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Abstract—It is shown that two theorems regarding the existence of gen-
eralized linear processing orthogonal designs (GLPODs) by Tarokh, Ja-
farkhani, and Calderbank (in “Space–time block codes from orthogonal
designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456–1467, July 1999)
are valid under more general conditions than for which they have been
stated and proved.

Index Terms—Fast maximum-likelihood (ML) decoding, orthogonal
designs, space–time block codes, transmit diversity.

I. INTRODUCTION

A generalized linear processing complex orthogonal design
(GLPCOD) [1], [2] in k complex indeterminates x1; x2; . . . ; xk of
size n and rate R = k=p; p � n is a p� n matrix E , such that

• the entries of E are complex linear combinations of 0;�xi; i =
1; . . . ; k and their conjugates;

• EHE = DDD, where EH is the Hermitian (conjugate transpose) of
E and DDD is a diagonal matrix with the (i; i)th diagonal element
of the form

l
(i)
1 jx1j2 + l

(i)
2 jx2j2 + � � �+ l

(i)
k jxkj2 (1)

where l
(i)
j ; i = 1; 2; . . . ; n; j = 1; 2; . . . ; k are strictly positive

numbers and for all values of i

l
(i)
1 = l

(i)
2 = � � � = l

(i)
k : (2)

The condition given by (2), which we will henceforth refer as equal-
weights condition has been introduced in [2] as a correction to [1].
If k = n = p, then E is called a linear processing complex orthog-
onal design (LPCOD). Furthermore, when the entries are only from
f�x1;�x2; . . . ;�xkg, their conjugates and multiples of jjj, where jjj =p�111, then E is called a complex orthogonal design (COD). When the
entries of E are real variables and real linear combinations of these
variables, it is called a generalized linear processing real orthogonal
designs (GLPROD). A GLPROD satisfying k = n = p is called a
linear processing real orthogonal design (LPROD) and, in addition, if
the entries are only from f�x1;�x2; . . . ;�xkg, then it is called a real
orthogonal designs (ROD).

The existence of orthogonal designs (ODs) is of fundamental im-
portance in the theory of space–time block codes [1]. In this regard,
the paper [1] presents four theorems (Theorems 3.4.1, 4.1.1, 5.4.1, and
5.5.1): Theorem 3.4.1 deals with RODs, Theorem 5.4.1 with CODs,
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and Theorems 4.1.1 and 5.5.1 with GLPROD and GLPCOD, respec-
tively. The proof is given only for Theorem 3.4.1 and the remaining
three theorems are stated with the remark that the proofs are similar to
that of Theorem 3.4.1.

In this correspondence, we show that in case of square GLPCODs
of square size, i.e., n = p, Theorems 3.4.1 and 5.4.1 of [1] are valid
without the equal-weights condition in the definition of GLPCODs.
Notice that the number of variables k need not be equal to n = p.

II. THEOREM 3.4.1 OF [1] REVISITED

We begin by analyzing the proof of Theorem 3.4.1 given in
[1], which is for real orthogonal designs, without assuming the
equal-weights condition.

Theorem 1 ([1, Theorem 3.4.1]): A linear processing orthogonal de-
sign, E in variables x1; x2; . . . ; xn exists iff there exists a linear pro-
cessing orthogonal design L, such that

LTL = LLT = (x21 + x22 + � � �+ x2n)I: (3)

The proof given in [1] is as follows.
Let E = x1A1 + � � � + xnAn be a linear processing orthogonal

design and let

ET E = x21D1 + � � �+ x2nDn (4)

where the matrices Di are diagonal and of full rank. Then, it follows
that

AT
i Ai =Di; i = 1; . . . ; n (5)

AT
i Aj = �AT

j Ai; 1 � i 6= j � n (6)

where Di is a full-rank diagonal matrix with positive diagonal entries.
LetD1=2

i be the diagonal matrix having the property thatD1=2
i D1=2

i =
Di. Define

Ui = AiD�1=2
i : (7)

Then the matrices Ui satisfy the following properties:

UT
i Ui = I; i = 1; . . . ; n (8)

UT
i Uj = � UT

j Ui; 1 � i 6= j � n: (9)

After this step, the proof is completed in [1] stating that L = x1U1 +
x2U2+ � � �+xnUn is a linear processing orthogonal design satisfying
(3). Substituting from (7) in (9) one gets

D�1=2
i AT

i AjD�1=2
j = �D�1=2

j AT
j AiD�1=2

i ; 1 � i 6= j � n
(10)

which is same as

D�1=2
i AT

i AjD�1=2
j = D�1=2

j AT
i AjD�1=2

i ; 1 � i 6= j � n:
(11)

If the equal-weights condition is included in the definition of GLPCOD
then clearly (11) is satisfied and the proof is complete. However, even
without the equal-weights condition, (9) is valid as shown in the fol-
lowing section. To be specific, in the following section it is shown
that for square designs the set of Di’s in (4) satisfy (10) without the
equal-weights condition included in the definition of GLPROD. This
is done by way of proving a generalization of Theorems 3.4.1 and 5.4.1
of [1] for all square designs real or complex.
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III. A GENERALIZATION OF THEOREMS 3.4.1 AND 5.4.1 OF [1]

In this section, we prove a generalization of Theorems 3.4.1 and 5.4.1
of [1]. Note that Theorems 3.4.1 and 5.4.1 of [1] assume n = p = k

whereas our theorem assumes n = p and there is no restriction on k.

Theorem 2: With the equal-weights condition removed from the
definition of GLPCODs, an n � n square (GLPCOD), Ec in variables
x1; . . . ; xk exists iff there exists a GLPCOD Lc such that

LHc Lc = (jx1j
2 + � � �+ jxkj

2)I: (12)

Proof: Let Ec=
k
i=1 xiIA2i�1+xiQA2i where xi=xiI+jjjxiQ.

The weight matrices fAig satisfy

A
H
i Ai =Di; i = 1; . . . ; 2k (13)

A
H
j Ai +A

H
i Aj =0; 1 � i 6= j � 2k: (14)

It is important to observe that Di is a diagonal and full-rank matrix for
all i. Define Bi = AiD

�1=2
i and Lc = k

i=1 xiIB2i�1 + xiQB2i.
Then the design Lc satisfies (12) iff the matrices Bi satisfy

B
H
i Bi = IN ; i = 1; . . . ; 2k (15)

B
H
j Bi +B

H
i Bj =0; 1 � i 6= j � 2k: (16)

Substituting Bi = AiD
�1=2
i , while (15) is always satisfied, (16) is

satisfied iff

D
�1=2
i A

H
i AjD

�1=2
j = �D

�1=2
j A

H
j AiD

�1=2
i ; 1 � i 6= j � 2k:

(17)
Notice that (17) reduces to (10) for real orthogonal designs and with
k = n. In what follows we show that for square designs, (17) is satisfied
without the equal-weights condition in the definition of GLPCODs.

Define B
(l)
i = D

�1=2
l AH

l AiD
�1=2
l for 1 � l; i � 2k. Then

B
(l)
l = In and

B
(l)
i

H

= �B
(l)
i (18)

B
(l)
i

2

= �D�1l Di D̂
(l)
i ; 1 � l 6= i � 2k (19)

B
(l)
j B

(l)
i +B

(l)
i B

(l)
j = 0; 1 � i 6= l 6= j � 2k (20)

where we have used the fact that D�1l AH
l is the inverse of Al, so

AlD
�1
l AH

l = I (which is true only for square Al). Now the inverse of

B
(l)
i ; 1 � i 6= l � 2k is B(l)

i D̂
(l)
i

�1

and also D̂
(l)
i

�1

B
(l)
i which

can be verified by multiplying with B(l)
i and then using (18). Since the

inverse is unique, we have

B
(l)
i D̂

(l)
i

�1

= D̂
(l)
i

�1

B
(l)
i ; 1 � i 6= l � 2k: (21)

The (r;m)th entry, where (1 � r;m � n), of B(l)
i D̂

(l)
i

�1

is

b
(i)
r;md

(i)
m where b(i)r;m is the (r;m)th entry of B(l)

i and d
(i)
m is the mth

entry of D̂
(l)
i

�1

. Similarly, the (r;m)th entry of D̂
(l)
i

�1

B
(l)
i is

d
(i)
r b

(i)
r;m. Equating the (r;m)th entries on both sides of (21), we have

b
(i)
r;md

(i)
m = d

(i)
r b

(i)
r;m; 8r;m: (22)

If b(i)r;m 6= 0 then d
(i)
m = d

(i)
r , otherwise, both sides of (22) are 0. In

either case, we can multiply the left-hand side term by [d
(i)
m ]�1=2 and

the right-hand side term by [d
(i)
r ]�1=2 to obtain

b
(i)
r;m[d(i)m ]1=2 = [d(i)r ]1=2b(i)r;m; 8r;m

) B
(l)
i D̂

(l)
i

�1=2

= D̂
(l)
i

�1=2

B
(l)
i ; 1 � i 6= l � 2k: (23)

Substituting the value of B(l)
i ; D̂

(l)
i from (18) in (23) we have

D
�1=2
l A

H
l AiD

�1=2
l [�D�1l Di]

�1=2

= [�D�1l Di]
�1=2D

�1=2
l A

H
l AiD

�1=2
l

)D
�1=2
l A

H
l AiD

�1=2
i = D

�1=2
i A

H
l AiD

�1=2
l

)D
�1=2
l A

H
l AiD

�1=2
i = �D

�1=2
i A

H
i AlD

�1=2
l (24)

which is the same as (17) and the proof is complete.

When k = n, Theorem 2 reduces to Theorem 5.4.1 of [1]. Similarly,
when xi’s are real, the weight matricesAi are real matrices and k = n.
Then Theorem 2 includes Theorem 3.4.1 of [1]. The arguments of this
correspondence cannot be used to prove Theorems 4.1.1 and 5.5.1 in [1]
without the equal-weights condition. Indeed, the two designs presented
in [3] show that Theorems 4.1.1 and 5.5.1 of [1] are not valid without
the equal-weights condition.

The results of [4] are for square designs satisfying the condition (12).
By virtue of Theorem 2, the results of [4], [1] are valid for all square
designs without the equal-weights conditions and hence we have the
following corollary.

Corollary 3: LetN = 2abwhere b is an odd integer and a = 4c+d,
where 0 � d < c and c � 0. The maximal rate of size N square
GLPROD without the equal-weights condition satisfied is 8c+2

N
and of

size N square GLPCOD without the equal-weights condition satisfied
is a+1

N
.
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