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Quasi-Cyclic LDPC Codes:
Influence of Proto- and Tanner-Graph Structure on
Minimum Hamming Distance Upper Bounds

Roxana Smarandachklember, IEEEand Pascal O. Vontobeliember, IEEE

Abstract—Quasi-cyclic (QC) low-density parity-check (LDPC) With the help of the well-known isomorphism between the
codes are an important instance of proto-graph-based LDPC ring of circulant matrices over some field and the ring of
codes. In this paper we present upper bounds on the minimum F-polynomials modulaz™ — 1 (see,e.g, [7]), a QC LDPC

Hamming distance of QC LDPC codes and study how these upper d I Il be d ibed b | ial it
bounds depend on graph structure parameters (like variable C00€ can equally well be described Dy a polynomial parity-

degrees, check node degrees, girth) of the Tanner graph and check matrix of size/ x I. In the remainder of the paper we
of the underlying proto-graph. Moreover, for several clasgs of will mainly work with the polynomial parity-check matrix @&f
proto-graphs we present explicit QC LDPC code constructios  QC LDPC code and not with the (scalar) parity-check matrix.
that achieve (or come close to) the respective minimum Hammg Another relevant concept in this paper will be the weight
distance upper bounds. . . . . . .
Because of the tight algebraic connection between QC codesma_trlx asso.czla}ted with ,a polynomlgl parlty-check_ mqtrh_ast
and convolutional codes, we can state similar results for t free  Weight matrix is aJ x I integer matrix whose entries indicate

Hamming distance of convolutional codes. In fact, some QC e the number of terms of the corresponding polynomial in the
statements are established by first proving the correspondg con-  polynomial parity-check matrix.

e oo o 3 o o e &Y papers on QC LDPC codes focused manly on poly
boﬁnded by the free Hamming dgi]stance of the convolutional cFI)dFJ)e nomial parity-check matrices whose weight matrix contdine
that is obtained by “unwrapping” the QC code. only ones. Such polynomial parity-check matrices are known

Index Terms—Convolutional code, girth, graph cover, lo as monomial parity-check matrices because all entries are
voluti , girth, ver, low- . . . . .
density parity-check matrix, proto-graph, proto-matrix, pseudo- monomials,i.e.,, polynomials _Wlth exactly one te_rm. For this
codeword, quasi-cyclic code, Tanner graph, weight matrix. class of QC LDPC codes it was soon established that the
minimum Hamming distance is always upper bounded by
(J+1)! [4], [B], [B].
. INTRODUCTION In this paper we study polynomial parity-check matrices

with more general weight matrices by allowing the entries

Q UASI-CYCLIC (QC) low-density parity-check (LDPC) ¢y weight matrix to bed, 1, 2, or 3 (and sometimes

codes represent an important class of codes wit Iglrger). This is equivalent to allowing the entries of the

oilynomial parity-check matrix to be the zero polynomial,
be a monomial, to be a binomial, or to be a trinomial
$nd sometimes a polynomial with more nonzero coefficients)
he main theme will be to analyze the minimum Hamming
istance of such codes, in particular by studying upper dsun
on the minimum Hamming distance and to see how these

codes can be described makes them attractive for implemﬁB’per bounds depend on other code parameters like the girth

tation and analysis purposes. i of the Tanner graph. We will obtain upper bounds that are
A QC LDPC code of lengti = I can be described by @functions of the polynomial parity-check matrix and upper

Jr > Ir (scalar) parity-check matrix that is formed by/a< bounds that are functions of the weight matrix. The latter

array of r > r circulant matrices. Clearly, by choosing thes,q 15 are in general weaker but they give good insights int
cqculant matrices to _be low-density, the parity-check nimat the dependency of the minimum Hamming distance on the
will also be low-density. structure of the weight matrix. For example, fdr= 3 we
_ , _ show that there are weight matrices that are different from
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the~family of LDPC codes[]1]. The first graph-based cod
construction that yielded QC codes was presented by Tan
in [2]; although that code construction was presented in t
context of repeat-accumulate codes, it was easy to gerera
the underlying idea to LDPC codes in order to obtain Q
LDPC codes|[B]-[6]. The simplicity with which QC LDPC
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the weight matrix is tightly connected to the concept of prot 2 and type3 QC LDPC codesi(e., QC LDPC codes where
graphs and LDPC codes derived from thérm [9],][10]. Protdhe weight matrix entries are at mastand 3, respectively).
graph-based code constructions start with a proto-graph thVe will show how we can obtain typ2-and type3 codes
is described by aJ x I incidence matrix whose entries aréfrom typed codes having the same regularity and possibly
non-negative integers and where @ ‘entry corresponds to better minimum Hamming distance properties. Secfioh VI
no edge, al” entry corresponds to a single edge, A &ntry investigates the influence of cycles on minimum Hamming
corresponds to two parallel edgesic. (Such an incidence distance bounds. Finally, Sectibn VIl discusses a promisin
matrix is also known as a proto-matrix.) Once such a protoenstruction of type- QC LDPC codes based on typeer
graph is specified, a proto-graph-based LDPC code is thigippe-3 QC LDPC codes. In fact, we suggest a sequence of
defined to be the code whose Tanner grdph [11] is semeconstructions starting with a typecode that exhibits good
fold graph cover[[12],[[13] of that proto-graph. girth and minimum Hamming distance properties, or that has
It is clear that the construction of QC LDPC codes can theggood performance under message-passing iterative derodin
be seen as a special case of the proto-graph-based coiostructVe construct a typ@-or type3 code with the same regularity
first, the weight matrix corresponds to the proto-matiig, and higher Hamming distance upper bound, and from this
the incidence matrix of the proto-graph; secondly, th®ld we obtain a new typé-code with possibly larger minimum
cover is obtained by restricting the edge permutations to bemming distance. Sectidn VIl concludes the paper. The
cyclic. appendix contains the longer proofs and also one section
A main reason for the attractiveness of QC LDPC codésef. Appendix[]) that lists some results with respect to graph
is that they can be encoded efficiently using approachegvers.
like in [14] and decoded efficiently using belief-propagati
based decoding algorithms_[15] or LP-based decoding algo-
rithms [16]-[19]. Although the behavior of these decoders Il. DEFINITIONS
is mostly dominated by pseudo-codewords [20]+-[27] and the
(channel-dependent) pseudo-weight of pseudo-codewtbrels,
minimum Hamming distance still plays an important rol
because it characterizes undetectable errors and it pmvi&"
an upper bound on the minimum pseudo-weight of a Tanner
graph representing a code. . ] )
Although the main focus of this paper is on QC codes, w& S€ts, Rings, Fields, Vectors, and Matrices

can state analogous results for convolutional codes. Bssid \\e yse the following sets, rings, and fields: for any positive
the interest that these statements generate on their M &r jneger 7, [L] denotes the sef0,1,...,L—1}; Z is the ring

theorem proving point of view these results are helpfgl beea ¢ integers; for any positive integer, Z/rZ is the ring of
some of our results for QC codes are most easily Provgflegers module; F, is the Galois field of size; IF;[z] is the
by first proving the corresponding results for convolutionging of polynomials with coefficients i, and indeterminate
codes. From a technical point of view, this stems from the fag; Fs[2]/(z"—1) is the ring of polynomials irF2[z] modulo
that convolutional codes are defined by parity-check megric,.r _ 1, wherer is a positive integer; anfls((y)) is the field

over a field (more precisely, the fieIEQ((_y)) specifigd iN" of formal Laurent series oveFs, i.e., the set{ 3% asy’ ’
SectionI[-8), whereas QC codes are defined by parity-chegk Z, ap € Fo,l > d} with the usual rules for addition

matrices over rings (more precisely, the rifig’[z] specified ang multiplication. We will often use the notational shband
in Section1I-8), and that consequently there are more hne@éﬂ [z] for Faz]/(z"—1).

algebra tools available to handle convolutional codes tioan
handle QC codes.

This section formally introduces the objects that were
gliscussed in Sectidn I, along with some other definitions tha
ill be used throughout the paper.

By F5 andF5'*" we will mean, respectively, a row vector

: ) ) Bw overFy of lengthn and a matrix oveF, of sizem x n, with a
The remainder of this paper is structured as folldwsgjijar meaning given tdFéT>[x]", Fé”[x]mxn, Fa((y)", and

Sgctiorﬂ] introduces important concepts and the notatian tFQ«y»an_ In the following we will use the convention that
will be used throughout the paper. Thereafter, Seclioh W{jices of vector entries start @tand not atl), with a similar

presents the two main results of this paper. Both results & antion for row and column indices of matrix entries.

upper bounds on the minimum Hamming distance of a QC_ For any matrixM, we let My s be the sub-matrix o

code: whereas in the case of Theor@im 7 the upper boun h3t contains only the rows d¥/ whose index appears in the

a function of the polynomial parity-check matrix of the Q . .
code, in the case of Theordrh 8 the upper bound is a functif??tR and only the columns of whose index appears in

. . . L setS. If R equals the set of all row indices &¥1, we
of the weight matrix of the QC code only. The following twoWiII omitin My s the setR and we will simply write M.

sections are then devoted to the study of special casessd thﬁloreover we will use the short-hamifs,; for M, ;;,
’ - S\ S\{i}-

results. Namely, Section_1V focuses on so-called typ®C . . S
y R As usual, themin operator gives back the minimum value

LDPC codesi(e, QC LDPC codes where the weight matrixof a list of valued In the following, we will also use a more
entries are at modf) and Sectiofi )/ focuses on so-called type-" = .~ o 9, a
specialized minimum operator, namely thén™ operator that

1This overview mentions only QC code results and omits thdogoas
convolutional code results. 2|f the list is empty thenmin gives back+oo.
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gives back the minimum value of all nonzero entries in a Iiﬁg> [x]/*]

f val
of val Ueﬂ ho,o(x) ho,l(l') T ho,r-1(x)
hio(z)  hia(z) - hir-a(z)
B. Weights H(z) = : : E : 7
The weightwt(c(z)) € Z of a polynomialc(z) € Fa[z] thl',o(x) h,171.,1(17) thl,I'fl(x)

equals the number of nonzero coefficients «@fc). Simi- ‘
larly, the weightwt(c(z)) € Z of a polynomialc(z) € whereh;;(z) £ S} hyjis0a®. Moreover, with any vector

IFé”[x] equals the weightt (c'(z)) of the (unique) minimal- ¢ = (00,07---7Co,r—1,-:-,01—1,o7.~~,CI—1,r—1) € Fi" we
degree polynomiald’(z) € F[z] that fulfills ¢/(z) = @associate the polynomial vector
N
c(x) (in Fy '[z]). c(x) = (co(x),c1(x), ... cr-1(x) ey [x]™
Let c(z) = (co(a),c1(x),...,cra(x)) € F[a)! ( ) €Fs

be a lengthf polynomial vector. Then the weight vectowherec;(z) £ 37 ¢ s2®. It can easily be checked that the
wt(c(z)) € Z' of c(z) is a length! vector with thei-th ~condition
entry equal towt (c;(x)). Similarly, let H (z) = [hj,i(x)]ji €
]Fér> []”*! be a sizes x I polynomial matrix. Then the weight . ) N
matrixwt(H (x)) € Z7*7 of H (x) is a.Jx I-matrix with the 1S equivalent to the condition
entry in rowj and columni equal towt [hj,z'(ff_ﬂ- H(z) c)" =07 (in F ),

The Hamming weightu (c) of a vectorc is the number . .
of nonzero entries ot. In the case of a polynomial vectorgiving us an alternate way to check if a (polynomial) vector

H-c"=0" (inF,)

c(z) = (co(x),c1(x),...,cr—1(x)) € Fafz)!, the Hamming is a codeword.

weight wy (c(z)) is defined to be the sum of the weights of The following classification was first introduced [ [8].

its polynomial entriesi.e., wi (c(z)) = 32, (wt(c(x))), = Definition 1. Let M be some positive integer. We say that a

S wt(ei(x)). polynomial parity-check matridH (z) of a QC LDPC code is
Analogous definitions are used for the weight of an elemegt type M if all the entries of the associated weight matrix

of F2((y)), the weight of vectors oveFs((y)), etc. wt(H (x)) are at mostM . Moreover, we say that a QC LDPC

code is of typeV/ if it is defined by a polynomial parity-check
C. QC Codes matrix of typeM. O

All codes in this paper will be binary linear codes. As usual, Equivalently, H(z) is of type M if for each polynomial
a block codeC of lengthn can be specified through a (scalarntry in H (z) the number of nonzero coefficients is at most
parity-check matrixtd € Fy"*", i.e, C = {c e Fp | H-c' = M. In particular, the polynomial parity-check matrid (x)
0"}, where™ denotes transposition. This code has rate at ledgtof type 1 (in [8] we also called them “type I") ifH (x)
1—2 and its minimum Hamming distance (which equals theontains only the zero polynomial and monomials. Moreover,
minimum Hamming weight since the code is linear) will béhe polynomial parity-check matrik (x) is of type2 (in [8]
denoted byd,,i,(C). we also called them “type II") ifH (x) contains only the

Let J, I, andr be positive integers. Lef be a code of zero polynomial, monomials, and binomials Hf(xz) contains

length Ir that possesses a parity-check matfxof the form only monomials then it will be called a monomial parity-ckec
matrix. (Obviously, a monomial parity-check matrix is a¢yp

Ho Hoy -+ Hora 1 polynomial parity-check matrix.)
H, H; --- Hi; el
H = . . . FQT Ta
: : . : D. Convolutional Codes
Hj; o Hj_1q1 -+ Hj_17

A convolutional codeC..,, can be described by a poly-

where the sub-matricedl; ; € F}*" are circulant. Such a codeomial parity-check matri#cony (y) € F2 (y)”>"; the codIe-

is called quasi-cyclic (QC) because applying circulartstis  Words O.fcconv are then the polynomial vectoesy) € F»((y))

length+ sub-blocks of a codeword gives a codeword agaifat satisff]

Be::_alusd{jyi is circulant, it can _be written as the Suf; ; = Heony(y) - c(y)T =07 (in Fa((v).

Yo Piis0 - Is, whereh;; s is the entry ofH;; in row _ . .

s and column0, and wherel, is the s times cyclically left- The free Hamming distance af.... will be denoted by

shifted identity matrix of size x r. diree(Ceonv). Moreover, a convolutional code whose (poly-
With a parity-check matrixH € F{"*!" of a QC code nomial) parity-check matrix is sparse will be called a con-

we associate the polynomial parity-check matiik(z) € Volutional LDPC code and we extend the classification of

polynomial parity-check matrices in Definitidd 1 from QC

3If the list is empty or if zero is the only value appearing i tist then codes to convolutional codes.
min* gives back-+oco. In particular, for lists containing only non-negative
values, as will be the case in the remainder of this papemihe operator 4Although “formal Laurent series parity-check matrix” arfdrmal Laurent
gives back the smallest positive entry of the list if the isihtains positive series vector” would be more precise, we use “polynomialitypaheck
entries, otherwise it gives backoo. matrix” and “polynomial vector” also in the context of comutional codes.
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The main interest of the present paper in convolutional The above-mentioned concepts are made more concrete with
codes is the fact that QC codes can be “unwrapped” to yidlde help of the following example.
convolutional codes [28] (see algo [29],[30]). In matheinadt
terms, “unwrapping” means to associate with a QC c6de
defined by some polynomial parity-check matEl (z) €

Example 2. Let C be a lengtht2 QC code that is described
by the parity-check matrix

F{"[2]7*! the convolutional cod€,.., defined by the parity- 1 0 1|1 000 000 1 0]
check matrixHony (y) € Fa((y)” >, where 1 1 0/0 1 0({0 0 0|0 0 1
R 01 140 0 10 0 0|1 0 O
Heonv(y) = H(2)|a=y- 0 1 0|1 00[00 1|0 1 0
In other words,Hon (y) is obtained by replacing all appear- £ =100 1/0 1 01100001
ances ofz (and its powers) inH (x) by y (and its powers). 1 0 0]00 1j0 1 0j1 0 0
Note that the weight matrices @ (x) and H..,,(y) are the 00010 0 171 1010 01
sameji.e, wt(H (z)) = wt(Heony(y)) 8 000110 070 1 17100
A theorem by Tanner[28] allows one then to relate the LO 0 0f0 1T 0f1T 0 170 1 0

minimum Hamming distance of the QC codeto the free Clearly,J =3, I = 4, andr = 3 for this code and sd can
Hamming distance of the above-defined convolutional co@gso be written like

Cconw name'Y IO —+ I1 IO 0 I2
dmin(c) < dfree(cconv)- (1) H = I2 IO Il I2 ’

0 I, In+1I, I,
(See [[31] for the usage of this theorem in the context of QC

LDPC and convolutional LDPC codes, along with generalizé{\!here_Is’ s =0,1,...,r—1, ares-times cyclically left-shifted
tions of it to different notions of minimum pseudo-weights. " x r identity matrices. The corresponding polynomial parity-

There is a simple algebraic reason why in the prese?neCk matrix Is

paper we are interested in the above-mentioned connection 20+ 2t a0 0 x?
between QC codes and convolutional codes. Namely, since the H(z)=| 2* 2 2! 2?2,
entries of H..,..(y) are from some field, notions like linear 0 e s

independence and rank are well defined for this matrix. In paf,,q the weight matrix is
ticular, the zero-ness/nonzero-ness of determinants wdireq

sub-matrices of ..y (y) allow us to reach conclusions about 2
the linear dependence/independence of the rows and columns wt (H(ZU)) = |1
of these sub-matrices. Such conclusions can in generalenot b 0

reached for the sub-matrices &f (x), which is a matrix with The Tanner graph associated wif or H(z) is shown
entries in some commutative ring (in particular, a ring witky, Figure[1 (left). We observe that all variable nodes have

0 1
11
2 1

zero divisors). degree3 and all check nodes have degréethereforeC is
a (3,4)-regular LDPC code. (Equivalently, all columns BF
E. Graphs have weight3 and all rows ofH have weight.) O

With a parity-check matrix H we associate a Tanner The proto-graph associated with a polynomial parity-check
graph [11] in the usual way: for every code bit we draw enatrix H (x) is a graphical representation of the weight matrix
variable node, for every parity-check we draw a check nod\et(H(a:)) in the following way. It is a graph where for
and we connect a variable node and a check node by an edgsith column ofH (z) we draw a variable node, for each
and only if the corresponding entry H is nonzero. Similarly, row of H(xz) we draw a check node, and the number of
the Tanner graph associated with a polynomial parity-cheeklges between a variable node and a check node equals the
matrix H (z) is simply the Tanner graph associated with theorresponding entry it (H (z)).

corresponding (scalar) parity-check mat#k. I
As usual, the degree of a vertex is the number of edggéample 3. Continuing ExamplEl2, the proto-graph &f(x)

incident to it and an LDPC code is calléd;, d»)-regular if 'S “shown in Figurelll (right). Clearly, the weight matrix

all variable nodes have degrée and all check nodes haveWt (H(I)) is the quence matrix of this latter graph. We
degreed,. Otherwise we will say that the code is irregularggz(zrsvi;cgt dae}l :ezligleuir:/c;?sr?tlha;ﬁ Ssﬁ ﬂgﬁ}”:g%k
Moreover, a simple cycle of a graph will be a backtracklesgf Wt (H(:v)) e<$ual3 an?j all row >sl,’ums (i) of wt (H(x))
tailless, closed walk in the graph, and the length of SUCheauaI4) )
cycle is defined to be equal to the number of visited vertic&s ‘

(or, equivalently, the number of visited edges). The girth o An important concept for this paper is that of the so-called
a graph is then the length of the shortest simple cycle of theaph covers, see the next definition.

graph. Definition 4 (See,e.g, [12], [13]). Let G be a graph with

5Here and in the following we assume thEt(z) is given in a form where VET€X Se_tV(G) and_Edge set(G), and letd(v) denOt.e. the
the exponents that appear H (z) are at least and strictly smaller tham. ~ Set of adjacent vertices of a vertexc V(G). An unramified,
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where the summation is over afk! permutations of the set
[m], and wheresgn(o) equals+1 if o is an even permutation
and equals-1 if o is an odd permutation.

The permanent of am x m-matrix B = [b; ;] ; over some
commutative ring is defined to be

perm(B) = > [] b0

o jelm]

Co

1

where the summation is over aftk! permutations of the set
Clearly, for any matrixB with elements from a commuta-
tive ring of characteristi@ it holds thatdet(B) = perm(B).

C2

e
’ Il. MINIMUM HAMMING DISTANCE UPPERBOUNDS

This section contains the two main theoretical results of
this paper, namely Theorerhs 7 ddd 8. More precisely, given
some QC code with polynomial parity-check matd ()
and minimum Hamming distaneg,;,,(C), Theorenil presents
an upper bound om,,;,(C) as a function of the entries of
H(z) and Theorenf]8 presents an upper bounddgg,(C)

Fig. 1. Left: Tanner graph of a lengtt2 QC LDPC code. It is a triple cover
of the proto-graph shown on the right. Right: Proto-grapltthef Tanner graph
shown on the left.

finite cover or, simply, acoverof a (base) graplt is a graph

G along with a surjective map : G — G, which is a graph
homomorphismj.e., which takes adjacent vertices & to
adjacent vertices oz such that, for each vertex € V(G)

as a function of the entries oft(H (z)). The upper bound
of Theorem[8 is in general weaker than the upper bound
of Theorem[F, however, it is interesting to see that the

and eachv € ¢~ !(v), the neighborhood(v) of v is mapped weight matrix alone can already give nontrivial bounds on

bijectively tod(v). For a positive integer, anr-coverof G is  the achievable minimum Hamming distance. These theorems

an unramified finite covep : G — G such that, for each vertex also present analogous results for the free Hamming distanc

v € V(G) of G, $~*(v) contains exactly- vertices ofG. An of convolutional codes.

r-cover ofG is sometimes also called ansheeted covering In Sectiond IV and’V/, we will discuss the implications of

of G or a cover ofG of degreerﬁ O these two theorems on codes with typetype2, and type3
olynomial parity-check matrices. Moreover, in Secfiomwé4

ill show how the upper bounds in Theorehis 7 &hd 8 can be
strengthened by taking some graph structure informati&a (1
cycles) into account.

SWe start with a simple technique to construct codewords
of codes described by polynomial parity-check matrices th
extends a codeword construction technique by MacKay and
Davey [4, Theorem 2]. (Note that the papgl [4] deals with

Tanner graphs can also be defined for convolutional codesdes that are described by scalar parity-check matrices
(see,e.q, [32)); in particular, the papef [32] discusses someomposed of commuting permutation sub-matrices, of which
connections between the Tanner graph of a QC code grafity-check matrices composed of cyclically shifted idtgn
the Tanner graph of a convolutional code that is obtained byatrices are a special case. However, and as we show in this
“unwrapping” the QC code. paper, their techniques can be suitably extended to codgs th

We conclude this subsection by emphasizing that graphe described by scalar parity-check matrices composadyof
covers have been used in two different ways in the contesitculant matrices, and therefore to codes that are desthly
of LDPC codes: on the one hand, they have been used pelynomial parity-check matrices.)

constructing LDPC codes (like in this paper), on the Othiremma 6. Let C be the QC code defined by the poly-

2223;22(:?5?;]%5;0 analyze message-passmgreter%t(l)mial parity-check matrixH (z) € Fé” [z]/%1. Let S

' ' be an arbitrary size-/+1) subset of[I] and let ¢(z)
(co(z),c1(x),...,cr-1(z)) € F$"[2]' be a lengthf vector
defined

Example 5. Continuing Example$]2 andl 3, we note th
the graph in Figurd]l (left) is &-cover of the graph in

Figure[1 (right). Therefore, the codé is a proto-graph-

based code. It can easily be checked visually that all ed
permutations that were used to define tBisover are cyclic

permutations, confirming that the codk is indeed quasi-

cyclic.

F. Determinants and Permanents

The determinant of amn x m-matrix B = [b;,],; over
some commutative ring is defined to be

det(B) =ngn(0) H bj,o ()5

J€[m]

i) & perm (Hs\l(a:)) ifieS
’ 0 otherwise
Thene(z) is a codeword irC.

"Because the rin@‘g> (] has characteristig, we could equally well define
ci(z) £ det (Hs\i(x)) if i€ S.

8]t is important not to confuse the degree of a covering anddétgree of
a vertex.
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An analogous construction yields codewords of the convbhe result in the theorem statement follows by noting that
lutional codeC..,, defined by the polynomial parity-checke(x) has Hamming weight

trix Heony [ Fy I
matrix (y) € Fo((y)) wi(e(z)) =Y wt (ci(x) = > wt (c;(2))

Proof: LetS = {io,i1,...,is} be the chosen sizef+1) i) ies
subset. In order to verify thaf(x) is a codeword ir, we need
to show that the syndrome' (z) = H (z)-c' (z) (in FS[z]) - Z wt (perm (Hs\i(x)))'
is the all-zero vector. For any < [J], we can express thgth i€s
component ofs(z) as follows The convolutional code part of this theorem then follows

from the observation thaf,((y) is a field (and therefore a
sj(w) = Z hji(x)ei(x) = Z hji(x) - perm (Hg\;(x))  commutative ring), and so the above derivation also holds fo

= i€S the parity-check matrixdony (y). ]
= Z hji(x) - det (HS\i(x))v ) L .
cs Let us emphasize that it is important to have tihén

operator in [(2), and not just thmin operator. The reason

where in the last step we used the fact that for commutati@at the upper bound is based on constructing codewords of
rings with characteristie the permanent equals the determig,e codec and evaluating their Hamming weight. For some

nant. Observing tha;(x) is the co-factor expansion of thep,ynomial parity-check matrices some of these consteicte
determinant of theS| x |S|-matrix codewords may equal the all-zero codeword and therefore hav

B B ceo hys Hamming weight zero: clearly, such constructed codewarels a
4iio (%) RG] 4,is (2) irrel f boundina the mini H ing di
Fo.16 () hoi (@) - Tos, @) irrelevant for upper bounding the minimum Hamming distance
Y " " and therefore must be discarded. This is done with the help
hy @0 (I) hy i1 (I) e hl-,l./ (I) . Lo .
_ ’ of the min® operator. (Similar statements can be made with
: : i : respect to[(B).)
hj-1i(®) hj-14(x) -+ hj-1:,(2) The next theorem, Theordn 8, gives a minimum/free Ham-

ming distance upper bound which is easier to compute fHan (2)
and [3) and which depends only on the weight matrix asso-
ciated with H (z) and H..n,(y), respectively. In particular,
this bound doesiot depend onr, the size of the circulant
matrices in the scalar parity-check matii corresponding

to H(z). The bound says that the minimum/free Hamming
distance is upper bounded by the minimum nonzero sum of the

ith the helb of th q q . hni permanents of al/ x J sub-matrices of a chosehx (J+1)
With the help of the codeword construction technique I, iy of the weight matrix, the minimum being taken

Lemmd® we can easily obtain the bound in The_dﬂam ’ SIMBYer all such possiblg x (J+1) sub-matrices of the weight
construct the list of all codewords corresponding to alesiz i

(J+1) subsetsS of [I], and use the fact that the minimum

Hamming distance of / the free Hamming distance 6f,,,, Theorem 8. LetC be a QC code with polynomial parity-check
is upper bounded by the minimum Hamming weight of aatrix H (z) € Fy”[]7*! and let A £ wt(H (z)), or, let

and noting that this latter matrix is singular (because astle
two rows are equal), we obtain the result tlsét) = 0 and
that ¢(z) is indeed a codeword i@, as promised.

Becausé ', ((y)) is a field, and therefore a commutative ring
the same argument holds also for a code likg,, that is
defined by a parity-check matrix ovés((y)). [ |

nonzerocodewords in this list. Cconv be a convolutional code with polynomial parity-check
atrix H.o, F I*I and let A 2 wt(Heone (v)).
Theorem 7. LetC be the QC code defined by the polynomi hen () € F2ly) v ( (y))
parity-check matrixH (z) € FS” [z]*!. Then the minimum G (©)
Hamming distance of is upper bounded as follows ; mu(‘; } < %%%T Z perm (AS\i)- 4)
duin(€) < in® " wt (perm (Hs,(0))). (2) el ] S
SIShh1 ies In particular, if Heony(y) = H (2),—, then
Let Ceonv be the convolutional code defined by the poly- g . (€) < diee(Ceony) < min* Z perm (Ag;) -

nomial parity-check matrid cony (y) € Fo((y))”*!. Then the N ey
free Hamming distance @f..,. is upper bounded as follows .

g PP Proof: See AppendikA. [

dfrcc(cconv) < min* wt (Perm (Hconv)S z(y) ) (3)
ot ; ( () Again, as in Theorernl 7, it is important to have tién*

] . operator in Theoreiln 8 and not just thén operator. This time
(Note that for Heonv(y) = H(x)|2=y the right-hand sides the reasoning is a bit more involved, though, and we refer the
of (@) and (3) need not be equal)) reader to the proof of Theorelm 8 for detdils.

Proof: We start by proving the QC code part of this _ . o
We are grateful to O. Y. Takeshita for pointing out to us thatearlier

theorem. Le_S be a sizet.J+1) subset of /] and |?tC(I) be the (and also less general) versions of Theofdm 7 and Thebteaf. {8]) the
corresponding codeword constructed according to Lefiman@n operator has to be replaced by then* operator, see als6 [33].
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Note that the upper bound inl(2) dependsrofibecause the polynomial parity-check matrices. (Actually, the follovg
computations are done moduld — 1), whereas the bound polynomial parity-check matrices happen to beonomial
in (@) does notdepend onr. parity-check matricesj.e., polynomial parity-check matri-
Usually, the expressions ifl(2) ard (3) yield upper boundss where all entries of the corresponding weight matrices
that are not larger than the upper bounds fréin (4). Howevequall.)
th?s doe§ not need to happen. For example there are poWE?(émple 10. Letr > 9. Consider thg2, 4)-regular lengthdr
mial parity-check matrices for whicll(2) and (3) evaluate t&c deC ai bv th | il paritv-check mari
+oo, whereas[(4) evaluates to some finite number. co given by the polynomial parity-check matrix
Based on Theorenid 7 ahdl 8, the following recipe can be Hio - |% 7 zt 28
formulated for the construction of QC LDPC codes with good () = [a:5 26 23 a:7}

minimum Hamming distance. (A similar recipe can be given

;o
for the construction of convolutional LDPC codes with gooand the§2,4)—r_egular Iengthé.r QC codeC” given by the
free Hamming distance.) polynomial parity-check matrix

. Search for a suitable weight matrix with the help of {I z? 2t xs}
Theoren{8. 28 25 a3 2
* Am_ong all polynomial pgrity-check ma'_[rices \.Nith thiSAccording to [2), the minimum Hamming distance 6fis
weight matrix, find a suitable polynomial panty-checlhpper bounded by
matrix with the help of Theorernl 7.
« Verify explicitly if the minimum Hamming distance of wt(zt+2%) + wt(2®+210) + wt(z7+27),
the code of the found polynomial parity-check matri, —_ . . wt(z?+21) + wt(28+213) + wt(2"+27),
really equals (or comes close to) the minimum Hamming™" = wt(zt+att) + wt(28+213) + wt(a?+29),
distance promised by the upper bound in Theofgém 7. wt(a 4+211) + wt(22+2'%) + wt(25+210)
This recipe is especially helpful in the case where one is = min*{4,4,4,4} =4,
searching among typ&f polynomial parity-check matrices
with small M, say M € {1,2,3}. In such cases it is to
be expected that there is not much difference in the up

and the minimum Hamming distance 6f is upper bounded

bounds [(R) and[{4). For typ&f polynomial parity-check wt (2% +22) +wt(at+210) + w26 +28),
matrices with largerM/, however, we do not expect that the w23 fwt (202 Fwt (20 4-28),
upper bounds({2) an@(4) are close. The reason is that wibyin < min wt(234+210) + wt(2104+214) + wt(zi4210),
computingperm(HS\i(x)) in @) there will be many terms wt(z'3 42+ wt (2 +213) +wt (25 +29)

that cancel each other. Anyway, when constructing QC LDPC
codes, typed polynomial parity-check matrices with large

are somewhat undesirable because of the relatively smittll giHowever, in both cases the bound [id (4) gives
of the corresponding Tanner graph. In particular, it is well

known that the Tanner graph of a polynomial parity-check dnin < {(141) + (141) + (1+1) } = 6,

matrix whose weight matrix contains at least one entry @fnce poth polynomial parity-check matrices have the same
weight3 (or larger) has girth at most(see also Theorem 118). yejght matrix. Similarly, in both cases the bound[ih (5) sive

= min*{6,6,6,6} = 6.

IV. TypPe-l QC/CONVOLUTIONAL CODES dmin < (24+1)! = 6,
In this section we specialize the results of the previogsnce both polynomial parity-check matrices have- 2.
section to the case of typeparity-check matrices. In conclusion, we see that 2x4 monomial parity-check

matrix can yield a QC code with minimum Hamming distance
at most6. However, when the entries of the polynomial parity-
check matrix are not chosen suitably, as is the casd#(r),

then the minimum Hamming distance upper boundn (2) is
strictly smaller than the minimum Hamming distance upper

Corollary 9. Let C be a typet QC code with polynomial
parity-check matrix H(z) € Fy'[z]”*/ and let A 2
wt(H (z)), of, let Ceony be a typet convolutional code with
polynomial parity-check matrid ..., (y) € Fa((y)’*! and
let A £ wt(Heconv(y)). Then

bound in [4).
dmin (C) For completeness, we computed the minimum Hamming
dhree (Coune) } <+ (5) distance of the two cod@sand obtained for the first code
freel-conv (e.g, (0,0,2% 1) is a codeword), and for the second code
Proof: See AppendixB. m for most values of-. O

The rest of this section will be devoted to QC codes; Let us discuss another example.

however, analogous results can also be stated for convpAlti
codes. 9Here and elsewhere in the paper, we compute the minimumndista

. . . of various QC codes with the help of suitable Magma progreBd. [For
Let us evaluate the minimum Hamming distance uppgﬁalyzing the free distance of convolutional codes, aBl@éitarogram ise.g,

bounds that we have obtained so far for some ty@@<€ code BEAST [35].
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Example 11. Let » > 26 and let the(3,4)-regular QC presented in this paper. In particular, instead of fixing the
LDPC codeC be given by the polynomial parity-check matrixpolynomial parity-check matrix and increasingit might be

H(z) € F{[2]3<4 a good idea to change the polynomial parity-check matrix
N I as well with. increasingr, t_hereby allowing the dggree_s of
H(z)= |25 210 220 49 the polynom|aI§ to grow withr. Such a strategy might yield
225 419 o7 14 ' codes that achieve the upper bounds for smaljenowever,

investigating this approach is beyond the scope of this pape
(This code was obtained by shortening the lagpositions
of the (3,5)-regular typet QC LDPC code of lengthbr
presented in[[36}9) Evaluating the bounds ifl(4) andl (5)
for this polynomial parity-check matrix, we see that the
minimum Hamming distance is upper bounded b4, and After having discussed minimum/free Hamming distance
for suitable choices of this upper bound is indeed achievedupper bounds for typ&-QC/convolutional codes in the pre-
We computed the minimum Hamming distance of the code fious section, we now present similar results for tgpand
different values of- and obtained that = 31 is the smallest type-3 QC/convolutional codes. In particular, we classify all
such choice. The code obtained for= 31 has parameters possible weight matrices of3, 4)-regular QC/convolutional
(124,33, 24]. The minimum Hamming distance and rate fogodes with a3 x 4 polynomial parity-check matrix.

this and some other values ofare listed in the following ~We start our investigations with the following motivating

V. TYPE-Il AND TYPE-III
QC/CoNVOLUTIONAL CODES

table. example.
| r [ 26 ] 27 ] 28] 29[ 30 [ 31| Example 13. In Example[IlL we saw that the minimum
dmin(C) || 18 14 16 18 8 24 Hamming distance of typé-(3,4)-regular QC codes with a

rate 0.269| 0.287| 0.268| 0.267| 0.283| 0.266 3 x 4 polynomial parity-check matrix cannot surp&ds In this
O example we show that type+(3, 4)-regular QC codes with
a 3 x 4 polynomial parity-check matrix can have minimum
As we have seen from the above examples, the minimu#samming distance strictly larger thant. Namely, consider
Hamming distance upper bound (2) can be strictly smalléte codeC’ with parity-check matrix
than the upper boundd(4). However, the upper bodid (4) is

2 4 8
computed more easily, and it provides an upper bound on the,( ) & z +5x 09 loi 2 % ©)
Hamming distance of all QC codes having the same wei =1z z e :

g Q g g 0 x25 + x19 0 $7 + xl4

matrix and therefore also the same proto-graph.

Applying Corollary[9 to QC codes with monomial parity-(This polynomial parity-check matrix was obtained from the
check matrices shows that for such codes the minimum Haggrity-check matrixH (z) in Example[I]l by pairing some
ming distance is upper bounded by-+1)!. We note that this monomials into binomials and replacing withthe positions

result was previously presented by MacKay and Dalvey [4] angkt, careful to preserve thes, 4)-regularity.) The correspond-
discussed by Fossorieri [5]. However, as we show in this papglg weight matrix is

their techniques can be suitably extended to QC codes that ar

described by scalar parity-check matrices composednyf . 20 11

circulant matrices, and therefore to codes that are destrib A=111 2 0],

by polynomial parity-check matrices. 020 2

Example 12. Itis clear that the higher the rate of a code is, tha@nd, according td{4), yields the following minimum Hamming

more difficult it is to achieve the upper bound in Corollaty odistance upper bound
However, the QC code defined by the polynomial parity-check donin (C') < min® {10 + 6 4 10 + 6} = 32,

matrix
20 19 13 2200 g4 415 456 For smallr, the corresponding QC code does not attain this
H(z) 2 (2% 29 20 247 20 218 48 bound, however, for = 46 one can verify that the resulting
g4 20 2100 213 20 0 o7 QC code attains the optimal minimum Hamming distance

with » = 111 shows that there exist also QC codes with desigdr?[lin = 32. This is a[184,47, 32] code of rate).2554. -

rate 4/7 that achieve the minimum Hamming distance upper After this introductory example, let us have a more sys-
bound in Corollary Bj.e., dmin = 24. (This example is taken tematic view of the possible weight matrices(8f 4)-regular
from [37, Table II1].) 0 QCl/convolutional codes and the minimum/free Hamming dis-

We would like to warn the reader that we dmt claim tance upper bounds that they yield.

that the “recipe” given at the end of Sectiod Ill is an optimaCorollary 14. LetC be a(3,4)-regular type2 QC code with

strategy for obtaining QC codes that achieve the upper Bungblynomial parity-check matrixd (z) € Fé” [z]>** and let
L 3x4 _

1ONote that in [36], = 31, and the code parameters di5, 64, 20]. A= Wt(H(I)) € Z°"7, o, let Ceony be a (3, 4)-regular

Also note that by shortening a code, the girth of the assettidaanner graph type2 convolutional code with polxnomial parity-check matrix
cannot decrease. H o (y) € Fo((y)>** and let A £ wt (Hconv(y)) € 7374,
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Then all possiblg3, 4)-regular sizef3x4) type2 weight ma- pseudo-weight spectrum gép [26] is therefore estimatedeto b
trices A (up to permutations of rows and columns) are giveB2 — 27.6 = 4.4, which is on the same order as the pseudo-
by the following types of matrices (shown here along with theveight spectrum gap for thé, 5)-regular[155, 64, 20] code
corresponding minimum/free Hamming distance upper boubgt Tanner[[36], which is estimated to B6 — 16.4 = 3.6. We
implied by @)): also note that for the above-mentioned randomly generated
- - [184, 46] code we obtained an upper bound on the minimum

2 2 00 ;
With {dumin, diree} <8+ 8+ 848 =32, pseudo-weight o£1.0. O
If we want to take into consideration all cases (8f4)-
regular QC/convolutional codes with polynomial parityeck
With {diin, direc} <10+ 10+ 6+ 6 = 32,  Matrices of size3 x 4, we also have to investigate the class
of type-3 weight matrices of siz8 x 4, as is done in the next
corollary.

With {dmin, diec} <7+ 7+74+9 =30, Corollary 16. LetC be a(3,4)-regular type3 QC code with
polynomial parity-check matrisél (z) € FS” [2]3*4 and let
A £ wt(H(x)) € Z3*4, or, let Ceony be a (3,4)-regular
With {dmin, diec} <6+6+8+8 =28,  type3 convolutional code with polynomial parity-check matrix
Heon(y) € Fo((y)*** and letA £ wt(H (x)) € Z***. Then
all possible(3, 4)-regular sizef3x4) type3 weight matricesd
; ' , _ (up to permutations of rows and columns) are given by&ihe
WIth {dumin; drec} S6+6+6+6 =24, types of matrices already listed in Corolldry]l14, togethéthw
the following3 types of matrices (shown here along with the

As can be seen from this list, the largest upper bound ¢grresponding minimum/free Hamming distance upper bound
{dmin, diree} < 32 and it can be obtained if the weight matriximplied by @)):

A equals (modulo permutations of rows and columns) the first

== = O O N OFEN O

H = RPN RN RO O
=== === NNDO - = DNNO N
e i e T e N N e e N R e I N I

L : 3 0 0 1

or the second matrix in the list. 002 1 1| With {dum, divec} <5+949+15 = 38,
Proof: Omitted. [ | 01 2 1
Example 15. We see that the typ2-(3,4)-regular QC code |3 1 0 0

with a 3 x 4 polynomial parity-check matrix and with=46 [0 2 1 1| With {dmin, drec} <4+ 12412+ 12 = 40,
presented in ExamplelL3 not only achieves the minimum Ham0 0 2 2]
ming distance upper bound promised by (4) but, accordingtps 0 0 1]

Corollary[14, it achieves the best possible minimum Hammingo 3 0 1| with {duin, direc} <9+9+9+27 = 54.
distance upper bound for any typef3,4)-regular QC code (0 0 3 1

with a 3 x 4 polynomial parity-check matrix. We note tha
this particular code has parameté¢t84, 47, 32|, girth 8, and 4
diameter8, i.e,, the same girth and diameter as the Tanné{
graph of the[124,33,24] code in Examplé_11), which is a
shortened version of thg55, 64, 20] code in [36].

Figure [2 shows the decoding performance (word error Proof: Omitted. [ ]

rate) O.f t_he [184,47, 32] QC LDPC _code yvhen us_eql forExample 17. We can modify the matridd in Example_1lL to
transmission over a binary-input additive white Gaussigisa . . ! .
og{aln one of the configurations in Corolldryl 16. For example

channel. Decoding is done using the standard sum-prod%.h . . (r)
: o : : e following matrix H'(z) € Fy/ [z]>** corresponds to the
algorithm [15] which is terminated if the syndrome of th ast configuration listed in Corollafy 1L6:

codeword estimate is zero or if a maximal number 6df

tAs it can easily be seen, the largestpper boundis

min, dfrec} < 54 and it can be obtained if the weight matrix
equals (modulo permutations of rows and columns) the last
matrix in the above list.

(respectively256) iterations is reached. It is compared with a 24t 428 0 0 x
randomly generate(B, 4)-regular[184,46] LDPC code where H'(z) £ 0 2942104220 0 x°
four-cycles in the Tanner graph have been eliminated. (When 0 0 o047 alt 22

comparing these two codes one has to keep in mind ”}iat”, — 31 we obtain a/124, 31, 28] code, whose rate .25
because the randomly generated code has slightly lower ra?e ) ' o

. . n comparison, the monomiél24, 33, 24] QC LDPC code in
and because the horizontal axis shals/ Ny, the randomly . )
generated code has a slight “disadvantage).093 dB.) Note ExampleLTlL has rat@.266 and the binomia[184, 47, 32] QC

though that the decoding complexity per iteration is theesaanDP.C code in Egamplﬂ?u has raiex54.) Forr = 46, we
obtain a code with parameteft34, 46, 34]. For largerr the
for both codes. minimum Hamming distance could increase ugto O
Let us mention on the side that we tried to estimate the 9 w
minimum (AWGN channel) pseudo-weight [23], [24] of this Note that the Tanner graph of a polynomial parity-check
code. From searching in the fundamental cone we get aratrix which has at least one trinomial entry cannot havéhgir
upper bound of27.6 on the minimum pseudo-weight. Thelarger than6 (see,e.qg, [B]). We state this observation as part



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 10

10 K' T
10 g :
N
N
\“
~
— N
102; Ciriiiiiiiiiiiiiiiiiiiiiiiiiin N : Ciiiiiiiiiiiiiiiiiiiiidd
£ : N : ]
N
AAN
= NS
o 10 E BIIIiiiiiiiiiiiiiiiiiiiiiiiiie SRS Priiiiiiiiiiiiiiiiiiiicy
© E : Nt E
5] NI}
5 g
o -4 N
5 10°F . N E
= N
T
N
10_5; Ciriiiiiiiiiiiiiiiiiiiiiiiiine NG NG Y
F ‘ NGRS E
©- Random code (after max. 64 iterations) : '\_
L. .| ©— Random code (after max. 256 iterations) DY
10k A- QC-LDPC code (after max. 64 iterations) ]
E: | A&~ QC-LDPC code (after max. 256 iterations) E
10—7 ! ! ! ! !
0 1 2 5 6

3
E,/N, [dB]

Fig. 2. Decoding performance of tH&84,47,32] QC LDPC code vs. a randomly generated (four-cycle fi@&}, 46] LDPC code under sum-product
algorithm decoding when transmitting over a binary-inpW@®N channel. (For more details, see Exaniple 15.)

of a more general analysis of the effect of the weight matrbheck matrix. It is clear that similar results can be forneda
on the girth. for any (J', I')-regular QC/convolutional code with & x T

olynomial parity-check matrix. However, we will not elab-
aErate this any further, except for mentioning the following
corollary about(3, 5)-regular QC/convolutional codes with a
3 x 5 polynomial parity-check matrix.

Theorem 18. LetC be a QC code described by a polynomi
parity-check matrixH (z) € IFS”> [z]7*1, let girth be the girth
of the Tanner graph corresponding tH () and let A be
the weight matrix corresponding téf (x). Or, let Ceonv be
a convolutional code described by a polynomial parity-éhecCorollary 19. An optimal(3, 5)-regular type2 weight matrix
matrix Heon (y) € Fa((y)”*?, let girth be the girth of the of size3 x 5 must (up to row and column permutations) look
Tanner graph corresponding t#Z..,(y) and let A be the like

weight matrix corresponding téZ oy (y)-

11 1 2 2 1 0 0
a) If A has sub—matrix[ } thengirth < 12. A210 0 2 2 1

1 1 1

1 1 0 1 2
11 .

b) If A has SUb'mamX[l 2] thengirth < 10. This weight matrix yields the upper bound
c) If A has sub-matrix2 2] thengirth < 8. {dwin, diree} < min{30,30, 30, 32,28} = 28.
d) If A has sub-matrix3] thengirth < 6. Proof: Omitted. u

(By “A having sub-matrixB” we mean thatA contains a
sub-matrix that is equivalent t&, modulo row permutations,
column permutations, and transposition.)

It would be desirable to obtain simply looking bounds
for type2 and type3 codes with(J, I)-regular parity-check
matrices of sizeJ x I. Although it is straightforward to obtain

Proof: See Appendik L. B such simple bounds by suitably generalizing the derivatibn
Corollary[9, the resulting bounds are usually not very usefu

The Corollaried” T4 and16 focused on the casd3ofi)- We leave it as an open problem to find such relevant bounds

regular QC/convolutional codes withBa 4 polynomial parity- in the style of Corollary® for typ&-and type3 codes.
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VI. THE EFFECT OFSMALL CYCLES Theorem 22. Let C be a typet QC code with polynomial
ON THE MINIMUM HAMMING DISTANCE parity-check matrixH (z) € F3”[z]7%1, o, let Ceony be a
AND THE FREE HAMMING DISTANCE type-1 convolutional code with polynomial parity-check matrix

If we know that the Tanner graph corresponding to sorfdconv(y) € F2((y))”*". If the associated Tanner graph has a
polynomial parity-check matrix contains some short cyclescycle then

then we can strengthen the upper bounds of Thebitem [land 8. dmin (C)

In particular, Theoren{s 22,5, and 26 will study the influenc } < (J4+1)! = 2(J-1)L (7)
of 4-cycles, 6-cycles, and2R-cycles, respectively, upon the dfree(Ceonv)

minimum/free Hamming distance upper bounds. These theo- pryof: See AppendikE. -

rems will be based on results presented in Lemimés 20 dnd 24 _ _
that characterize cycles in Tanner graphs in terms of sofs¥@mple 23. Let us consider again th@, 4)-regular length-
entries of the corresponding polynomial parity-check imatr 47 QC codeC from Example[ID which is given by the

especially in terms of permanents of sub-matrices. In clerPolynomial parity-check matrix

state such conditions, we will use results fram [5].1[36]o(F R R
other cycle-characterizing techniques and results, see38] H(z) = L’S 26 23 x7}
and [39].)

As we will see, the smaller the girth of the Tanner grapht has at least twal-cycles since
the smaller the minimum/free Hamming distance upper bound ) JRCR.
will be. This observation points in the same direction aspth PCru ({ 5 6:|) =0 and perm ([x3 $7D =0
results do that relate the decoding performance of LDPC
codes (especially under message-passing iterative degodiin Fé” [x]). Therefore the bound(7) gives
to the girth of their Tanner graph: firstly, there is a lot of
empirical evidence that smaller girth usually hurts theaiige nin (C) < (JH1)! = 2(J=1)! =3/ =211 =4. (8)
decoding performance; secondly, there are results cOmMEErNye note that for thist () this upper bound equals the upper
the structure of the fundamental polytope that show that thgng [2) ¢f. ExamplelID). 0
fundamental polytope of Tanner graphs with smaller girth is
“weaker,” seeg.qg, [24, Section 8.3],[140].

T

B. Type-I QC/Convolutional Codes withCycles

A. Type-I QC/Convolutional Codes withCycles Lemma 24. The Tanner graph of a type-QC LDPC codeC
with polynomial parity-check matri (z) € F"[z]”* has
a 6-cycle (or possibly al-cycle) if and only ifH (z) has a
3 x 3 sub-matrixB(x) for which

Lemma 20. The Tanner graph of a type-QC codeC with
polynomial parity-check matrisH (z) € F{” [2]/*! has a4-
cycle if and only ifH (xz) has a2 x 2 sub-matrix B(z) for

which wt (perm (B(a:))) < perm (Wt (B(x)))
wt (perm (B(x))) < perm (Wt (B("T))) holds,i.e., if and only if H (x) has a3 x 3 sub-matrixB(z) for
holdd™ which some terms of its permanent expansion add to[Zero.

An analogous statement can be made for the Tanner grapif*" @nalogous statement can be made for the Tanner graph
of a typed convolutional cod€...,,, defined by the polynomial of atyped convolgtlonal cod€conv def!IneId by the polynomial
parity-check matrixHeony () € Fa((y))”*!. parity-check matrixH conv (y) € Fa((y))” *!.

Proof: See AppendifD. [ | Proof: See AppendixF. .

) With this, we are ready to investigate the minimum/free
Corollary 21. The Tanner graph of a tyQ%QC codeC with  Hamming distance upper bounds for Tanner graphs With
polynomial parity-check matrid (x) € Fy”[]7*! has a4-  cycles.
cycle if and only ifH (z) has a2 x 2 sub-matrixB(x) which is ) )
monomial and for whictberm (B(x)) = 0 (in FS[«]) holds. Theorem 25. Let C be a type(% Q%X%ode with polynomial
An analogous statement can be made for the Tanner grapffity-check matrixH (z) € Fy'[x]"*7, or, let Ccony be @
of a typed convolutional code..., with polynomial parity- ype- convolutional code with polynomial parity-check matrix
check matrixH oo, (1) € Fa((y)” <" Hony(y) € Fo((y))?*L. If the associated Tanner graph has a
o 6-cycle then
Proof: This follows from Lemma 20 and its proof. m

dmin(c)
< I — =2).
With this, we are ready to investigate minimum/free Ham- divee (Coony) } < (J41) 2(J-2)
ming distance upper bounds for Tanner graphs wittycles. i
Proof: See Appendix G. [ |

HBecausewt ( perm(B(z))) < perm (wt(B(z))) for any B(z), the
condition wt (perm(B(z))) < perm (wt(B(z))) is equivalent to the
condition wt ( perm(B(z))) # perm (wt(B(z))). 12The comment in Footnofedl1 applies also here.
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C. Type-I QC/Convolutional Codes wittR-Cycles

The previous two subsections have shown that the minimum
Hamming distance of a type-QC/convolutional code whose
Tanner graph has girth or 6 can never attain the maximal
value(J+1)! of Corollary[9. These results are special cases of
a more general result that we will discuss next. Note however
that, compared to the girth-and the girthé case, this more
general statement is uni-directional.

Theorem 26. Let C be a typet QC code with polynomial
parity-check matrixt (z) = [h;.:(z)];: € FS” [2]7*1. Let R,

2 < R < min(J,I), be some integer, and suppose there is
a setR C [J] of sizeR, a setS C [I] of size R, and two
distinct bijective mappings and 7 from R to S such that
o(j) # 7(y) for all j € R and such that

I 7wy (@) = T Ry (@) )

JER JER
Then

If, in addition, the (bijective) mapping=! o7 from R to R is
a cyclic permutation of ordeR and if the products on the left-
hand and right-hand side of the equation @) are nonzero,
then the associated Tanner graph will have a cycle of length
2R.

An analogous statement can be made for the Tanner graph
of a typed convolutional cod€..,,., defined by the polynomial
parity-check matrixH .., (y) € Fa((y))”*!.

Proof: See AppendixH. [
For 4- and6-cycles, the converse of the second part of the

above corollary is truej.e., 4- and 6-cycles are visible in,
respectively2 x 2 and 3 x 3 sub-matricesdf. Theoremg_22

3)

12

is nonzero (inIFé”[x]). (This condition is equivalent
to the conditionz?® 4 2 # 0 (in Fy[z]), or to the
conditionged(z® + 2%, 1 + 2") # 1 4 2"/2 (in Fy[z]).)

) For any 1 x 2 sub-matrix like

[2° + 2 2°+a9] |
or any 2 x 1 sub-matrix like

%+ 2b

e,
the product(z®+2°)-(z¢+2%) (in FS” [z]) has weightt,

i.e.,, the maximally possible weight, or, equivalently, if all
the 2 x 2 sub-matrices of the matrix

have nonzero permanent (]?ér> [x]).
For any 2 x 2 sub-matrix like

z? b + ¢
x?® + ¢ xf

(or row and column permutations thereof), the perma-

nents (inIFéT> [x]) of the following twa x 2 sub-matrices

z¢ x? and z¢ s
zd+a¢ ot x4z of
have weigh8, the maximally possible weight, or, equiv-
alently, if all 2 x 2 sub-matrices of the matrix

0 z¢ z¢ b
2% x¢ ozl 0
¢ ozt 0 af

have nonzero permanent (]?é’”> [x]).

and2%). However, for longer cycles the converse of the sicon 4) For any 2 x 2 sub-matrix with weight matrix

part of the above corollary isot always true:8-cycles can
happen ind x 4 sub-matrices, but also i x 4 sub-matrices
or in 3 x 4 sub-matrices. A similar statement holds for longer
cycles.

D. Type-ll QC/Convolutional Codes

2 20 (2 1 and 11
1 1)1 1’ 11
(or row and column permutations thereof), the perma-

nent (in]FéT> [x]) of this2 x 2 sub-matrix has weight, 3,
and 2, respectivelyj.e., the maximally possible weight.

An analogous statement holds for the Tanner graph of a

With appropriate techniques/computations, similar Statﬁ/pea convolutional codeC

cony defined by the polynomial

ments as in the preceding subsection can also be made atﬁ)%‘l’ﬂy-check MatrixH eony () € Fa((y)” 1.

type2 QC/convolutional codes. We will not say much about
this topic except for stating a lemma that helps in detedfing
a polynomial parity-check matrix i¢-cycle free.

Proof: It is well known that ai-cycle appears in a Tanner
graph if and only if the corresponding (scalar) parity-dhec

matrix contains the x 2 (scalar) sub-matrix

Lemma 27. A type2 QC codeC is 4-cycle free if and only
if its polynomial parity-check matridH (=) has the following
properties.

1) If r is even, then for any x 1 sub-matrix like
[z +2"]

it holds that the permanent of

b

The lemma is then proved by studying all possible cases in
which a polynomial parity-check matrix can lead to a (sgalar
parity-check that contains thizx 2 (scalar) sub-matrix. The
details are omitted. [ |

Note that in the above lemma some of the conditions were

x® b
xb e

expressed in terms of a double cover of the relevant sub-
matrices. In particular, the modified matrices are obtaimgd
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applying the following changes to the entries of the reléva@learly, the resulting matrixH (z) is (J',I’)-regular and

sub-matrices of size (2J) x (2I), i.e, the same regularity a#f(x), but
fpa b vertically and horizontally twice as large d&%(x).
2%+ 2’ b x“] ; For example, consider the codelefined by the polynomial
- s parity-check matrixH (z) € F{”[z]7*! in Example
= :CO :cof] , which for ease of reference is repeated here

[0 0 T+ 2? 0 zt 8

0~ 0 0 ] H(z) 2 25 29 210 4 420 0
- 0 I25 —|—$19 0 I7 —|—$14

(Note that similar double covers are also considered in Ap-
pendix[.) (Here,J = J' =3 andI = I’ = 4.) Applying the above-
mentioned process t@f(z) we obtain the following type-

Example 28. Consider, forr > 26, the type2 polynomial 1 (J/ I’) regular polynomial parity-check matrnH( ) €
parity-check matrixH’(z) in (]H) There4-cycles could only ]F(r e ]Jxl

be caused by the two sub-matrices

xl + xQ $4 xl $2 0 0 CC4 0 CC8 0

5 21074 420 and [2%° 4+ 21 27421 | xf 2 00 0 a2t 0 a8

fI(x) _ z2 0 22 0 210 20 0 0

Therefore, the conditions for the non-existence of-aycle 0 25 0 22 22 219 0 0
are 00 z¥ 219 0 0 27 pt
0 0 29 2% 00 2% 27

0¢{5—-1,5-2}+{4-10,4—20} (inZ/rZ),
0¢{25—-19,19 - 25} + {7 — 14,14 -7} (nz/rz). (HereJ=2J=6,1=21=8,J =J" =3, 1'=1'=4)
Clearly, the Tanner graph QH( ) is a double cover of the
(Here the sum of two sets denotes the set of all possible suTesiner graph offf (« . 11 Similarly, the proto-graph oH( )
involving one summand from the first set and one summagga double cover of the proto-graph &f (z).
from the second set) It is clear that, with suitable effort, For the choice' = 46, applying the bound§12) a,ﬂ(4) to the
similar analyses could be made for the non-existence ofdongodeC described b3H( ), we obtain, respectively,,i, (C ) <

cycles. 0 80 and dwin(C) < 108. In addition, from duy,(C) = 32
and Lemmd 31 in Appendild | we obtais2 < dy,in(C) <
VII. TYPE-1 QC CODES BASED ON 2dmin(C) = 2-32 = 64. Moreover, because the matridgs)],
DouBLE COVERS OFTYPE-Il QC CODES (2 &) [ 2 e | % e |, [;”b *. | commute with each other,

and because MacKay and Daveys upper bound [4] can be

So far, we have mostly consideréd, I)-regular QC codes : : .
that are described by &x I polynomial parity-check matrix. reformulated so that it holds also for commuting matricesrov

However, one can construct many interestig, I')-regular polynomials, we obtawdmin(_C) < 32. Because the codé
QC LDPC codes with @ x I polynomial parity-check matrix has parametef868, 93, 32], this latter bound actually happens

whereJ’ # J andlorI’ # I. Given the enormity of the search l()je tight. Theref((j)re ?Ithough the ab|(_)|ve constr;c?on can
space, a worthwhile approach is to start with some small cogPluce a new code whose minimum Hamming distance is

to twice as much as for the base code, if the base code
that has good properties and to derive longer codes from Y . ’ .
In this se?:tion 5veppresent such an approagch, along with q eady reaches the bound given Bl (2) then there is no furthe

analysis of it. Of course, there are many other possitxititle'mprovement possible for the new code because the above

we leave them open to future studies. (Note that this schSﬁtens'on of MacKay and Davey’s upper bound to commuting

deals only with QC codes, however, similar investigatioas c matrices over polynomials will yield exactly the same upper

also be pursued for convolutional codes.) bound. . . .
However, by changing some entries of polynomial blocks

Example 29. Let C be a QC code described by(d’,I’)- (and thus adding some randomness) we can ensure that the
regular type2 polynomial polynomial parity-check matrix nonzero2 x 2 polynomial block entries do not all commute
H(x) of size J x I. We would like to derive a typé- with each other anymore. Thus, the above-mentioned mini-
polynomial parity-check math( ) (of some cod&) from mum Hamming distance upper bound 3 does not apply

H (z). One idea for obtaining such H (z) is to replace all anymore. (In fact, not even the above-mentioned minimum
1 x 1 sub-matrices ofH (x) by 2 x 2 sub-matrices in the Hamming distance upper bound 6f applies anymore be-
following way: cause the Tanner graph of the modified parity-check matrix is

« The sub-matrixo] is replaced by the sub-matr{§) §]. ~ not a double cover of the Tanner graph Kf(z).) Applying
« A sub-matrix like [+*] is replaced by the sub- matrixsuch a change to the matril(z) (in fact, changing only
2" 0] (or the sub-matrix % =" 1).

%
o A sub-matrix like[+*+2*] is replaced by the sub-matrix BNote that in Examplé_33 this code was calléd and its polynomial
o parity-check matrix was called’ ().

b . b a
[ ia:| (or by the SUb'mat”X{ Ty )- l4see Appendifll for more details.
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Word error rate [1]

— N
10 1 —o— - Random Code (after max. 64 Iterations) ' ' ' f i ' ,\‘\‘ A
(| —©— Random Code (after max. 256 Iterations)
107k —A— - QC-LDPC Code (after max. 64 Iterations) X
—A— QC-LDPC Code (after max. 256 Iterations) E

lo_ | | | | | | | |
0 0.5 1 1.5 2 2.5 3 35 4 45 5
E,/N, [dB]

Fig. 3. Decoding performance of 868, 93, 32] QC LDPC codeC and the[368, 93, 56] QC LDPC codeC from Exampld 2P vs. a randomly generated
(four-cycle free)[368, 92] LDPC code under sum-product algorithm decoding when trittisgnover a binary-input AWGN channel. Because the penfance
curve for both QC LDPC codes is nearly the same in the sinulilaignal-to-noise range, we have only shown the performaocee of the QC LDPC
codeC. We observe the onset of an error floor of the word error ratabaut4.5 dB for the randomly generated (four-cycle free) LDPC codesiilar
observation was made for other randomly generated LDPCscaite the same parameters. (Not shown in the plot.)

the first block of the matrixfI(x)) we obtain the following decoding performance of the codé€sand C is nearly the
(3,4)-regular parity-check-matrix same in the simulated signal-to-noise range, only the degod

sl g2 0 0 20 20 performance of the cod&is shown. For higher signal-to-noise
22 20 0 0 0 2t 0 28 ratios and correspondingly smaller word error rates we expe
R S0 20 0 g0 220 0 0 that the code will perform better than the codé. O
H{(x) = 0 2 0 29 220 210 0 0
25 19 7 14
8 8 ilg i% 8 8 514 "277 The polynomial parity-check modification methods of this

and the previous sections can now be combined and iterated.
for some code. Interestingly enough, for = 46 the code For example, one can start with a typepolynomial parity-
C has parameterf368,93, 56|, i.e., the minimum Hamming check matrix and form (by rearranging entries) a tgper
distance is56, which is significantly above2[5 Potentially, type-3 polynomial parity-check matrix. From this, Zcover
the minimum Hamming distance increases even further ftype-1 matrix (that includes a few twists) can be obtained as
suitable larger choices of Note that the rate of is 93/368, discussed above. Instead Bovers with twists one can also
i.e, it is nearly the same as the rate @f which is47/184. considerM-covers withM > 2. For suchM, the nonzero
Of course, the Tanner graph & () is not a double cover M x M sub-matrices that replace the nonzeroc 1 sub-
of the Tanner graph off (), however, its proto-graph is amatrices can be suitably chosen so that they do not commute
double cover of the proto-graph d# (z) and so the Tanner and so that consequently MacKay and Davey’s minimum
graph of H (z) is a 2r-cover of the proto-graph off (x). Hamming distance upper bound does not apply.
_ The sum-product algorithm decoding performance of codes
C and( is shown in Figurd13 and compared to a randomly -, . . ;
generated (four-cycle frea, 4)-regular LDPC code of the This method is just one of many possible ways to construct

nd analyze &J’, I')-regular QC LDPC code with a poly-
same length and nearly the same rate. Actually, because E%%ial parity-check matrix that hag rows andl columns

15Note that the bound€X(2) andll(4) yield, respectively,,(C) < 74 and  With J' # J andlorl’ # I. We leave it for future research to
dmin(C) < 108. construct and analyze such codes.
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VIIl. CONCLUSIONS in (IJ0) and we need to take care of this degeneracy. Our

We have presented two minimum/free Hamming distandgategy will be to show thadsc(Ceonv) is never larger than
upper bounds for QC/convolutional codes, one based on N @ nonzero term and therefore, although this nonzero ter
polynomial parity-check matrix and one on the weight matri@PP€ars in thenin® operation in [(#), it does not produce a
Afterwards, we have seen how these upper bounds can'§@ng upper bound.

strengthened based on the knowledge of Tanner graph pgample 30. Before we continue, let us briefly discuss a
rameters like girth. We have also constructed several @asgolynomial parity-check matrix where the above-mentioned

of codes that achieve (or come close to) these minimufggeneracy happens. Letbe a code with polynomial parity-
Hamming distance upper bounds. Several extensions of theggck matrix

results have recently been presented by Butler and Siefiel [4

In future work it would be interesting to establish sim- N 1 1 12 13 f()
ilar bounds for the minimum pseudo-weight (for different H(z) = |1 r r 5 v 3 g(x)
channels) of QC/convolutional LDPC codes. (Some initial 0 1+z 1+2° 1+2° h(z)
investigations in that direction are presented(in [42].) and with weight matrix
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Bocharova and Florian Hug concerning the minimum Hanfional codeCeon, has parity-check matris (y) = H (z)[.=y.
ming distance of some of the presented codes and for provigket § = {0,1,2,3}. Clearly, the matrixHs(y) is rank-

ing us with the polynomial parity-check matrix in Examplé 12d€ficient because the last row of this matrix is the sum of
the first two rows. This implies that aBl x 3 sub-matrices

of Hs(y) have zero determinant, so &lx 3 sub-matrices
of Hs(y) have zero permanent, and so the codeword gen-

erating procedure in Lemnid 6 yields the codewefd) =

The main part of this appendix is devoted to proving th&)’070’070) for the above choice of the s& However, the
convolutional code part of Theorefd 8. The QC code pagm in [10) is

follows then simply by combining the convolutional codetpar
of TheoreniB (applied to the convolutional cads,,, defined Z perm (Ag\l-)
by the polynomial parity-check matrid (y) £ H(z)|s—y i€S
over Fs((y))) with Tanner's inequalityl]]lﬁ = ((2-1-1 +21-1)
Let us therefore prove the convolutional code part of ((0-1-1+0-1-1)
Theorem[B. We use the same notation as in Lerhina 6 and ((0.1.1 L 01)
( )

APPENDIXA
PROOF OFTHEOREMI[8|

2.1 1+21-1

( 21-1+ 211
(2114211

(

(

+ )+ ( ) +
+ )+ (211 +2:1-1)) +
Theorem[V (and their proofs). We start by observing that, + (211421 + 211+ 211)) +
because the permanent is a certain sum of certain products, ((0-1-1+0-1-1) + (2-1-1 +2:1-1) + (2:1-1 + 21-1))
we can use the triangle and product inequality of the weight= 36. (11)

function to obtain ]
If we can show thatlfe.(Ceonv) IS NOt larger thard6 then we

wr(c(y)) = > wt (perm (Hs\i(y))) are sure that the value oF ,_ perm(Ag, ;) does not yield a
i€S wrong upper bound. We will do this by exhibitingreonzero
< erm ( (wt(H _ codewordc’(y) with Hamming weight not larger tha3e.
;p (( ( (y)))s\l) In order to construct such a codewatty), let H'(y) be
_ Z perm (Ag,,) (10) the2 x5 sub-matrix ofH (y) that consists of the first two rows
~ S\i/s of H(y), and letA’ be the2 x 5 sub-matrix ofA that consists

) o of the first two rows ofA. Because of the above-mentioned
where in the last step we have used the definitidn= " rank deficiency ofHs(y), any vectorc'(y) in the kernel of
wt (H (y)). H'(y) that is zero at the fifth position must be a codeword in

With this, the result in[{4) is nearly established with th@Conv Now, applying the codeword generating procedure of

exception of the case when the codeword construction jimma[® forH'(y) and for the sets’ = {0, 1,2} we obtain
Lemma® produces the all-zero vectdy); in Eq. (3) of The- the codeword

orem[T we properly took care of this case by usingifie*
operator instead of thenin operator. However, such an all- dy)=(y+y* 1+y*> 14y 0 0).

zero vectore(y) can yield a nonzero terp,; s perm(AS\i) (Because of the choice &, it is clear that the fifth position

, . .
16Here and in the other appendices, we useRh@)) instead of the longer of ¢/(y) is zero. Moreover and most importantly, because the

Honv (y) for denoting the polynomial parity-check matrix of a conuadnal
code. 17Fifth position” refers here to the vector entry with indéx



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY

matrix Hs/(y) has full rank,c'(y) is a nonzero codewofd)
This nonzero codeword yields the free Hamming distance
upper bound

> perm (Agn,) = (114 11) 4+ (114 1-1) + (11 + 1-1)
=

= 6. (12)
Clearly, 6 is not larger than36, and so the value
> iesperm(Agy;) implied by c(y) yields a valid upper
bound on the free Hamming distance.

Alternatively, the fact that the value if_(12) is not larger
than the value in[{11) can also be seen from the following
observation. By multiplying the expression [n112) bythe
weight of the element in the third row and fourth column of
A, i.e, the entry ofA with row index2 and column index),
we obtain

(211 4 2-1-1) 4 (211 4 2-1-1) + (2-1-1 + 2-1-1),

which is a sub-expression df_{11). Because all term$ih (11)
are positive, it is clear that the value {[n.112) cannot bedarg
than the value in[{11). O

In order to complete the proof of Theorem 8, we will
generalize the observations that we have just made in thesabo
example. LetS be a subset dff] with |S| = J+1 and lete(y)
be the codeword that is obtained by the codeword generating
procedure of Lemmia 6 for the s&t Note thate(y) is the all-
zero codeword if and only if alfl x J sub-matrices o s(y)
have zero permanent, if and only if all x J sub-matrices of
Hs(y) have zero determinant, if and only if the matfiks(y)
is rank-deficient.

We want to show that the value 9F,_g perm(Ag,;), if
it is nonzero, is always an upper bound @fe(Ceonv)-

o Assume thai{s(y) has full rank. There(y) is a nonzero
codeword and s§_,_ s perm(Ag,;) is a free Hamming
distance upper bound because of the inequalities ih (18

o Assume that Hs(y) has not full rank and that
dics perm(AS\i) = 0. Then perm(AS\i) = 0 for
all i € S. It follows that perm(H (y)s\;) = 0 for all
i € S and thate(y) is the all-zero codeword. Therefore,
although c¢(y) is the all-zero codeword, this case is
properly taken care of by thein® operator in[(4).

« Finally, assume thaH s(y) has not full rank and that
dics perm(AS\i) > 0. (Note that this can only happen
for J > 2.) Without loss of generality, we can assume
that the rows ofH (y) are ordered such that the last row
of Hs(y) is a linear combination of the first — 1 rows
of Hs(y). Denote the entries df (y) by h;:(y) and the
entries of A by «a;;, and letH'(y) be the(J—1) x I
sub-matrix of H consisting of the first/ — 1 rows of
H (y) and A’ be the sub-matrix ofA that consists of the
first J — 1 rows of A.

Because of the assumptidn, ¢ perm(AS\i) > 0, there
must be at least onee S such thatperm(AS\i) > 0.

18|n the proof of the general case we will also have to take imtwoant
the case wherd s/ (y) doesnot have full rank.

dfrcc(cconv) g min*

16

Using the co-factor expansion of the permanentgf;,
this implies that there is at least oitee S\ 7 such that

@ j—1,** perm(Azs\i)\i*) > 0. (13)

Fix such an* and letS’ £ S\i*. Assume for the moment
that Hg, (y) has full rank. Applying the codeword gen-
erating procedure in Lemnia 6 for the polynomial parity-
check matrixH'(y) and the setS’ we obtain a nonzero
vectorc'(y) which is in the kernel off’(y). Because of
the rank deficiency offs(y) and because,, (y) = 0 for

i’ € [I]\ &’ (and therefores, (y) = 0 for i’ € [I]\S), the
vectorc’(y) must also be a codeword @,,,,. Therefore,
because’(y) is a nonzero codeword, the free Hamming
distance ofC..,, can be upper bounded as follows

dfree(cconv) < WH (C/(y)) < Z perm (A:S’\z’)
ires’
<aj_1,n Z perm (Afg,\i,),
ies’
where we have used the fact that the inequality
in (@3) implies a;_1;~ > 1. However, because
aj-ti- + Yues Perm(Al, ;) is a sub-expression of
> ies perm(Ag,;) we obtain

dfrcc(cconv) g Z perm (AS\z)v
ies

where we have used the fact thaf, perm(AS\i)
contains only non-negative terms.
It remains the case whet, (y) has not full rank. We
can solve this case with a similar procedure as above.
Note that the above choice of ensures that there will
be a suitable’”™ € S'.

APPENDIXB
PROOF OFCOROLLARY[9

The main part of this appendix is devoted to proving the
involutional code part of Corollafyl 9. The QC code part
follows then simply by combining the convolutional codetpar
of Corollary[9 (applied to the convolutional codg,,,, defined

by the polynomial parity-check matridH (y) £ H (z)|.—y

over Fy((y))) with Tanner's inequality[{1).

Let us therefore prove the convolutional code part of Corol-
lary[@. We have to consider two cases. First, assume that the
weight matrix A is such that there is at least one &&tC [/]

with

|S'| = J +1 such that)", s, perm (Ag:\;) > 0. Using

e fact that the weight matrid of a typed convolutional
code contains only zeros and ones, we can conclude that for
such anS’ we haveperm (Agn;) < J! for all i € §’, which
implies that

nin Z perm (As\i)

|S|=J+1 €S

< Z perm (AS'\i)

€S’

<Y =

€S’

(J+1)-J1 = (J+1).

This is the upper bound that we set out to prove.



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY

Secondly, assume that the weight matrid is such
that for all setsS C [I] with |S| = J + 1 it holds
that ), gsperm (Ags\;) = 0. Notably, this implies that
perm (Ag\;) = 0 for all setsS and alli € S. (Parity-
check matrices with such a weight matrid are rather
degenerate and in general uninteresting. However, we meed t
properly take care of this case too in order to verify that the
corollary statement holds for all possible typ&onvolutional
codes.) From the above condition it follows thEt(y) must
be such that for all setsS C [I] with |[S] = J +1
and for alli € S it holds thatperm (Hg\;(y)) = 0,
i.e, det (Hg\;(y)) = 0. This latter statement, however, is
equivalent to the statement th# (y) does not have full
row rank. The cod€..,, can therefore also be defined by
a suitably choserfJ—1) x I sub-matrix of H(y). If J > 1
then applying this corollary recursively to thig—1) x I sub-
matrix we obtaindgee(Ceonv) < ((J—1)+1)! = J!I, which
implies dgee(Ceonv) < (J+1)!. Otherwise (e., whenJ = 1),
it clearly holds thatdfee(Ceony) < (J+1)! =21 = 2.

APPENDIXC
PROOF OFTHEOREM[18

We prove only the QC code part of the theorem. The
convolutional code part follows by a similar argument.
Assume thaC has polynomial parity-check matri& ().

We establish upper bounds on the girth of the Tanner graph

of H(x) by exhibiting the existence of certain cycles in that
graph. These cycles are found using techniques from[[5], [36

a) Let
|

o
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in Z (and therefore also iZ/rZ).

c) Let

[x“ +a2b 2t 4+ xd]

be a sub-matrix matrix o having the third weight
configuration. The path

L S L

shows that the Tanner graph & (z) has at least one
8-cycle since

(a=b) + (¢c—d) + (b—a) +

in Z (and therefore also it /rZ).
Let

(d=c)=0

d)
[:C“ +a2b + 966}

be a sub-matrix matrix off having the stated weight
configuration. The path

A S LN Ll

shows that the Tanner graph & (z) has at least one
6-cycle since

(a=b) + (c—a) + (b—c) =0
in Z (and therefore also it /rZ).

APPENDIXD
PROOF OFLEMMA

We prove only the QC code part of the lemma. The

convolutional code part follows by a similar argument.

Note that a2 x 2 sub-matrix B(z) must, up to row and

be any sub-matrix ofH (z) having the first weight column permutations, look

configuration. The path

d b d e
VL N N LU S N

—a¢ =l = 2f = ab - 29,

shows that the Tanner graph & (z) has at least one
12-cycle since

(a—d) + (f—c) + (b—e) + (d—a)
+(c—f)+ (e=b)=0
in Z (and therefore also i /rZ).

b b

ither like B ;”d} or like ﬁ) ;”d} or like ﬁ) ﬁd}
. z* 0 . x¢  xb . x® 0
or like LCC 0} or like [0 0] or like {0 0} ,

for somea, b, c,d € Z/rZ.

In the first case,

wt (perm (B(:C))) < perm (Wt (B(x)))

holds if and only if

b) Let wt (2974 + 2b¢) < 2,
v if and only if

%+ ¢ )

a+d b+c =0 'n F T

be a sub-matrix matrix offf (x) having the second S (in ¥, 7l
weight configuration. The path if and only if
T L L at+d=b+c (inZ/rZ),
c d e c a

—r T =T =T =T ifandonlyif

shows that the Tanner graph & (z) has at least one
10-cycle since

a—c+d—0b=0 (inZ/rZ),

which is equivalent to the existence oftacycle in the Tanner

(a=b) + (d—e) + (b—a) + (c—d) + (e—c) =0

graph, see the conditions inl [5], [36].
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In the second and third caseyt(perm(B(z))) < Therefore, let us focus on the second argument of the min-
perm(wt(B(x))) holds if and only ifwt(2*"%) < 1, i.e, if operator in[(IV)i.e.,
and only if1 < 1. However, this is never the case. This agrees .
with the observation that such« 2 sub-matrices cannot induce sdin > wt (pefm (HS\i(y)))' (19)
a four-cycle in the Tanner graphl[5], [36]. T ies

In the fourth, fifth, and sixth caseyt(perm(B(z))) < We consider two sub-cases. First, assume that the polyhomia
perm(wt(B(x))) holds if and only ifwt(0) < 0, i.e,, if and parity-check matrixH (y) is such that there is at least one set
only if 0 < 0. However, this is never the case. This agrees wityy < S5¢0,1} such thaty", g wt gperm (Hs vy ))) > 0.
the observation that suchx 2 sub-matrices cannot induce aany upper bound on this sum will be a valid uppef bound on

four-cycle in the Tanner graphl[S]. [36]. the expression il (19). Fare {0, 1} we find that

The proof is concluded by noting thatdacycle can appear
only in a2 x 2 sub-matrix of a type- polynomial parity-check wt (perm (HS,\l- (y))) < J!, (20)
matrix.

where we used the fact thé (y) is a typei polynomial
parity-check matrix.
Fori € 8\ {0, 1}, however, we want to use a more refined
analysis. We define the following sets.
The main part of this appendix is devoted to proving the « We defineP’ to be the set of all permutation mappings
convolutional code part of Theorem]22. The QC code part from [J] to S’ \ {i}.
will be considered at the end of this appendix. o We defineP” C P’ to be the set of all permutation
The proof of this theorem is based on upper bounding the mappings from[J] to &’ \ {i} that map(0,1) to (0,1)
free Hamming distance upper bound [0 (3), thereby taking or map(0,1) to (1,0).
advantage of the fact thdf (y) = Hconv(y) is assumed to be  « We defineP/, ,, to be the set of all permutation map-
of type1 and to have a-cycle. For ease of reference, EQl (3)  pings from[.J ] \ {0,1} to 8"\ {0, 1, i}.

is repeated hera.e., With these definitions, we obtain
dfroe(Ceony) < min* Zwt (perm (Hg\l( ))) (14)  perm (HS’\z'( ))

\S‘S\C‘[JIJH i€S Z H . )
Without loss of generality, we can assume that the rows and cEP’ jelJ] rou
columns of H(y) are labeled such that the presenrtycle
implies that the sub-block - Z H hjo() (Y Z th, (Y

APPENDIXE
PROOF OFTHEOREM[2Z

oc€P jelJ] oc€eP’! \P”]E[J
[Zoo( Y) 201(9)} 15) = (hoo(y)P11(y)+hor(y)hio(y Z H hje() (Y
() hi(y) o€PYy 1y JELIN{0.1}
has permanert (in F2((y)), i.e, that + Z H hjo(i) (Y

hoo(y)h11(y) + hoi(y)hio(y) =0 (in F2((y).  (16) oEPAP JEl]

ST by @) (0 Fa(w),

oc€P'\P" jE[J]

We define the following sets.

o LetS;0,1) be the set of all sets C [I] with |S] = J+1
that arenot supersets of0, 1}.

o LetS5y0.1y be the set of all setS C [I] with S| = J+1
that are supersets ¢b, 1}.

Then [1%) can be rewritten to read wt (perm (Hsl\i(y))) < J! = 2(J-2), (21)

where in the last equality we have taken advantagé _af (16).
Clearly,|P’'\ P"| = |P'| — |P"| = J! — 2(J — 2)!, so that we
can upper bound the weight pbrm(Hgn;(y)) as follows

divee(Coony) < min( min* ZWt ( perm ( Hsv(y))) where we have again used the fact tidty) is a typed
SE€S310.1) fca polynomial parity-check matrix. Combining (20) afdi21)g w

obtain
min wt ( perm (Hg\; >
5653{0]}2 ( ( s\vily ))) Zwt(perm (Hsl\i(y)))
a7 €S’
The first argument of the min-operatorn{17) can be adddesse = Z wt (perm (Hsni (y)))
with a reasoning that is akin to the reasoning in the proofs of i€{0,1}
Theoreni 8 ¢f. AppendiXA) and Corollarfl9df. AppendixB). + Z wt (perm (HS’\i(y)))
This yields i€SN{0,1}
! — 1 —9(J—2)!
min* Zwt (perm (HS\Z(y))) <(J+1L (18) <2+ (J=D(J! = 2(J-2)Y)
SE€5%¢0.1) ics < (J+1)! = 2(J-1). (22)
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It remains to address the second sub-case, namely whaleng with Tanner’s inequality{1), yields the QC code part
we assume that the polynomial parity-check matfik(y) of Theoren{2P.
is such that for all setsS € S5y it holds that

> ies Wt (perm (Hg\i(y))) = 0. This, however, is equiv- APPENDIX F

alent to the assumption that for all seisc S5, and all PROOF OFLEMMA [24
1 € S it holds thatperm (Hg\l(y)) = det (Hg\l(y)) =0,
which in turn is equivalent to the assumption that for all e prove only the QC code part of the lemma. The

S € S50 the sub-matrixHs(y) does not have full row convolutional code part follows by a similar argument.
rank. We consider only the case where all the entriedg3¢k) are

Pick any S’ € S-0,13 and let codeC,,,, be the code monomials,i.e.,
defined byH s (y). Without loss of generality, we can assume
that the rows ofH(y) are ordered such that the last row B(z)
of Hs/(y) is a linear combination of the firsf — 1 rows
of Hs/(y). Let C/,, be the code that is defined by the
(J—1) x (J+1) sub-matrixH|;_; s/(y) of Hs:(y). Clearly, for somea,b,c,d,e, f,g,h,i € Z/rZ. (The discussion for
, ,, matricesB(x) where some entries are the zero polynomial is
direc(Ceonv) < diree(Coony) = diree (Coony) analogous.() iSy expanding the permanpatm (B) of B(x)
< (-1 +1)l =T, we obtain

where the.firft step follows from the fact that any nonzero poketi | pbftg | petdth | potetg y oty bhbdti
codeword inC induces a nonzero codeword @R,,., the

conv

2@ b c
— (Ed 7€
9 T

second step follows from the equivalence®f,, andC/,,,, Therefore,
and the third step follows from Corollafy 9. Without loss of
generality we can assume thdt > 2 (otherwise a typd- wt (perm (B(:z:))) < perm (wt (B(:c)))

polynomial parity-check matrixH (y) cannot have a four-
cycle), and so we can upper bound the previous result faglds if and only if

follows . ,
xa+e+z+xb+f+g+xc+d+h+xc+6+g+xa+f+h+xb+d+z < 6.

dree(Coonv) < (JH+1)! — 2(J=1)L. (23)
, o For this to hold, there must be at least two monomials that are
Finally, combining [(IB) and((22), of(1l8) an@123), Wepe same (irF{"[z]). Two different cases can happen.
conclude that the convolutional code part of Theofemh 22 is

indeed correct, independently of which sub-case applies. =
The QC code part of Theorel22 can now be obtained as "€ same (irf'; [z])&d Then

follows. Without loss of generality, we can assume that the . .

rows and columns of (z) are labeled such that the present ateti=b+ftg (nZ/rZ),

« Suppose that two monomials lik¢ T+ andz*+/*9 are

4-cycle implies that the sub-block ie.
hoo(z)  hoi(x) - - o .
[hm(a?) hi1(z) a—g+i—f+e—-b=0 (inZ/rZ).

According to the conditions in [5]/ [36], this is equivalent

has permanertt (in F$”[z]), i.e. that : .
P (in 2 fe]), to the existence of &-cycle in the Tanner graph.

hoo(x)h11(x) + ho1(2)hio(z) =0  (in Falz]/(z"—1)). « Suppose that tW(<) >monomials likeeteti and pot/+h
o (r =
Note that this doesiot imply (I8) for H(y) & H(z)|.—y. are the same (i [x]) Then
However, because multiplying a row &f (z) by an invertible ate+i=a+f+h (inZ/rD),
element ofFy[z]/(z"—1) produces a parity-check matrix for
the same code, and because multiplying a columBl¢#) by ie,
a monomial produces a parity-check matrix of an equivalent
coddl{ we can, without loss of generality, assume tihtz) e—h+i—f=0 (nZ/rZ).
is such that

According to the conditions in [5][36], this is equivalent
[hOO(fC) hot (x)} — [1 1] to the existence of d-cycle in the Tanner graph.

hio(z) hii(x 1 1 . .

10(z) (@) The proof is concluded by noting thatéacycle can only
For such a reformulated (), the polynomial parity-check appear in & x 3 sub-matrix of a type- polynomial parity-
matrix H (y) = H (x)|,—, satisfies condition (16). With this, check matrix.
the application of convolutional code part of TheorEm 22,

20Here, z2teti and2b+f+9 are such that the variables that appear in the
19Two binary codes are called equivalent if the two codeworts sge exponents are all distinct.

equal (up to coordinate permutations). Clearly, equivatedes have the same  2!Here, 22+ and z+f+" are such that there is exactly one variable,
minimum Hamming distance. i.e., a, that appears in both exponents.
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APPENDIXG APPENDIXH
PROOF OFTHEOREM[2H PROOF OFTHEOREM[26

The proof is very similar to the proof of Theordml22 in We prove only the QC code part of the theorem. The
Appendix[E and so we will only discuss the main steps @onvolutional code part follows by a similar argument.
the argument. The following steps are necessary to adapt th&he proof of the first part of the QC code part of the theorem
proofs of Theoreriid2 in AppendiX E to the present corollaris very similar to the proof of TheoremR2 in Appendik E and

Convolutional code part: the proof of Theoreni 25 in Appendix]G, and is therefore
« Sp00.1) is replaced by a similarly defined S8t 0,10y Omitted.
o Soy0,1} is replaced by a similarly defined séb ¢ 1 2}- So, let us focus on the second part of the QC code part of

« The line of argument leading td (22) is replaced by thihe corollary. Because the products on the left-hand ard-rig
observation that for anys’ € S51,2) and any: € hand side off(9) are assumed to be nonzero, for eyeryrR

S\ {0, 1,2} it holds that there exists an integer; ,(;) € Z/rZ such that
wt (perm (Hsl\i(a:))) < J! = 2(J-3)L hjo(y(w) = Pie@,
Therefore, for anys’ € S5y¢,1,27 We have Similarly, for everyj € R there exists an integey; .(;) €
Z/rZ such that
Z wt (perm (Hsn; (x))) /
€S’ hjﬂ_(j)(x) = gPiTG)
= Z wit (Perm (HS'\i(I))) + The condition[(P) can then be rewritten to read
1€{0,1,2}
xPie) = zPir) - (in Fé” [x])
Z wt (perm (HS/\Z-(I))) J_I;IQ 316_7[%
i€87\{0,1,2} . . .
< BJ1+ (J—=2)(J) — 2(T—3)) Clearly, this holds if and only if
< (J+1)! = 2(J-2)L. D pioty = > piry (nZ/rZ). (24)
o The line of argument leading t6 (23) is replaced by the JER IeR
observation that Now we definer to be the permutation mapping= o' o
divee(Coony) < diree(Clon) = diree(C ) T from R to R. (/By assumptiongr is cyclic of order/j‘%.A)
< (J—1) + 1)1 = J1 Moreover, we letj; be some element R and we setj; =
< (=D +1)t =L 7(jt), t = 1,...,R—1. Then, the condition in{24) holds if

Without loss of generality we can assume that> 3 and only if

(otherwise a typéd-polynomial parity-check matri¥ (y) _

cannot have a six-cycle), and so we can upper bound the - L (in Z/rT
previous result as follows 2 Pioti) = 2 Pty (Z/r2),

diree(Ceony) < (JH1)! — 2(J=2)!. which holds if and only if
QC code part: R—1
« Without loss of generality, we can assume that the rows > (vt —PitrGp) =0 (N Z/rZ).  (25)
and columns off (x) are labeled such that t=0
hoo(2)h11(2)hag () 4+ hot (2)hia(x)heo (z) = 0 Because we assumed that = o' o 7 is a cyclic per-

. , L mutation of orderR, the condition in [[2b) is equivalent to
(in FQ["T.]/@ ._1>)' Because multiplying a row off (z) Tanner's condition on the existence of2d&-cycle, seel[b],
by an invertible element offy[x]/(z"—1) produces a @E] (Note thata(jtﬂ) = o(n(j})) = r(j}) and that

polynomial parity-check matrix for the same code, an dit) = U( G, )) TGk 1))
because multiplying a column dff () by a monomial 0 TJR-1 JR-1):
produces a parity-check matrix of an equivalent code, we

APPENDIXI

can, without loss of generality, assume tif#{z) is such
GRAPH COVERS

that
hoo(z) ho1(z) hos(z) 1 1 hoo(z) This appendix collects some results that are used in Sec-
hio(z) hai(z) hoa(z)| = [hio(z) 1 1 ~tion[VI The focus is on QC codes, however, similar results
hoo(z) hot(z) has(x) 1 hy(z) 1 can also be stated for convolutional codes.

(See the end of Appendi&l E for a similar reasoning.) Let C be a QC code with polynomial parity-check matrix

For such aH (z), the polynomial parity-check matrix H(z) = [hj,i(w)} e Fér} [x]JXI.
H(y) £ H(z)|,—, satisfies : i

hoo(y)h11(y)ha2(y) + ho1(y)hi2(y)hao(y) =0
(in F2(()- H(r) = H (@) + H? (@) (in F{[z]7*7)

We define the decomposition
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with matrices

H(l)(:c) _ {hglz) (a:)]” c F§T> (2] %7
and

H(z) = [hﬁ)(:c)} B c IFér) [2)7%1.
Based on this decomposition, we define a new c6dsith
the polynomial parity-check matrix

HW(z)

@) (2 ) 120 %2
H(z) = |:H(2)(I) iy )} € Y 2272,

HO(z)

Lemma 31. The minimum Hamming distances @fand C
satisfy

dmin (C) g dmin(é) < 2. dmin (C) (26)

21

{7 [x])
HY(z) c(x)"+ H?(z) - c(z)" =07,
H® () e(2)"+ HV(2) - e(z)" =0".

and so (inF

which are exactly the equations thtr) must satisfy in order
to be a codeword i. Therefore, becaus®x) # 0,

dmin(é) g wWH (5(117)) =2- wWH (C(:Z?)) =2 dmin(c),

thus proving the second inequality in_{26). [ |

Assume that the matriceBl (V) (x) and H® (z) are such
that Wherh§}i) (x) andhfi) (x) are added to obtaih; ;(z), then
no terms cancel for any and andi. In this case it can easily
be seen that the Tanner graph Hf(z) is a double cover of
the Tanner graph off (x). This means that Lemnial31 relates

Proof: Let us start by proving the first inequality in_{26).the minimum Hamming distance of a Tanner graph and the

Let &xz) = (cM(z),c®(z)) be a codeword inC with
Hamming weightoy (&(z)) = wa (™ (2)) +wn (c® (2)) =
dimin(C). We show thaie(z) £ ¢ (z)
becausei(z) € C, we have (inF{"” [z])
H(l)(:c) . c(l)(x)T + H(Q)(:z:) ) ()T =0T,
H(z) V@) + HV(z)- P ()T =07,

(27)
(28)

Adding these two equations we obtain (Ii\ér> [x])
.
(H(l)(x) + H(z ) : (c(l)(x) + c(z)(x)) =0,
c(x) # 0 then
CC
(@) + ()
< wy (c(1 (x)) + wn ( @) (a:))
= wy (6(:0)) = dmin((:'),
thus proving the first inequality il_(26). I&(x) = 0 then

)
showing thate(z) € C. If
dmin(c) (

= WH (C

cV(z) = @ (z) and so both[{27) and(R8) can be rewritte

to read (inF{" [z])

(HO (@) + HO(@)) - D (@)" = o,
showing thate™ (z) =
dmin(C) < wh (C(l)(x)) <2-wh (C(l)(ff))

= wi (&(2)) = dmin(C),

thus proving the first inequality id (26).

We now prove the second inequality [0126). Ltr) be a
codeword inC with Hamming weightwy (¢(z)) = diin(C)
and defineé(z) £ (c(z),c(x)). We show thaté(z) € C.
Indeed, because(z) € C, we have (inFy” [z])

H(z) c(z)"=0".
2,
(H(l)(x) + H(Q)(x)) ce(zx)T =07,

c?(x) € C. With this,

Therefore (inF

+¢c?(x) € C. Indeed,

minimum Hamming distance of a certain double cover of that
Tanner graph.

There is another way to obtain the same double cover (up
to relabeling of the coordinates). Namely, based on cbde
define the cod€’ with the polynomial parity-check matrix

H'(z) € FY [2]2772.

This time the matrix H'(z) is obtained fromH (z) by
replacing, for eachy and eachi, thel x 1 entry

hyi(z) = h$) (z) + h') (2)

(1) (2)
(h{éi) (z) h{,li) (x)> .
hj,i (z) hj /()
It can easily be checked thall’(z) equals H(z) up to

reshuffling of rows and columns. Therefore, the Tanner gsaph
of H(z) and of H'(x) are isomorphic, showing that they

by the2 x 2 entry

rﬁiefine the same double cover of the Tanner graplHgf)

up to relabeling of the bit and check nodes).

Let us remark that[[43]5[45] consider simil@rcoverd?
Namely, for some (scalar) parity-check mati#X, these au-
thors first constructed the trivi&-cover

~ H 0

7 [0 H} .
Then, in a second step they sdiit into H = H'+H"', where
the matricesH’ and H” were chosen such that the nonzero
entries do not overlap. Finally, they formulated a modified
cover as follows
H/

_ H"
[ ]

H/
We conclude this appendix by remarking that similar results

can be proved for generdl/-covers, where\/ is a power of
2, by iterating the results of this section multiple times.

22The paper[[45] also considers higher-degree covers, incpkat covers
whose degree is a power df
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