (ℎ𝑐 ,𝑇 ,𝑇 𝛽), and 𝑐𝑡1 = ℎ

𝑎𝑏𝑐𝐼1
𝑘

· · ·ℎ𝑎𝑏𝑐𝐼 𝑗
𝑗

· ℎ𝑐 . Note
that S simulates {𝑐𝑡𝜏,1, 𝑐𝑡𝜏,2}𝜏 ∈[𝛿] honestly, and 𝑇 can be either

ℎ𝑐/𝑎𝑏 or ℎ𝑠 .

Finally, S outputs whatever A outputs. If A guesses the random

bit correctly, then S can break the eDDH problem. □

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Complexity Assumptions
	2.2 Attribute-based Encryption
	2.3 Digital Signature
	2.4 Dynamic Proactive Secret Sharing
	2.5 Polynomial Commitments

	3 Models and Definitions
	3.1 System Model
	3.2 Definition
	3.3 Security Model

	4 Generic Construction
	5 Instantiation
	5.1 The Proposed ABET Scheme
	5.2 Instantiation

	6 Implementation and Evaluation
	6.1 Evaluation

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References
	A Security Analysis of New Assumption
	B P2P Communication Technique maram2019churp
	C Security Analysis of Generic Framework
	C.1 Proof of Theorem C.1
	C.2 Proof of Theorem C.2
	C.3 Proof of Theorem C.3

	D Security Analysis of ABET
	D.1 Semantic Security
	D.2 Ciphertext Anonymity

