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Quasi-Cyclic LDPC Codes:
Influence of Proto- and Tanner-Graph Structure on

Minimum Hamming Distance Upper Bounds
Roxana Smarandache,Member, IEEE,and Pascal O. Vontobel,Member, IEEE

Abstract—Quasi-cyclic (QC) low-density parity-check (LDPC)
codes are an important instance of proto-graph-based LDPC
codes. In this paper we present upper bounds on the minimum
Hamming distance of QC LDPC codes and study how these upper
bounds depend on graph structure parameters (like variable
degrees, check node degrees, girth) of the Tanner graph and
of the underlying proto-graph. Moreover, for several classes of
proto-graphs we present explicit QC LDPC code constructions
that achieve (or come close to) the respective minimum Hamming
distance upper bounds.

Because of the tight algebraic connection between QC codes
and convolutional codes, we can state similar results for the free
Hamming distance of convolutional codes. In fact, some QC code
statements are established by first proving the corresponding con-
volutional code statements and then using a result by Tannerthat
says that the minimum Hamming distance of a QC code is upper
bounded by the free Hamming distance of the convolutional code
that is obtained by “unwrapping” the QC code.

Index Terms—Convolutional code, girth, graph cover, low-
density parity-check matrix, proto-graph, proto-matrix, pseudo-
codeword, quasi-cyclic code, Tanner graph, weight matrix.

I. I NTRODUCTION

QUASI-CYCLIC (QC) low-density parity-check (LDPC)
codes represent an important class of codes within

the family of LDPC codes [1]. The first graph-based code
construction that yielded QC codes was presented by Tanner
in [2]; although that code construction was presented in the
context of repeat-accumulate codes, it was easy to generalize
the underlying idea to LDPC codes in order to obtain QC
LDPC codes [3]–[6]. The simplicity with which QC LDPC
codes can be described makes them attractive for implemen-
tation and analysis purposes.

A QC LDPC code of lengthn = Ir can be described by a
Jr× Ir (scalar) parity-check matrix that is formed by aJ× I
array of r × r circulant matrices. Clearly, by choosing these
circulant matrices to be low-density, the parity-check matrix
will also be low-density.
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With the help of the well-known isomorphism between the
ring of circulant matrices over some fieldF and the ring of
F-polynomials moduloxr − 1 (see,e.g., [7]), a QC LDPC
code can equally well be described by a polynomial parity-
check matrix of sizeJ × I. In the remainder of the paper we
will mainly work with the polynomial parity-check matrix ofa
QC LDPC code and not with the (scalar) parity-check matrix.
Another relevant concept in this paper will be the weight
matrix associated with a polynomial parity-check matrix; this
weight matrix is aJ × I integer matrix whose entries indicate
the number of terms of the corresponding polynomial in the
polynomial parity-check matrix.

Early papers on QC LDPC codes focused mainly on poly-
nomial parity-check matrices whose weight matrix contained
only ones. Such polynomial parity-check matrices are known
as monomial parity-check matrices because all entries are
monomials,i.e., polynomials with exactly one term. For this
class of QC LDPC codes it was soon established that the
minimum Hamming distance is always upper bounded by
(J+1)! [4], [5], [8].

In this paper we study polynomial parity-check matrices
with more general weight matrices by allowing the entries
of the weight matrix to be0, 1, 2, or 3 (and sometimes
larger). This is equivalent to allowing the entries of the
polynomial parity-check matrix to be the zero polynomial,
to be a monomial, to be a binomial, or to be a trinomial
(and sometimes a polynomial with more nonzero coefficients).
The main theme will be to analyze the minimum Hamming
distance of such codes, in particular by studying upper bounds
on the minimum Hamming distance and to see how these
upper bounds depend on other code parameters like the girth
of the Tanner graph. We will obtain upper bounds that are
functions of the polynomial parity-check matrix and upper
bounds that are functions of the weight matrix. The latter
results are in general weaker but they give good insights into
the dependency of the minimum Hamming distance on the
structure of the weight matrix. For example, forJ = 3 we
show that there are weight matrices that are different from
the all-one weight matrix (but with the same column and row
sum) that yield minimum Hamming distance upper bounds
that are larger than the above-mentioned(J+1)! bound. By
constructing some codes that achieve this upper bound we are
able to show that the discrepancies in upper bounds are not
spurious.

Being able to obtain minimum Hamming distance bounds
as a function of the weight matrix is also interesting because
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the weight matrix is tightly connected to the concept of proto-
graphs and LDPC codes derived from them [9], [10]. Proto-
graph-based code constructions start with a proto-graph that
is described by aJ × I incidence matrix whose entries are
non-negative integers and where a “0” entry corresponds to
no edge, a “1” entry corresponds to a single edge, a “2” entry
corresponds to two parallel edges,etc.. (Such an incidence
matrix is also known as a proto-matrix.) Once such a proto-
graph is specified, a proto-graph-based LDPC code is then
defined to be the code whose Tanner graph [11] is somer-
fold graph cover [12], [13] of that proto-graph.

It is clear that the construction of QC LDPC codes can then
be seen as a special case of the proto-graph-based construction:
first, the weight matrix corresponds to the proto-matrix,i.e.,
the incidence matrix of the proto-graph; secondly, ther-fold
cover is obtained by restricting the edge permutations to be
cyclic.

A main reason for the attractiveness of QC LDPC codes
is that they can be encoded efficiently using approaches
like in [14] and decoded efficiently using belief-propagation-
based decoding algorithms [15] or LP-based decoding algo-
rithms [16]–[19]. Although the behavior of these decoders
is mostly dominated by pseudo-codewords [20]–[27] and the
(channel-dependent) pseudo-weight of pseudo-codewords,the
minimum Hamming distance still plays an important role
because it characterizes undetectable errors and it provides
an upper bound on the minimum pseudo-weight of a Tanner
graph representing a code.

Although the main focus of this paper is on QC codes, we
can state analogous results for convolutional codes. Besides
the interest that these statements generate on their own, from a
theorem proving point of view these results are helpful because
some of our results for QC codes are most easily proven
by first proving the corresponding results for convolutional
codes. From a technical point of view, this stems from the fact
that convolutional codes are defined by parity-check matrices
over a field (more precisely, the fieldF2((y)) specified in
Section II-A), whereas QC codes are defined by parity-check
matrices over rings (more precisely, the ringF〈r〉

2 [x] specified
in Section II-A), and that consequently there are more linear
algebra tools available to handle convolutional codes thanto
handle QC codes.

The remainder of this paper is structured as follows.1

Section II introduces important concepts and the notation that
will be used throughout the paper. Thereafter, Section III
presents the two main results of this paper. Both results are
upper bounds on the minimum Hamming distance of a QC
code: whereas in the case of Theorem 7 the upper bound is
a function of the polynomial parity-check matrix of the QC
code, in the case of Theorem 8 the upper bound is a function
of the weight matrix of the QC code only. The following two
sections are then devoted to the study of special cases of these
results. Namely, Section IV focuses on so-called type-1 QC
LDPC codes (i.e., QC LDPC codes where the weight matrix
entries are at most1) and Section V focuses on so-called type-

1This overview mentions only QC code results and omits the analogous
convolutional code results.

2 and type-3 QC LDPC codes (i.e., QC LDPC codes where
the weight matrix entries are at most2 and 3, respectively).
We will show how we can obtain type-2 and type-3 codes
from type-1 codes having the same regularity and possibly
better minimum Hamming distance properties. Section VI
investigates the influence of cycles on minimum Hamming
distance bounds. Finally, Section VII discusses a promising
construction of type-1 QC LDPC codes based on type-2 or
type-3 QC LDPC codes. In fact, we suggest a sequence of
constructions starting with a type-1 code that exhibits good
girth and minimum Hamming distance properties, or that has
good performance under message-passing iterative decoding.
We construct a type-2 or type-3 code with the same regularity
and higher Hamming distance upper bound, and from this
we obtain a new type-1 code with possibly larger minimum
Hamming distance. Section VIII concludes the paper. The
appendix contains the longer proofs and also one section
(cf. Appendix I) that lists some results with respect to graph
covers.

II. D EFINITIONS

This section formally introduces the objects that were
discussed in Section I, along with some other definitions that
will be used throughout the paper.

A. Sets, Rings, Fields, Vectors, and Matrices

We use the following sets, rings, and fields: for any positive
integerL, [L] denotes the set{0, 1, . . . , L−1}; Z is the ring
of integers; for any positive integerr, Z/rZ is the ring of
integers modulor; F2 is the Galois field of size2; F2[x] is the
ring of polynomials with coefficients inF2 and indeterminate
x; F2[x]/〈x

r−1〉 is the ring of polynomials inF2[x] modulo
xr − 1, wherer is a positive integer; andF2((y)) is the field
of formal Laurent series overF2, i.e., the set

{∑∞
ℓ=d aℓy

ℓ
∣∣

d ∈ Z, aℓ ∈ F2, ℓ > d
}

with the usual rules for addition
and multiplication. We will often use the notational short-hand
F
〈r〉
2 [x] for F2[x]/〈x

r−1〉.
By F

n
2 andFm×n

2 we will mean, respectively, a row vector
overF2 of lengthn and a matrix overF2 of sizem×n, with a
similar meaning given toF〈r〉

2 [x]n, F〈r〉
2 [x]m×n, F2((y))

n, and
F2((y))

m×n. In the following we will use the convention that
indices of vector entries start at0 (and not at1), with a similar
convention for row and column indices of matrix entries.

For any matrixM , we letMR,S be the sub-matrix ofM
that contains only the rows ofM whose index appears in the
set R and only the columns ofM whose index appears in
the setS. If R equals the set of all row indices ofM , we
will omit in MR,S the setR and we will simply writeMS .
Moreover, we will use the short-handMS\i for MS\{i}.

As usual, themin operator gives back the minimum value
of a list of values.2 In the following, we will also use a more
specialized minimum operator, namely themin∗ operator that

2If the list is empty thenmin gives back+∞.
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gives back the minimum value of all nonzero entries in a list
of values.3

B. Weights

The weightwt
(
c(x)

)
∈ Z of a polynomialc(x) ∈ F2[x]

equals the number of nonzero coefficients ofc(x). Simi-
larly, the weightwt

(
c(x)

)
∈ Z of a polynomial c(x) ∈

F
〈r〉
2 [x] equals the weightwt

(
c′(x)

)
of the (unique) minimal-

degree polynomialc′(x) ∈ F2[x] that fulfills c′(x) =

c(x) (in F
〈r〉
2 [x]).

Let c(x) =
(
c0(x), c1(x), . . . , cI−1(x)

)
∈ F

〈r〉
2 [x]I

be a length-I polynomial vector. Then the weight vector
wt
(
c(x)

)
∈ Z

I of c(x) is a length-I vector with thei-th
entry equal towt

(
ci(x)

)
. Similarly, letH(x) =

[
hj,i(x)

]
j,i

∈

F
〈r〉
2 [x]J×I be a size-J×I polynomial matrix. Then the weight

matrixwt
(
H(x)

)
∈ Z

J×I of H(x) is aJ×I-matrix with the
entry in rowj and columni equal towt

[
hj,i(x)

]
.

The Hamming weightwH(c) of a vectorc is the number
of nonzero entries ofc. In the case of a polynomial vector
c(x) =

(
c0(x), c1(x), . . . , cI−1(x)

)
∈ F2[x]

I , the Hamming
weightwH

(
c(x)

)
is defined to be the sum of the weights of

its polynomial entries,i.e., wH

(
c(x)

)
=
∑I−1

i=0

(
wt(c(x))

)
i
=∑I−1

i=0 wt
(
ci(x)

)
.

Analogous definitions are used for the weight of an element
of F2((y)), the weight of vectors overF2((y)), etc..

C. QC Codes

All codes in this paper will be binary linear codes. As usual,
a block codeC of lengthn can be specified through a (scalar)
parity-check matrixH ∈ F

m×n
2 , i.e., C =

{
c ∈ F

n
2

∣∣H ·cT =
0
T
}

, whereT denotes transposition. This code has rate at least
1− m

n and its minimum Hamming distance (which equals the
minimum Hamming weight since the code is linear) will be
denoted bydmin(C).

Let J , I, and r be positive integers. LetC be a code of
lengthIr that possesses a parity-check matrixH of the form

H =




H0,0 H0,1 · · · H0,I−1

H1,0 H1,1 · · · H1,I−1

...
...

. . .
...

HJ−1,0 HJ−1,1 · · · HJ−1,I−1


 ∈ F

Jr×Ir
2 ,

where the sub-matricesHj,i ∈ F
r×r
2 are circulant. Such a code

is called quasi-cyclic (QC) because applying circular shifts to
length-r sub-blocks of a codeword gives a codeword again.
BecauseHj,i is circulant, it can be written as the sumHj,i =∑r−1

s=0 hj,i,s,0 · Is, wherehj,i,s,0 is the entry ofHj,i in row
s and column0, and whereIs is the s times cyclically left-
shifted identity matrix of sizer × r.

With a parity-check matrixH ∈ F
Jr×Ir
2 of a QC code

we associate the polynomial parity-check matrixH(x) ∈

3If the list is empty or if zero is the only value appearing in the list then
min∗ gives back+∞. In particular, for lists containing only non-negative
values, as will be the case in the remainder of this paper, themin∗ operator
gives back the smallest positive entry of the list if the listcontains positive
entries, otherwise it gives back+∞.

F
〈r〉
2 [x]J×I

H(x) =




h0,0(x) h0,1(x) · · · h0,I−1(x)
h1,0(x) h1,1(x) · · · h1,I−1(x)

...
...

. . .
...

hJ−1,0(x) hJ−1,1(x) · · · hJ−1,I−1(x)


 ,

wherehj,i(x) ,
∑r−1

s=0 hj,i,s,0x
s. Moreover, with any vector

c = (c0,0, . . . , c0,r−1, . . . , cI−1,0, . . . , cI−1,r−1) ∈ F
Ir
2 we

associate the polynomial vector

c(x) =
(
c0(x), c1(x), . . . , cI−1(x)

)
∈ F

〈r〉
2 [x]n,

whereci(x) ,
∑r−1

s=0 ci,sx
s. It can easily be checked that the

condition

H · cT = 0
T (in F2)

is equivalent to the condition

H(x) · c(x)T = 0
T (in F

〈r〉
2 [x]),

giving us an alternate way to check if a (polynomial) vector
is a codeword.

The following classification was first introduced in [8].

Definition 1. Let M be some positive integer. We say that a
polynomial parity-check matrixH(x) of a QC LDPC code is
of typeM if all the entries of the associated weight matrix
wt
(
H(x)

)
are at mostM . Moreover, we say that a QC LDPC

code is of typeM if it is defined by a polynomial parity-check
matrix of typeM . �

Equivalently,H(x) is of type M if for each polynomial
entry in H(x) the number of nonzero coefficients is at most
M . In particular, the polynomial parity-check matrixH(x)
is of type 1 (in [8] we also called them “type I”) ifH(x)
contains only the zero polynomial and monomials. Moreover,
the polynomial parity-check matrixH(x) is of type2 (in [8]
we also called them “type II”) ifH(x) contains only the
zero polynomial, monomials, and binomials. IfH(x) contains
only monomials then it will be called a monomial parity-check
matrix. (Obviously, a monomial parity-check matrix is a type-
1 polynomial parity-check matrix.)

D. Convolutional Codes

A convolutional codeCconv can be described by a poly-
nomial parity-check matrixHconv(y) ∈ F2((y))

J×I ; the code-
words ofCconv are then the polynomial vectorsc(y) ∈ F2((y))

I

that satisfy4

Hconv(y) · c(y)
T = 0

T (in F2((y))).

The free Hamming distance ofCconv will be denoted by
dfree(Cconv). Moreover, a convolutional code whose (poly-
nomial) parity-check matrix is sparse will be called a con-
volutional LDPC code and we extend the classification of
polynomial parity-check matrices in Definition 1 from QC
codes to convolutional codes.

4Although “formal Laurent series parity-check matrix” and “formal Laurent
series vector” would be more precise, we use “polynomial parity-check
matrix” and “polynomial vector” also in the context of convolutional codes.
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The main interest of the present paper in convolutional
codes is the fact that QC codes can be “unwrapped” to yield
convolutional codes [28] (see also [29], [30]). In mathematical
terms, “unwrapping” means to associate with a QC codeC
defined by some polynomial parity-check matrixH(x) ∈

F
〈r〉
2 [x]J×I the convolutional codeCconv defined by the parity-

check matrixHconv(y) ∈ F2((y))
J×I , where

Hconv(y) , H(x)|x=y.

In other words,Hconv(y) is obtained by replacing all appear-
ances ofx (and its powers) inH(x) by y (and its powers).
Note that the weight matrices ofH(x) andHconv(y) are the
same,i.e., wt

(
H(x)

)
= wt

(
Hconv(y)

)
.5

A theorem by Tanner [28] allows one then to relate the
minimum Hamming distance of the QC codeC to the free
Hamming distance of the above-defined convolutional code
Cconv, namely

dmin(C) 6 dfree(Cconv). (1)

(See [31] for the usage of this theorem in the context of QC
LDPC and convolutional LDPC codes, along with generaliza-
tions of it to different notions of minimum pseudo-weights.)

There is a simple algebraic reason why in the present
paper we are interested in the above-mentioned connection
between QC codes and convolutional codes. Namely, since the
entries ofHconv(y) are from some field, notions like linear
independence and rank are well defined for this matrix. In par-
ticular, the zero-ness/nonzero-ness of determinants of square
sub-matrices ofHconv(y) allow us to reach conclusions about
the linear dependence/independence of the rows and columns
of these sub-matrices. Such conclusions can in general not be
reached for the sub-matrices ofH(x), which is a matrix with
entries in some commutative ring (in particular, a ring with
zero divisors).

E. Graphs

With a parity-check matrixH we associate a Tanner
graph [11] in the usual way: for every code bit we draw a
variable node, for every parity-check we draw a check node,
and we connect a variable node and a check node by an edge if
and only if the corresponding entry inH is nonzero. Similarly,
the Tanner graph associated with a polynomial parity-check
matrix H(x) is simply the Tanner graph associated with the
corresponding (scalar) parity-check matrixH .

As usual, the degree of a vertex is the number of edges
incident to it and an LDPC code is called(d1, d2)-regular if
all variable nodes have degreed1 and all check nodes have
degreed2. Otherwise we will say that the code is irregular.
Moreover, a simple cycle of a graph will be a backtrackless,
tailless, closed walk in the graph, and the length of such a
cycle is defined to be equal to the number of visited vertices
(or, equivalently, the number of visited edges). The girth of
a graph is then the length of the shortest simple cycle of the
graph.

5Here and in the following we assume thatH(x) is given in a form where
the exponents that appear inH(x) are at least0 and strictly smaller thanr.

The above-mentioned concepts are made more concrete with
the help of the following example.

Example 2. Let C be a length-12 QC code that is described
by the parity-check matrix

H ,




1 0 1 1 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 0 0 0 0 1
0 1 1 0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0 1 0
0 0 1 0 1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 1 1 0 0 0 1
0 0 0 1 0 0 0 1 1 1 0 0
0 0 0 0 1 0 1 0 1 0 1 0




.

Clearly,J = 3, I = 4, andr = 3 for this code and soH can
also be written like

H =




I0 + I1 I0 0 I2

I2 I0 I1 I2

0 I1 I0 + I2 I1



 ,

whereIs, s = 0, 1, . . . , r−1, ares-times cyclically left-shifted
r× r identity matrices. The corresponding polynomial parity-
check matrix is

H(x) =



x0 + x1 x0 0 x2

x2 x0 x1 x2

0 x1 x0 + x2 x1


 ,

and the weight matrix is

wt
(
H(x)

)
=




2 1 0 1
1 1 1 1
0 1 2 1



 .

The Tanner graph associated withH or H(x) is shown
in Figure 1 (left). We observe that all variable nodes have
degree3 and all check nodes have degree4, thereforeC is
a (3, 4)-regular LDPC code. (Equivalently, all columns ofH

have weight3 and all rows ofH have weight4.) �

The proto-graph associated with a polynomial parity-check
matrixH(x) is a graphical representation of the weight matrix
wt
(
H(x)

)
in the following way. It is a graph where for

each column ofH(x) we draw a variable node, for each
row of H(x) we draw a check node, and the number of
edges between a variable node and a check node equals the
corresponding entry inwt

(
H(x)

)
.

Example 3. Continuing Example 2, the proto-graph ofH(x)
is shown in Figure 1 (right). Clearly, the weight matrix
wt
(
H(x)

)
is the incidence matrix of this latter graph. We

observe that all variable nodes have degree3 and all check
nodes have degree4. (Equivalently, all column sums (inZ)
of wt

(
H(x)

)
equal3 and all row sums (inZ) of wt

(
H(x)

)

equal4.) �

An important concept for this paper is that of the so-called
graph covers, see the next definition.

Definition 4 (See,e.g., [12], [13]). Let G be a graph with
vertex setV(G) and edge setE(G), and let∂(v) denote the
set of adjacent vertices of a vertexv ∈ V(G). An unramified,
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c2

c3

c1

c0

c0,0

c0,1

c0,2

c1,0

c1,1

c1,2

c2,0

c2,1

c2,2

c3,0

c3,1

c3,2

Fig. 1. Left: Tanner graph of a length-12 QC LDPC code. It is a triple cover
of the proto-graph shown on the right. Right: Proto-graph ofthe Tanner graph
shown on the left.

finite cover, or, simply, acoverof a (base) graphG is a graph
G̃ along with a surjective mapφ : G̃ → G, which is a graph
homomorphism,i.e., which takes adjacent vertices of̃G to
adjacent vertices ofG such that, for each vertexv ∈ V(G)
and each̃v ∈ φ−1(v), the neighborhood∂(ṽ) of ṽ is mapped
bijectively to∂(v). For a positive integerr, an r-coverof G is
an unramified finite coverφ : G̃ → G such that, for each vertex
v ∈ V(G) of G, φ−1(v) contains exactlyr vertices ofG̃. An
r-cover ofG is sometimes also called anr-sheeted covering
of G or a cover ofG of degreer.6 �

Example 5. Continuing Examples 2 and 3, we note that
the graph in Figure 1 (left) is a3-cover of the graph in
Figure 1 (right). Therefore, the codeC is a proto-graph-
based code. It can easily be checked visually that all edge
permutations that were used to define this3-cover are cyclic
permutations, confirming that the codeC is indeed quasi-
cyclic. �

Tanner graphs can also be defined for convolutional codes
(see,e.g., [32]); in particular, the paper [32] discusses some
connections between the Tanner graph of a QC code and
the Tanner graph of a convolutional code that is obtained by
“unwrapping” the QC code.

We conclude this subsection by emphasizing that graph
covers have been used in two different ways in the context
of LDPC codes: on the one hand, they have been used for
constructing LDPC codes (like in this paper), on the other
hand they have been used to analyze message-passing iterative
decoders (like in [23], [24]).

F. Determinants and Permanents

The determinant of anm × m-matrix B = [bj,i]j,i over
some commutative ring is defined to be

det(B) =
∑

σ

sgn(σ)
∏

j∈[m]

bj,σ(j),

6It is important not to confuse the degree of a covering and thedegree of
a vertex.

where the summation is over allm! permutations of the set
[m], and wheresgn(σ) equals+1 if σ is an even permutation
and equals−1 if σ is an odd permutation.

The permanent of anm×m-matrixB = [bj,i]j,i over some
commutative ring is defined to be

perm(B) =
∑

σ

∏

j∈[m]

bj,σ(j),

where the summation is over allm! permutations of the set
[m].

Clearly, for any matrixB with elements from a commuta-
tive ring of characteristic2 it holds thatdet(B) = perm(B).

III. M INIMUM HAMMING DISTANCE UPPERBOUNDS

This section contains the two main theoretical results of
this paper, namely Theorems 7 and 8. More precisely, given
some QC code with polynomial parity-check matrixH(x)
and minimum Hamming distancedmin(C), Theorem 7 presents
an upper bound ondmin(C) as a function of the entries of
H(x) and Theorem 8 presents an upper bound ondmin(C)
as a function of the entries ofwt

(
H(x)

)
. The upper bound

of Theorem 8 is in general weaker than the upper bound
of Theorem 7, however, it is interesting to see that the
weight matrix alone can already give nontrivial bounds on
the achievable minimum Hamming distance. These theorems
also present analogous results for the free Hamming distance
of convolutional codes.

In Sections IV and V, we will discuss the implications of
these two theorems on codes with type-1, type-2, and type-3
polynomial parity-check matrices. Moreover, in Section VIwe
will show how the upper bounds in Theorems 7 and 8 can be
strengthened by taking some graph structure information (like
cycles) into account.

We start with a simple technique to construct codewords
of codes described by polynomial parity-check matrices; this
extends a codeword construction technique by MacKay and
Davey [4, Theorem 2]. (Note that the paper [4] deals with
codes that are described by scalar parity-check matrices
composed of commuting permutation sub-matrices, of which
parity-check matrices composed of cyclically shifted identity
matrices are a special case. However, and as we show in this
paper, their techniques can be suitably extended to codes that
are described by scalar parity-check matrices composed ofany
circulant matrices, and therefore to codes that are described by
polynomial parity-check matrices.)

Lemma 6. Let C be the QC code defined by the poly-
nomial parity-check matrixH(x) ∈ F

〈r〉
2 [x]J×I . Let S

be an arbitrary size-(J+1) subset of[I] and let c(x) =(
c0(x), c1(x), . . . , cI−1(x)

)
∈ F

〈r〉
2 [x]I be a length-I vector

defined by7

ci(x) ,

{
perm

(
HS\i(x)

)
if i ∈ S

0 otherwise
.

Thenc(x) is a codeword inC.

7Because the ringF〈r〉
2

[x] has characteristic2, we could equally well define
ci(x) , det

(

HS\i(x)
)

if i ∈ S.
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An analogous construction yields codewords of the convo-
lutional codeCconv defined by the polynomial parity-check
matrix Hconv(y) ∈ F2((y))

J×I .

Proof: Let S = {i0, i1, . . . , iJ} be the chosen size-(J+1)
subset. In order to verify thatc(x) is a codeword inC, we need
to show that the syndromesT(x) = H(x) · cT(x) (in F

〈r〉
2 [x])

is the all-zero vector. For anyj ∈ [J ], we can express thej-th
component ofs(x) as follows

sj(x) =
∑

i∈[I]

hj,i(x)ci(x) =
∑

i∈S

hj,i(x) · perm
(
HS\i(x)

)

=
∑

i∈S

hj,i(x) · det
(
HS\i(x)

)
,

where in the last step we used the fact that for commutative
rings with characteristic2 the permanent equals the determi-
nant. Observing thatsj(x) is the co-factor expansion of the
determinant of the|S| × |S|-matrix




hj,i0(x) hj,i1(x) · · · hj,iJ (x)
h0,i0(x) h0,i1(x) · · · h0,iJ (x)
h1,i0(x) h1,i1(x) · · · h1,iJ (x)

...
... · · ·

...
hJ−1,i0(x) hJ−1,i1(x) · · · hJ−1,iJ (x)



,

and noting that this latter matrix is singular (because at least
two rows are equal), we obtain the result thats(x) = 0 and
that c(x) is indeed a codeword inC, as promised.

BecauseF2((y)) is a field, and therefore a commutative ring,
the same argument holds also for a code likeCconv that is
defined by a parity-check matrix overF2((y)).

With the help of the codeword construction technique in
Lemma 6 we can easily obtain the bound in Theorem 7: simply
construct the list of all codewords corresponding to all size-
(J+1) subsetsS of [I], and use the fact that the minimum
Hamming distance ofC / the free Hamming distance ofCconv
is upper bounded by the minimum Hamming weight of all
nonzerocodewords in this list.

Theorem 7. Let C be the QC code defined by the polynomial
parity-check matrixH(x) ∈ F

〈r〉
2 [x]J×I . Then the minimum

Hamming distance ofC is upper bounded as follows

dmin(C) 6 min∗

S⊆[I]
|S|=J+1

∑

i∈S

wt
(
perm

(
HS\i(x)

))
. (2)

Let Cconv be the convolutional code defined by the poly-
nomial parity-check matrixHconv(y) ∈ F2((y))

J×I . Then the
free Hamming distance ofCconv is upper bounded as follows

dfree(Cconv) 6 min∗

S⊆[I]
|S|=J+1

∑

i∈S

wt
(
perm

(
(Hconv)S\i(y)

))
. (3)

(Note that forHconv(y) = H(x)|x=y the right-hand sides
of (2) and (3) need not be equal.)

Proof: We start by proving the QC code part of this
theorem. LetS be a size-(J+1) subset of[I] and letc(x) be the
corresponding codeword constructed according to Lemma 6.

The result in the theorem statement follows by noting that
c(x) has Hamming weight

wH

(
c(x)

)
=
∑

i∈[I]

wt
(
ci(x)

)
=
∑

i∈S

wt
(
ci(x)

)

=
∑

i∈S

wt
(
perm

(
HS\i(x)

))
.

The convolutional code part of this theorem then follows
from the observation thatF2((y)) is a field (and therefore a
commutative ring), and so the above derivation also holds for
the parity-check matrixHconv(y).

Let us emphasize that it is important to have themin∗

operator in (2), and not just themin operator. The reason
is that the upper bound is based on constructing codewords of
the codeC and evaluating their Hamming weight. For some
polynomial parity-check matrices some of these constructed
codewords may equal the all-zero codeword and therefore have
Hamming weight zero: clearly, such constructed codewords are
irrelevant for upper bounding the minimum Hamming distance
and therefore must be discarded. This is done with the help
of the min∗ operator. (Similar statements can be made with
respect to (3).)

The next theorem, Theorem 8, gives a minimum/free Ham-
ming distance upper bound which is easier to compute than (2)
and (3) and which depends only on the weight matrix asso-
ciated withH(x) and Hconv(y), respectively. In particular,
this bound doesnot depend onr, the size of the circulant
matrices in the scalar parity-check matrixH corresponding
to H(x). The bound says that the minimum/free Hamming
distance is upper bounded by the minimum nonzero sum of the
permanents of allJ × J sub-matrices of a chosenJ × (J+1)
sub-matrix of the weight matrix, the minimum being taken
over all such possibleJ × (J+1) sub-matrices of the weight
matrix.

Theorem 8. LetC be a QC code with polynomial parity-check
matrix H(x) ∈ F

〈r〉
2 [x]J×I and let A , wt

(
H(x)

)
, or, let

Cconv be a convolutional code with polynomial parity-check
matrix Hconv(y) ∈ F2((y))

J×I and letA , wt
(
Hconv(y)

)
.

Then

dmin(C)

dfree(Cconv)

}
6 min∗

S⊆[I]
|S|=J+1

∑

i∈S

perm
(
AS\i

)
. (4)

In particular, if Hconv(y) = H(x)|x=y then

dmin(C) 6 dfree(Cconv) 6 min∗
S⊆[I]

|S|=J+1

∑

i∈S

perm
(
AS\i

)
.

Proof: See Appendix A.

Again, as in Theorem 7, it is important to have themin∗

operator in Theorem 8 and not just themin operator. This time
the reasoning is a bit more involved, though, and we refer the
reader to the proof of Theorem 8 for details.8

8We are grateful to O. Y. Takeshita for pointing out to us that in earlier
(and also less general) versions of Theorem 7 and Theorem 8 (cf. [8]) the
min operator has to be replaced by themin∗ operator, see also [33].
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Note that the upper bound in (2) depends onr (because the
computations are done moduloxr − 1), whereas the bound
in (4) does notdepend onr.

Usually, the expressions in (2) and (3) yield upper bounds
that are not larger than the upper bounds from (4). However,
this does not need to happen. For example, there are polyno-
mial parity-check matrices for which (2) and (3) evaluate to
+∞, whereas (4) evaluates to some finite number.

Based on Theorems 7 and 8, the following recipe can be
formulated for the construction of QC LDPC codes with good
minimum Hamming distance. (A similar recipe can be given
for the construction of convolutional LDPC codes with good
free Hamming distance.)

• Search for a suitable weight matrix with the help of
Theorem 8.

• Among all polynomial parity-check matrices with this
weight matrix, find a suitable polynomial parity-check
matrix with the help of Theorem 7.

• Verify explicitly if the minimum Hamming distance of
the code of the found polynomial parity-check matrix
really equals (or comes close to) the minimum Hamming
distance promised by the upper bound in Theorem 7.

This recipe is especially helpful in the case where one is
searching among type-M polynomial parity-check matrices
with small M , say M ∈ {1, 2, 3}. In such cases it is to
be expected that there is not much difference in the upper
bounds (2) and (4). For type-M polynomial parity-check
matrices with largerM , however, we do not expect that the
upper bounds (2) and (4) are close. The reason is that when
computingperm

(
HS\i(x)

)
in (2) there will be many terms

that cancel each other. Anyway, when constructing QC LDPC
codes, type-M polynomial parity-check matrices with largeM
are somewhat undesirable because of the relatively small girth
of the corresponding Tanner graph. In particular, it is well
known that the Tanner graph of a polynomial parity-check
matrix whose weight matrix contains at least one entry of
weight3 (or larger) has girth at most6 (see also Theorem 18).

IV. T YPE-I QC/CONVOLUTIONAL CODES

In this section we specialize the results of the previous
section to the case of type-1 parity-check matrices.

Corollary 9. Let C be a type-1 QC code with polynomial
parity-check matrixH(x) ∈ F

〈r〉
2 [x]J×I and let A ,

wt
(
H(x)

)
, or, let Cconv be a type-1 convolutional code with

polynomial parity-check matrixHconv(y) ∈ F2((y))
J×I and

let A , wt
(
Hconv(y)

)
. Then

dmin(C)

dfree(Cconv)

}
6 (J + 1)!. (5)

Proof: See Appendix B.

The rest of this section will be devoted to QC codes;
however, analogous results can also be stated for convolutional
codes.

Let us evaluate the minimum Hamming distance upper
bounds that we have obtained so far for some type-1 QC code

polynomial parity-check matrices. (Actually, the following
polynomial parity-check matrices happen to bemonomial
parity-check matrices,i.e., polynomial parity-check matri-
ces where all entries of the corresponding weight matrices
equal1.)

Example 10. Let r > 9. Consider the(2, 4)-regular length-4r
QC codeC given by the polynomial parity-check matrix

H(x) =

[
x x2 x4 x8

x5 x6 x3 x7

]

and the (2, 4)-regular length-4r QC codeC′ given by the
polynomial parity-check matrix

H
′(x) =

[
x x2 x4 x8

x6 x5 x3 x9

]
.

According to (2), the minimum Hamming distance ofC is
upper bounded by

dmin 6 min∗





wt(x4+x9) + wt(x5+x10) + wt(x7+x7),
wt(x9+x14) + wt(x8+x13) + wt(x7+x7),
wt(x11+x11) + wt(x8+x13) + wt(x4+x9),
wt(x11+x11) + wt(x9+x14) + wt(x5+x10)





= min∗{4, 4, 4, 4} = 4,

and the minimum Hamming distance ofC′ is upper bounded
by

dmin 6 min∗






wt(x5+x9)+wt(x4+x10)+wt(x6+x8),
wt(x11+x13)+wt(x10+x14)+wt(x6+x8),
wt(x13+x11)+wt(x10+x14)+wt(x4+x10),
wt(x13+x11)+wt(x11+x13)+wt(x5+x9)






= min∗{6, 6, 6, 6} = 6.

However, in both cases the bound in (4) gives

dmin 6
{
(1+1) + (1+1) + (1+1)

}
= 6,

since both polynomial parity-check matrices have the same
weight matrix. Similarly, in both cases the bound in (5) gives

dmin 6 (2+1)! = 6,

since both polynomial parity-check matrices haveJ = 2.
In conclusion, we see that a2×4 monomial parity-check

matrix can yield a QC code with minimum Hamming distance
at most6. However, when the entries of the polynomial parity-
check matrix are not chosen suitably, as is the case forH(x),
then the minimum Hamming distance upper bound in (2) is
strictly smaller than the minimum Hamming distance upper
bound in (4).

For completeness, we computed the minimum Hamming
distance of the two codes,9 and obtained2 for the first code
(e.g., (0, 0, x4, 1) is a codeword), and4 for the second code
for most values ofr. �

Let us discuss another example.

9Here and elsewhere in the paper, we compute the minimum distance
of various QC codes with the help of suitable Magma programs [34]. For
analyzing the free distance of convolutional codes, a suitable program is,e.g.,
BEAST [35].
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Example 11. Let r > 26 and let the (3, 4)-regular QC
LDPC codeC be given by the polynomial parity-check matrix
H(x) ∈ F

〈r〉
2 [x]3×4

H(x) =




x x2 x4 x8

x5 x10 x20 x9

x25 x19 x7 x14


 .

(This code was obtained by shortening the lastr positions
of the (3, 5)-regular type-1 QC LDPC code of length5r
presented in [36].10) Evaluating the bounds in (4) and (5)
for this polynomial parity-check matrix, we see that the
minimum Hamming distance is upper bounded by24, and
for suitable choices ofr this upper bound is indeed achieved.
We computed the minimum Hamming distance of the code for
different values ofr and obtained thatr = 31 is the smallest
such choice. The code obtained forr = 31 has parameters
[124, 33, 24]. The minimum Hamming distance and rate for
this and some other values ofr are listed in the following
table.

r 26 27 28 29 30 31

dmin(C) 18 14 16 18 8 24
rate 0.269 0.287 0.268 0.267 0.283 0.266

�

As we have seen from the above examples, the minimum
Hamming distance upper bound (2) can be strictly smaller
than the upper bound (4). However, the upper bound (4) is
computed more easily, and it provides an upper bound on the
Hamming distance of all QC codes having the same weight
matrix and therefore also the same proto-graph.

Applying Corollary 9 to QC codes with monomial parity-
check matrices shows that for such codes the minimum Ham-
ming distance is upper bounded by(J+1)!. We note that this
result was previously presented by MacKay and Davey [4] and
discussed by Fossorier [5]. However, as we show in this paper,
their techniques can be suitably extended to QC codes that are
described by scalar parity-check matrices composed ofany
circulant matrices, and therefore to codes that are described
by polynomial parity-check matrices.

Example 12. It is clear that the higher the rate of a code is, the
more difficult it is to achieve the upper bound in Corollary 9.
However, the QC code defined by the polynomial parity-check
matrix

H(x) ,




x0 x19 x13 x20 x4 x15 x56

x18 x9 x0 x47 x0 x18 x8

x14 x0 x10 x13 x0 x0 x7





with r = 111 shows that there exist also QC codes with design
rate 4/7 that achieve the minimum Hamming distance upper
bound in Corollary 9,i.e., dmin = 24. (This example is taken
from [37, Table III].) �

We would like to warn the reader that we donot claim
that the “recipe” given at the end of Section III is an optimal
strategy for obtaining QC codes that achieve the upper bounds

10Note that in [36],r = 31, and the code parameters are[155, 64, 20].
Also note that by shortening a code, the girth of the associated Tanner graph
cannot decrease.

presented in this paper. In particular, instead of fixing the
polynomial parity-check matrix and increasingr, it might be
a good idea to change the polynomial parity-check matrix
as well with increasingr, thereby allowing the degrees of
the polynomials to grow withr. Such a strategy might yield
codes that achieve the upper bounds for smallerr; however,
investigating this approach is beyond the scope of this paper.

V. TYPE-II AND TYPE-III
QC/CONVOLUTIONAL CODES

After having discussed minimum/free Hamming distance
upper bounds for type-1 QC/convolutional codes in the pre-
vious section, we now present similar results for type-2 and
type-3 QC/convolutional codes. In particular, we classify all
possible weight matrices of(3, 4)-regular QC/convolutional
codes with a3× 4 polynomial parity-check matrix.

We start our investigations with the following motivating
example.

Example 13. In Example 11 we saw that the minimum
Hamming distance of type-1 (3, 4)-regular QC codes with a
3×4 polynomial parity-check matrix cannot surpass24. In this
example we show that type-2 (3, 4)-regular QC codes with
a 3 × 4 polynomial parity-check matrix can have minimum
Hamming distance strictly larger than24. Namely, consider
the codeC′ with parity-check matrix

H
′(x) ,



x+ x2 0 x4 x8

x5 x9 x10 + x20 0
0 x25 + x19 0 x7 + x14


 . (6)

(This polynomial parity-check matrix was obtained from the
parity-check matrixH(x) in Example 11 by pairing some
monomials into binomials and replacing with0 the positions
left, careful to preserve the(3, 4)-regularity.) The correspond-
ing weight matrix is

A
′ =



2 0 1 1
1 1 2 0
0 2 0 2


 ,

and, according to (4), yields the following minimum Hamming
distance upper bound

dmin (C
′) 6 min∗ {10 + 6 + 10 + 6} = 32.

For smallr, the corresponding QC code does not attain this
bound, however, forr = 46 one can verify that the resulting
QC code attains the optimal minimum Hamming distance
dmin = 32. This is a[184, 47, 32] code of rate0.2554. �

After this introductory example, let us have a more sys-
tematic view of the possible weight matrices of(3, 4)-regular
QC/convolutional codes and the minimum/free Hamming dis-
tance upper bounds that they yield.

Corollary 14. Let C be a (3, 4)-regular type-2 QC code with
polynomial parity-check matrixH(x) ∈ F

〈r〉
2 [x]3×4 and let

A , wt
(
H(x)

)
∈ Z

3×4, or, let Cconv be a (3, 4)-regular
type-2 convolutional code with polynomial parity-check matrix
Hconv(y) ∈ F2((y))

3×4 and letA , wt
(
Hconv(y)

)
∈ Z

3×4.
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Then all possible(3, 4)-regular size-(3×4) type-2 weight ma-
tricesA (up to permutations of rows and columns) are given
by the following5 types of matrices (shown here along with the
corresponding minimum/free Hamming distance upper bound
implied by(4)):


2 2 0 0
1 1 1 1
0 0 2 2


with {dmin, dfree}6 8 + 8 + 8 + 8 = 32,



2 2 0 0
1 0 2 1
0 1 1 2


with {dmin, dfree}6 10 + 10 + 6 + 6 = 32,



2 0 1 1
1 2 0 1
0 1 2 1


with {dmin, dfree}6 7 + 7 + 7 + 9 = 30,




2 0 1 1
0 2 1 1
1 1 1 1



with {dmin, dfree}6 6 + 6 + 8 + 8 = 28,




1 1 1 1
1 1 1 1
1 1 1 1



with {dmin, dfree}6 6 + 6 + 6 + 6 = 24.

As can be seen from this list, the largest upper bound is
{dmin, dfree} 6 32 and it can be obtained if the weight matrix
A equals (modulo permutations of rows and columns) the first
or the second matrix in the list.

Proof: Omitted.

Example 15. We see that the type-2 (3, 4)-regular QC code
with a 3× 4 polynomial parity-check matrix and withr = 46
presented in Example 13 not only achieves the minimum Ham-
ming distance upper bound promised by (4) but, according to
Corollary 14, it achieves the best possible minimum Hamming
distance upper bound for any type-2 (3, 4)-regular QC code
with a 3 × 4 polynomial parity-check matrix. We note that
this particular code has parameters[184, 47, 32], girth 8, and
diameter8, i.e., the same girth and diameter as the Tanner
graph of the[124, 33, 24] code in Example 11), which is a
shortened version of the[155, 64, 20] code in [36].

Figure 2 shows the decoding performance (word error
rate) of the [184, 47, 32] QC LDPC code when used for
transmission over a binary-input additive white Gaussian noise
channel. Decoding is done using the standard sum-product
algorithm [15] which is terminated if the syndrome of the
codeword estimate is zero or if a maximal number of64
(respectively256) iterations is reached. It is compared with a
randomly generated(3, 4)-regular[184, 46] LDPC code where
four-cycles in the Tanner graph have been eliminated. (When
comparing these two codes one has to keep in mind that
because the randomly generated code has slightly lower rate
and because the horizontal axis showsEb/N0, the randomly
generated code has a slight “disadvantage” of0.093 dB.) Note
though that the decoding complexity per iteration is the same
for both codes.

Let us mention on the side that we tried to estimate the
minimum (AWGN channel) pseudo-weight [23], [24] of this
code. From searching in the fundamental cone we get an
upper bound of27.6 on the minimum pseudo-weight. The

pseudo-weight spectrum gap [26] is therefore estimated to be
32 − 27.6 = 4.4, which is on the same order as the pseudo-
weight spectrum gap for the(3, 5)-regular [155, 64, 20] code
by Tanner [36], which is estimated to be20− 16.4 = 3.6. We
also note that for the above-mentioned randomly generated
[184, 46] code we obtained an upper bound on the minimum
pseudo-weight of21.0. �

If we want to take into consideration all cases of(3, 4)-
regular QC/convolutional codes with polynomial parity-check
matrices of size3 × 4, we also have to investigate the class
of type-3 weight matrices of size3× 4, as is done in the next
corollary.

Corollary 16. Let C be a (3, 4)-regular type-3 QC code with
polynomial parity-check matrixH(x) ∈ F

〈r〉
2 [x]3×4 and let

A , wt(H(x)) ∈ Z
3×4, or, let Cconv be a (3, 4)-regular

type-3 convolutional code with polynomial parity-check matrix
Hconv(y) ∈ F2((y))

3×4 and letA , wt(H(x)) ∈ Z
3×4. Then

all possible(3, 4)-regular size-(3×4) type-3 weight matricesA
(up to permutations of rows and columns) are given by the5
types of matrices already listed in Corollary 14, together with
the following3 types of matrices (shown here along with the
corresponding minimum/free Hamming distance upper bound
implied by(4)):



3 0 0 1
0 2 1 1
0 1 2 1



with {dmin, dfree}6 5 + 9 + 9 + 15 = 38,



3 1 0 0
0 2 1 1
0 0 2 2


with {dmin, dfree}6 4 + 12 + 12 + 12 = 40,



3 0 0 1
0 3 0 1
0 0 3 1


with {dmin, dfree}6 9 + 9 + 9 + 27 = 54.

As it can easily be seen, the largestupper bound is
{dmin, dfree} 6 54 and it can be obtained if the weight matrix
A equals (modulo permutations of rows and columns) the last
matrix in the above list.

Proof: Omitted.

Example 17. We can modify the matrixH in Example 11 to
obtain one of the configurations in Corollary 16. For example,
the following matrixH ′(x) ∈ F

〈r〉
2 [x]3×4 corresponds to the

last configuration listed in Corollary 16:

H
′(x) ,



x2+x4+x8 0 0 x

0 x9+x10+x20 0 x5

0 0 x19+x7+x14 x25


 .

For r = 31 we obtain a[124, 31, 28] code, whose rate is0.25.
(In comparison, the monomial[124, 33, 24] QC LDPC code in
Example 11 has rate0.266 and the binomial[184, 47, 32] QC
LDPC code in Example 13 has rate0.2554.) For r = 46, we
obtain a code with parameters[184, 46, 34]. For largerr the
minimum Hamming distance could increase up to54. �

Note that the Tanner graph of a polynomial parity-check
matrix which has at least one trinomial entry cannot have girth
larger than6 (see,e.g., [5]). We state this observation as part
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Fig. 2. Decoding performance of the[184, 47, 32] QC LDPC code vs. a randomly generated (four-cycle free)[184, 46] LDPC code under sum-product
algorithm decoding when transmitting over a binary-input AWGN channel. (For more details, see Example 15.)

of a more general analysis of the effect of the weight matrix
on the girth.

Theorem 18. Let C be a QC code described by a polynomial
parity-check matrixH(x) ∈ F

〈r〉
2 [x]J×I , let girth be the girth

of the Tanner graph corresponding toH(x) and let A be
the weight matrix corresponding toH(x). Or, let Cconv be
a convolutional code described by a polynomial parity-check
matrix Hconv(y) ∈ F2((y))

J×I , let girth be the girth of the
Tanner graph corresponding toHconv(y) and let A be the
weight matrix corresponding toHconv(y).

a) If A has sub-matrix

[
1 1 1
1 1 1

]
thengirth 6 12.

b) If A has sub-matrix

[
1 1
1 2

]
thengirth 6 10.

c) If A has sub-matrix
[
2 2

]
thengirth 6 8.

d) If A has sub-matrix
[
3
]

thengirth 6 6.

(By “A having sub-matrixB” we mean thatA contains a
sub-matrix that is equivalent toB, modulo row permutations,
column permutations, and transposition.)

Proof: See Appendix C.

The Corollaries 14 and 16 focused on the case of(3, 4)-
regular QC/convolutional codes with a3×4 polynomial parity-

check matrix. It is clear that similar results can be formulated
for any (J ′, I ′)-regular QC/convolutional code with aJ × I
polynomial parity-check matrix. However, we will not elab-
orate this any further, except for mentioning the following
corollary about(3, 5)-regular QC/convolutional codes with a
3× 5 polynomial parity-check matrix.

Corollary 19. An optimal(3, 5)-regular type-2 weight matrix
of size3× 5 must (up to row and column permutations) look
like

A ,



2 2 1 0 0
0 0 2 2 1
1 1 0 1 2


 .

This weight matrix yields the upper bound

{dmin, dfree} 6 min{30, 30, 30, 32, 28}= 28.

Proof: Omitted.

It would be desirable to obtain simply looking bounds
for type-2 and type-3 codes with(J, I)-regular parity-check
matrices of sizeJ×I. Although it is straightforward to obtain
such simple bounds by suitably generalizing the derivationof
Corollary 9, the resulting bounds are usually not very useful.
We leave it as an open problem to find such relevant bounds
in the style of Corollary 9 for type-2 and type-3 codes.
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VI. T HE EFFECT OFSMALL CYCLES

ON THE M INIMUM HAMMING DISTANCE

AND THE FREE HAMMING DISTANCE

If we know that the Tanner graph corresponding to some
polynomial parity-check matrix contains some short cycles
then we can strengthen the upper bounds of Theorem 7 and 8.
In particular, Theorems 22, 25, and 26 will study the influence
of 4-cycles,6-cycles, and2R-cycles, respectively, upon the
minimum/free Hamming distance upper bounds. These theo-
rems will be based on results presented in Lemmas 20 and 24
that characterize cycles in Tanner graphs in terms of some
entries of the corresponding polynomial parity-check matrix,
especially in terms of permanents of sub-matrices. In orderto
state such conditions, we will use results from [5], [36]. (For
other cycle-characterizing techniques and results, see also [38]
and [39].)

As we will see, the smaller the girth of the Tanner graph,
the smaller the minimum/free Hamming distance upper bound
will be. This observation points in the same direction as other
results do that relate the decoding performance of LDPC
codes (especially under message-passing iterative decoding)
to the girth of their Tanner graph: firstly, there is a lot of
empirical evidence that smaller girth usually hurts the iterative
decoding performance; secondly, there are results concerning
the structure of the fundamental polytope that show that the
fundamental polytope of Tanner graphs with smaller girth is
“weaker,” see,e.g., [24, Section 8.3], [40].

A. Type-I QC/Convolutional Codes with4-Cycles

Lemma 20. The Tanner graph of a type-1 QC codeC with
polynomial parity-check matrixH(x) ∈ F

〈r〉
2 [x]J×I has a4-

cycle if and only ifH(x) has a2 × 2 sub-matrixB(x) for
which

wt
(
perm

(
B(x)

))
< perm

(
wt
(
B(x)

))

holds.11

An analogous statement can be made for the Tanner graph
of a type-1 convolutional codeCconv defined by the polynomial
parity-check matrixHconv(y) ∈ F2((y))

J×I .

Proof: See Appendix D.

Corollary 21. The Tanner graph of a type-1 QC codeC with
polynomial parity-check matrixH(x) ∈ F

〈r〉
2 [x]J×I has a4-

cycle if and only ifH(x) has a2×2 sub-matrixB(x) which is
monomial and for whichperm

(
B(x)

)
= 0 (in F

〈r〉
2 [x]) holds.

An analogous statement can be made for the Tanner graph
of a type-1 convolutional codeCconv with polynomial parity-
check matrixHconv(y) ∈ F2((y))

J×I .

Proof: This follows from Lemma 20 and its proof.

With this, we are ready to investigate minimum/free Ham-
ming distance upper bounds for Tanner graphs with4-cycles.

11Becausewt
(

perm(B(x))
)

6 perm
(

wt(B(x))
)

for any B(x), the
condition wt

(

perm(B(x))
)

< perm
(

wt(B(x))
)

is equivalent to the
conditionwt

(

perm(B(x))
)

6= perm
(

wt(B(x))
)

.

Theorem 22. Let C be a type-1 QC code with polynomial
parity-check matrixH(x) ∈ F

〈r〉
2 [x]J×I , or, let Cconv be a

type-1 convolutional code with polynomial parity-check matrix
Hconv(y) ∈ F2((y))

J×I . If the associated Tanner graph has a
4-cycle then

dmin(C)

dfree(Cconv)

}
6 (J+1)! − 2(J−1)!. (7)

Proof: See Appendix E.

Example 23. Let us consider again the(2, 4)-regular length-
4r QC code C from Example 10 which is given by the
polynomial parity-check matrix

H(x) =

[
x x2 x4 x8

x5 x6 x3 x7

]
.

It has at least two4-cycles since

perm

([
x x2

x5 x6

])
= 0 and perm

([
x4 x8

x3 x7

])
= 0

(in F
〈r〉
2 [x]). Therefore the bound (7) gives

dmin(C) 6 (J+1)! − 2(J−1)! = 3!− 2 · 1! = 4. (8)

We note that for thisH(x) this upper bound equals the upper
bound (2) (cf. Example 10). �

B. Type-I QC/Convolutional Codes with6-Cycles

Lemma 24. The Tanner graph of a type-1 QC LDPC codeC
with polynomial parity-check matrixH(x) ∈ F

〈r〉
2 [x]J×I has

a 6-cycle (or possibly a4-cycle) if and only ifH(x) has a
3× 3 sub-matrixB(x) for which

wt
(
perm

(
B(x)

))
< perm

(
wt
(
B(x)

))

holds,i.e., if and only ifH(x) has a3×3 sub-matrixB(x) for
which some terms of its permanent expansion add to zero.12

An analogous statement can be made for the Tanner graph
of a type-1 convolutional codeCconv defined by the polynomial
parity-check matrixHconv(y) ∈ F2((y))

J×I .

Proof: See Appendix F.

With this, we are ready to investigate the minimum/free
Hamming distance upper bounds for Tanner graphs with6-
cycles.

Theorem 25. Let C be a type-1 QC code with polynomial
parity-check matrixH(x) ∈ F

〈r〉
2 [x]J×I , or, let Cconv be a

type-1 convolutional code with polynomial parity-check matrix
Hconv(y) ∈ F2((y))

J×I . If the associated Tanner graph has a
6-cycle then

dmin(C)

dfree(Cconv)

}
6 (J+1)! − 2(J−2)!.

Proof: See Appendix G.

12The comment in Footnote 11 applies also here.
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C. Type-I QC/Convolutional Codes with2R-Cycles

The previous two subsections have shown that the minimum
Hamming distance of a type-1 QC/convolutional code whose
Tanner graph has girth4 or 6 can never attain the maximal
value(J+1)! of Corollary 9. These results are special cases of
a more general result that we will discuss next. Note however
that, compared to the girth-4 and the girth-6 case, this more
general statement is uni-directional.

Theorem 26. Let C be a type-1 QC code with polynomial
parity-check matrixH(x) = [hj,i(x)]j,i ∈ F

〈r〉
2 [x]J×I . Let R,

2 6 R 6 min(J, I), be some integer, and suppose there is
a setR ⊆ [J ] of sizeR, a setS ⊆ [I] of sizeR, and two
distinct bijective mappingsσ and τ from R to S such that
σ(j) 6= τ(j) for all j ∈ R and such that

∏

j∈R

hj,σ(j)(x) =
∏

j∈R

hj,τ(j)(x). (9)

Then

dmin 6 (J+1)! − 2(J−R+1)!.

If, in addition, the (bijective) mappingσ−1 ◦τ fromR to R is
a cyclic permutation of orderR and if the products on the left-
hand and right-hand side of the equation in(9) are nonzero,
then the associated Tanner graph will have a cycle of length
2R.

An analogous statement can be made for the Tanner graph
of a type-1 convolutional codeCconv defined by the polynomial
parity-check matrixHconv(y) ∈ F2((y))

J×I .

Proof: See Appendix H.

For 4- and6-cycles, the converse of the second part of the
above corollary is true,i.e., 4- and 6-cycles are visible in,
respectively,2 × 2 and 3 × 3 sub-matrices (cf. Theorems 22
and 25). However, for longer cycles the converse of the second
part of the above corollary isnot always true:8-cycles can
happen in4 × 4 sub-matrices, but also in2 × 4 sub-matrices
or in 3× 4 sub-matrices. A similar statement holds for longer
cycles.

D. Type-II QC/Convolutional Codes

With appropriate techniques/computations, similar state-
ments as in the preceding subsection can also be made about
type-2 QC/convolutional codes. We will not say much about
this topic except for stating a lemma that helps in detectingif
a polynomial parity-check matrix is4-cycle free.

Lemma 27. A type-2 QC codeC is 4-cycle free if and only
if its polynomial parity-check matrixH(x) has the following
properties.

1) If r is even, then for any1× 1 sub-matrix like
[
xa + xb

]

it holds that the permanent of
[
xa xb

xb xa

]

is nonzero (inF〈r〉
2 [x]). (This condition is equivalent

to the conditionx2a + x2b 6= 0 (in F2[x]), or to the
conditiongcd(xa + xb, 1 + xr) 6= 1 + xr/2 (in F2[x]).)

2) For any 1× 2 sub-matrix like
[
xa + xb xc + xd

]
,

or any 2× 1 sub-matrix like
[
xa + xb

xc + xd

]
,

the product(xa+xb)·(xc+xd) (in F
〈r〉
2 [x]) has weight4,

i.e., the maximally possible weight, or, equivalently, if all
the 2× 2 sub-matrices of the matrix

[
xa xb xc xd

xb xa xd xc

]
,

have nonzero permanent (inF〈r〉
2 [x]).

3) For any 2× 2 sub-matrix like
[

xa xb + xc

xd + xe xf

]

(or row and column permutations thereof), the perma-
nents (inF〈r〉

2 [x]) of the following two2×2 sub-matrices
[

xa xb

xd + xe xf

]
and

[
xa xc

xd + xe xf

]

have weight3, the maximally possible weight, or, equiv-
alently, if all 2× 2 sub-matrices of the matrix




xa 0 xb xc

0 xa xc xb

xd xe xf 0
xe xd 0 xf




have nonzero permanent (inF〈r〉
2 [x]).

4) For any 2× 2 sub-matrix with weight matrix
[
2 2
1 1

]
,

[
2 1
1 1

]
, and

[
1 1
1 1

]

(or row and column permutations thereof), the perma-
nent (inF〈r〉

2 [x]) of this2×2 sub-matrix has weight4, 3,
and 2, respectively,i.e., the maximally possible weight.

An analogous statement holds for the Tanner graph of a
type-2 convolutional codeCconv defined by the polynomial
parity-check matrixHconv(y) ∈ F2((y))

J×I .

Proof: It is well known that a4-cycle appears in a Tanner
graph if and only if the corresponding (scalar) parity-check
matrix contains the2× 2 (scalar) sub-matrix

[
1 1
1 1

]
.

The lemma is then proved by studying all possible cases in
which a polynomial parity-check matrix can lead to a (scalar)
parity-check that contains this2× 2 (scalar) sub-matrix. The
details are omitted.

Note that in the above lemma some of the conditions were
expressed in terms of a double cover of the relevant sub-
matrices. In particular, the modified matrices are obtainedby



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 13

applying the following changes to the entries of the relevant
sub-matrices

xa + xb 7→

[
xa xb

xb xa

]
,

xf 7→

[
xf 0
0 xf

]
,

0 7→

[
0 0
0 0

]
.

(Note that similar double covers are also considered in Ap-
pendix I.)

Example 28. Consider, forr > 26, the type-2 polynomial
parity-check matrixH ′(x) in (6). There,4-cycles could only
be caused by the two sub-matrices
[
x1 + x2 x4

x5 x10 + x20

]
and

[
x25 + x19 x7 + x14

]
.

Therefore, the conditions for the non-existence of a4-cycle
are

0 /∈ {5− 1, 5− 2}+ {4− 10, 4− 20} (in Z/rZ) ,

0 /∈ {25− 19, 19− 25}+ {7− 14, 14− 7} (in Z/rZ) .

(Here the sum of two sets denotes the set of all possible sums
involving one summand from the first set and one summand
from the second set.) It is clear that, with suitable effort,
similar analyses could be made for the non-existence of longer
cycles. �

VII. T YPE-I QC CODES BASED ON

DOUBLE COVERS OFTYPE-II QC CODES

So far, we have mostly considered(J, I)-regular QC codes
that are described by aJ × I polynomial parity-check matrix.
However, one can construct many interesting(J ′, I ′)-regular
QC LDPC codes with aJ× I polynomial parity-check matrix
whereJ ′ 6= J and/orI ′ 6= I. Given the enormity of the search
space, a worthwhile approach is to start with some small code
that has good properties and to derive longer codes from it.
In this section we present such an approach, along with an
analysis of it. Of course, there are many other possibilities;
we leave them open to future studies. (Note that this section
deals only with QC codes, however, similar investigations can
also be pursued for convolutional codes.)

Example 29. Let C be a QC code described by a(J ′, I ′)-
regular type-2 polynomial polynomial parity-check matrix
H(x) of size J × I. We would like to derive a type-1
polynomial parity-check matrix̃H(x) (of some codẽC) from
H(x). One idea for obtaining such ãH(x) is to replace all
1 × 1 sub-matrices ofH(x) by 2 × 2 sub-matrices in the
following way:

• The sub-matrix[ 0 ] is replaced by the sub-matrix[ 0 0
0 0 ].

• A sub-matrix like [ xa ] is replaced by the sub-matrix[
xa 0
0 xa

]
(or the sub-matrix

[
0 xa

xa 0

]
).

• A sub-matrix like[ xa+xb ] is replaced by the sub-matrix[
xa xb

xb xa

]
(or by the sub-matrix

[
xb xa

xa xb

]
).

Clearly, the resulting matrixH̃(x) is (J ′, I ′)-regular and
of size (2J) × (2I), i.e., the same regularity asH(x), but
vertically and horizontally twice as large asH(x).

For example, consider the codeC defined by the polynomial
parity-check matrixH(x) ∈ F

〈r〉
2 [x]J×I in Example 13,13

which for ease of reference is repeated here

H(x) ,



x+ x2 0 x4 x8

x5 x9 x10 + x20 0
0 x25 + x19 0 x7 + x14


 .

(Here,J = J ′ = 3 and I = I ′ = 4.) Applying the above-
mentioned process toH(x) we obtain the following type-
1 (J̃ ′, Ĩ ′)-regular polynomial parity-check matrix̃H(x) ∈

F
〈r〉
2 [x]J̃×Ĩ

H̃(x) =




x1 x2

x2 x1
0 0
0 0

x4 0
0 x4

x8 0
0 x8

x5 0
0 x5

x9 0
0 x9

x10 x20

x20 x10
0 0
0 0

0 0
0 0

x25 x19

x19 x25
0 0
0 0

x7 x14

x14 x7



.

(Here J̃ = 2J = 6, Ĩ = 2I = 8, J̃ ′ = J ′ = 3, Ĩ ′ = I ′ = 4.)
Clearly, the Tanner graph of̃H(x) is a double cover of the
Tanner graph ofH(x).14 Similarly, the proto-graph of̃H(x)
is a double cover of the proto-graph ofH(x).

For the choicer = 46, applying the bounds (2) and (4) to the
codeC̃ described byH̃(x), we obtain, respectively,dmin(C̃) 6
80 and dmin(C̃) 6 108. In addition, from dmin(C) = 32
and Lemma 31 in Appendix I we obtain32 6 dmin(C̃) 6
2dmin(C) = 2 ·32 = 64. Moreover, because the matrices[ 0 0

0 0 ],[
xa 0
0 xa

]
,
[

0 xa

xa 0

]
,
[
xa xb

xb xa

]
,
[
xb xa

xa xb

]
commute with each other,

and because MacKay and Davey’s upper bound [4] can be
reformulated so that it holds also for commuting matrices over
polynomials, we obtaindmin(C̃) 6 32. Because the codẽC
has parameters[368, 93, 32], this latter bound actually happens
to be tight. Therefore, although the above construction can
produce a new code whose minimum Hamming distance is
up to twice as much as for the base code, if the base code
already reaches the bound given by (2) then there is no further
improvement possible for the new code because the above
extension of MacKay and Davey’s upper bound to commuting
matrices over polynomials will yield exactly the same upper
bound.

However, by changing some entries of polynomial blocks
(and thus adding some randomness) we can ensure that the
nonzero2 × 2 polynomial block entries do not all commute
with each other anymore. Thus, the above-mentioned mini-
mum Hamming distance upper bound of32 does not apply
anymore. (In fact, not even the above-mentioned minimum
Hamming distance upper bound of64 applies anymore be-
cause the Tanner graph of the modified parity-check matrix is
not a double cover of the Tanner graph ofH(x).) Applying
such a change to the matrix̃H(x) (in fact, changing only

13Note that in Example 13 this code was calledC′ and its polynomial
parity-check matrix was calledH ′(x).

14See Appendix I for more details.
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Fig. 3. Decoding performance of the[368, 93, 32] QC LDPC codeC̃ and the[368, 93, 56] QC LDPC codeĈ from Example 29 vs. a randomly generated
(four-cycle free)[368, 92] LDPC code under sum-product algorithm decoding when transmitting over a binary-input AWGN channel. Because the performance
curve for both QC LDPC codes is nearly the same in the simulated signal-to-noise range, we have only shown the performancecurve of the QC LDPC
code C̃. We observe the onset of an error floor of the word error rate atabout4.5 dB for the randomly generated (four-cycle free) LDPC code. Asimilar
observation was made for other randomly generated LDPC codes with the same parameters. (Not shown in the plot.)

the first block of the matrixH̃(x)) we obtain the following
(3, 4)-regular parity-check-matrix

Ĥ(x) =




x1 x2

x2 x0
0 0
0 0

x4 0
0 x4

x8 0
0 x8

x5 0
0 x5

x9 0
0 x9

x10 x20

x20 x10
0 0
0 0

0 0
0 0

x25 x19

x19 x25
0 0
0 0

x7 x14

x14 x7




for some codeĈ. Interestingly enough, forr = 46 the code
Ĉ has parameters[368, 93, 56], i.e., the minimum Hamming
distance is56, which is significantly above32.15 Potentially,
the minimum Hamming distance increases even further for
suitable larger choices ofr. Note that the rate of̂C is 93/368,
i.e., it is nearly the same as the rate ofC, which is 47/184.
Of course, the Tanner graph of̂H(x) is not a double cover
of the Tanner graph of̃H(x), however, its proto-graph is a
double cover of the proto-graph ofH(x) and so the Tanner
graph ofĤ(x) is a 2r-cover of the proto-graph ofH(x).

The sum-product algorithm decoding performance of codes
C̃ and Ĉ is shown in Figure 3 and compared to a randomly
generated (four-cycle free)(3, 4)-regular LDPC code of the
same length and nearly the same rate. Actually, because the

15Note that the bounds (2) and (4) yield, respectively,dmin(Ĉ) 6 74 and
dmin(C̃) 6 108.

decoding performance of the codes̃C and Ĉ is nearly the
same in the simulated signal-to-noise range, only the decoding
performance of the codẽC is shown. For higher signal-to-noise
ratios and correspondingly smaller word error rates we expect
that the codêC will perform better than the codẽC. �

The polynomial parity-check modification methods of this
and the previous sections can now be combined and iterated.
For example, one can start with a type-1 polynomial parity-
check matrix and form (by rearranging entries) a type-2 or
type-3 polynomial parity-check matrix. From this, a2-cover
type-1 matrix (that includes a few twists) can be obtained as
discussed above. Instead of2-covers with twists one can also
considerM -covers withM > 2. For suchM , the nonzero
M × M sub-matrices that replace the nonzero1 × 1 sub-
matrices can be suitably chosen so that they do not commute
and so that consequently MacKay and Davey’s minimum
Hamming distance upper bound does not apply.

This method is just one of many possible ways to construct
and analyze a(J ′, I ′)-regular QC LDPC code with a poly-
nomial parity-check matrix that hasJ rows andI columns
with J ′ 6= J and/orI ′ 6= I. We leave it for future research to
construct and analyze such codes.
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VIII. C ONCLUSIONS

We have presented two minimum/free Hamming distance
upper bounds for QC/convolutional codes, one based on the
polynomial parity-check matrix and one on the weight matrix.
Afterwards, we have seen how these upper bounds can be
strengthened based on the knowledge of Tanner graph pa-
rameters like girth. We have also constructed several classes
of codes that achieve (or come close to) these minimum
Hamming distance upper bounds. Several extensions of these
results have recently been presented by Butler and Siegel [41].

In future work it would be interesting to establish sim-
ilar bounds for the minimum pseudo-weight (for different
channels) of QC/convolutional LDPC codes. (Some initial
investigations in that direction are presented in [42].)
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APPENDIX A
PROOF OFTHEOREM 8

The main part of this appendix is devoted to proving the
convolutional code part of Theorem 8. The QC code part
follows then simply by combining the convolutional code part
of Theorem 8 (applied to the convolutional codeCconv defined
by the polynomial parity-check matrixH(y) , H(x)|x=y

overF2((y))) with Tanner’s inequality (1).16

Let us therefore prove the convolutional code part of
Theorem 8. We use the same notation as in Lemma 6 and
Theorem 7 (and their proofs). We start by observing that,
because the permanent is a certain sum of certain products,
we can use the triangle and product inequality of the weight
function to obtain

wH(c(y)) =
∑

i∈S

wt
(
perm

(
HS\i(y)

))

6
∑

i∈S

perm
((

wt(H(y))
)
S\i

)

=
∑

i∈S

perm
(
AS\i

)
, (10)

where in the last step we have used the definitionA =
wt
(
H(y)

)
.

With this, the result in (4) is nearly established with the
exception of the case when the codeword construction in
Lemma 6 produces the all-zero vectorc(y); in Eq. (3) of The-
orem 7 we properly took care of this case by using themin∗

operator instead of themin operator. However, such an all-
zero vectorc(y) can yield a nonzero term

∑
i∈S perm

(
AS\i

)

16Here and in the other appendices, we use theH(y) instead of the longer
Hconv(y) for denoting the polynomial parity-check matrix of a convolutional
code.

in (10) and we need to take care of this degeneracy. Our
strategy will be to show thatdfree(Cconv) is never larger than
such a nonzero term and therefore, although this nonzero term
appears in themin∗ operation in (4), it does not produce a
wrong upper bound.

Example 30. Before we continue, let us briefly discuss a
polynomial parity-check matrix where the above-mentioned
degeneracy happens. LetC be a code with polynomial parity-
check matrix

H(x) ,



1 1 1 1 f(x)
1 x x2 x3 g(x)
0 1 + x 1 + x2 1 + x3 h(x)




and with weight matrix

A ,



1 1 1 1 wt

(
f(x)

)

1 1 1 1 wt
(
g(x)

)

0 2 2 2 wt
(
h(x)

)


 ,

wheref(x), g(x), andh(x) are some arbitrary polynomials
such thath(x) 6= f(x) + g(x). The corresponding convolu-
tional codeCconv has parity-check matrixH(y) , H(x)|x=y.

Let S = {0, 1, 2, 3}. Clearly, the matrixHS(y) is rank-
deficient because the last row of this matrix is the sum of
the first two rows. This implies that all3 × 3 sub-matrices
of HS(y) have zero determinant, so all3 × 3 sub-matrices
of HS(y) have zero permanent, and so the codeword gen-
erating procedure in Lemma 6 yields the codewordc(y) =
(0, 0, 0, 0, 0) for the above choice of the setS. However, the
term in (10) is
∑

i∈S

perm
(
AS\i

)

=
(
(2·1·1 + 2·1·1) + (2·1·1 + 2·1·1) + (2·1·1 + 2·1·1)

)
+(

(0·1·1 + 0·1·1) + (2·1·1 + 2·1·1) + (2·1·1 + 2·1·1)
)
+(

(0·1·1 + 0·1·1) + (2·1·1 + 2·1·1) + (2·1·1 + 2·1·1)
)
+(

(0·1·1 + 0·1·1) + (2·1·1 + 2·1·1) + (2·1·1 + 2·1·1)
)

= 36. (11)

If we can show thatdfree(Cconv) is not larger than36 then we
are sure that the value of

∑
i∈S perm

(
AS\i

)
does not yield a

wrong upper bound. We will do this by exhibiting anonzero
codewordc′(y) with Hamming weight not larger than36.

In order to construct such a codewordc′(y), let H ′(y) be
the2×5 sub-matrix ofH(y) that consists of the first two rows
of H(y), and letA′ be the2×5 sub-matrix ofA that consists
of the first two rows ofA. Because of the above-mentioned
rank deficiency ofHS(y), any vectorc′(y) in the kernel of
H

′(y) that is zero at the fifth position must be a codeword in
Cconv.17 Now, applying the codeword generating procedure of
Lemma 6 forH ′(y) and for the setS ′ = {0, 1, 2} we obtain
the codeword

c
′(y) =

(
y + y2 1 + y2 1 + y 0 0

)
.

(Because of the choice ofS ′, it is clear that the fifth position
of c′(y) is zero. Moreover and most importantly, because the

17“Fifth position” refers here to the vector entry with index4.
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matrix HS′(y) has full rank,c′(y) is a nonzero codeword.18)
This nonzero codeword yields the free Hamming distance
upper bound
∑

i∈S′

perm
(
A

′
S′\i

)
= (1·1 + 1·1) + (1·1 + 1·1) + (1·1 + 1·1)

= 6. (12)

Clearly, 6 is not larger than 36, and so the value∑
i∈S perm

(
AS\i

)
implied by c(y) yields a valid upper

bound on the free Hamming distance.
Alternatively, the fact that the value in (12) is not larger

than the value in (11) can also be seen from the following
observation. By multiplying the expression in (12) by2 (the
weight of the element in the third row and fourth column of
A, i.e., the entry ofA with row index2 and column index3),
we obtain

(2·1·1 + 2·1·1) + (2·1·1 + 2·1·1) + (2·1·1 + 2·1·1),

which is a sub-expression of (11). Because all terms in (11)
are positive, it is clear that the value in (12) cannot be larger
than the value in (11). �

In order to complete the proof of Theorem 8, we will
generalize the observations that we have just made in the above
example. LetS be a subset of[I] with |S| = J+1 and letc(y)
be the codeword that is obtained by the codeword generating
procedure of Lemma 6 for the setS. Note thatc(y) is the all-
zero codeword if and only if allJ×J sub-matrices ofHS(y)
have zero permanent, if and only if allJ × J sub-matrices of
HS(y) have zero determinant, if and only if the matrixHS(y)
is rank-deficient.

We want to show that the value of
∑

i∈S perm
(
AS\i

)
, if

it is nonzero, is always an upper bound ondfree(Cconv).

• Assume thatHS(y) has full rank. Thenc(y) is a nonzero
codeword and so

∑
i∈S perm

(
AS\i

)
is a free Hamming

distance upper bound because of the inequalities in (10).
• Assume that HS(y) has not full rank and that∑

i∈S perm
(
AS\i

)
= 0. Then perm

(
AS\i

)
= 0 for

all i ∈ S. It follows that perm
(
H(y)S\i

)
= 0 for all

i ∈ S and thatc(y) is the all-zero codeword. Therefore,
although c(y) is the all-zero codeword, this case is
properly taken care of by themin∗ operator in (4).

• Finally, assume thatHS(y) has not full rank and that∑
i∈S perm

(
AS\i

)
> 0. (Note that this can only happen

for J > 2.) Without loss of generality, we can assume
that the rows ofH(y) are ordered such that the last row
of HS(y) is a linear combination of the firstJ − 1 rows
of HS(y). Denote the entries ofH(y) by hj,i(y) and the
entries ofA by aj,i, and letH ′(y) be the(J−1) × I
sub-matrix ofH consisting of the firstJ − 1 rows of
H(y) andA′ be the sub-matrix ofA that consists of the
first J − 1 rows ofA.
Because of the assumption

∑
i∈S perm

(
AS\i

)
> 0, there

must be at least onei ∈ S such thatperm
(
AS\i

)
> 0.

18In the proof of the general case we will also have to take into account
the case whereHS′(y) doesnot have full rank.

Using the co-factor expansion of the permanent ofAS\i,
this implies that there is at least onei∗ ∈ S \ i such that

aJ−1,i∗ · perm
(
A

′
(S\i)\i∗

)
> 0. (13)

Fix such ani∗ and letS ′ , S\i∗. Assume for the moment
that H ′

S′(y) has full rank. Applying the codeword gen-
erating procedure in Lemma 6 for the polynomial parity-
check matrixH ′(y) and the setS ′ we obtain a nonzero
vectorc′(y) which is in the kernel ofH ′(y). Because of
the rank deficiency ofHS(y) and becausec′i′(y) = 0 for
i′ ∈ [I]\S ′ (and thereforec′i′(y) = 0 for i′ ∈ [I]\S), the
vectorc′(y) must also be a codeword inCconv. Therefore,
becausec′(y) is a nonzero codeword, the free Hamming
distance ofCconv can be upper bounded as follows

dfree(Cconv) 6 wH(c
′(y)) 6

∑

i′∈S′

perm
(
A

′
S′\i′

)

6 aJ−1,i∗ ·
∑

i′∈S′

perm
(
A

′
S′\i′

)
,

where we have used the fact that the inequality
in (13) implies aJ−1,i∗ > 1. However, because
aJ−1,i∗ ·

∑
i′∈S′ perm

(
A

′
S′\i′

)
is a sub-expression of∑

i∈S perm
(
AS\i

)
we obtain

dfree(Cconv) 6
∑

i∈S

perm
(
AS\i

)
,

where we have used the fact that
∑

i∈S perm
(
AS\i

)

contains only non-negative terms.
It remains the case whereH ′

S′(y) has not full rank. We
can solve this case with a similar procedure as above.
Note that the above choice ofi∗ ensures that there will
be a suitablei′∗ ∈ S ′.

APPENDIX B
PROOF OFCOROLLARY 9

The main part of this appendix is devoted to proving the
convolutional code part of Corollary 9. The QC code part
follows then simply by combining the convolutional code part
of Corollary 9 (applied to the convolutional codeCconv defined
by the polynomial parity-check matrixH(y) , H(x)|x=y

overF2((y))) with Tanner’s inequality (1).
Let us therefore prove the convolutional code part of Corol-

lary 9. We have to consider two cases. First, assume that the
weight matrixA is such that there is at least one setS ′ ⊆ [I]
with |S ′| = J + 1 such that

∑
i∈S′ perm

(
AS′\i

)
> 0. Using

the fact that the weight matrixA of a type-1 convolutional
code contains only zeros and ones, we can conclude that for
such anS ′ we haveperm

(
AS′\i

)
6 J ! for all i ∈ S ′, which

implies that

dfree(Cconv) 6 min∗
S⊆[I]

|S|=J+1

∑

i∈S

perm
(
AS\i

)

6
∑

i∈S′

perm
(
AS′\i

)

6
∑

i∈S′

J ! = (J + 1) · J ! = (J + 1)!.

This is the upper bound that we set out to prove.
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Secondly, assume that the weight matrixA is such
that for all setsS ⊆ [I] with |S| = J + 1 it holds
that

∑
i∈S perm

(
AS\i

)
= 0. Notably, this implies that

perm
(
AS\i

)
= 0 for all sets S and all i ∈ S. (Parity-

check matrices with such a weight matrixA are rather
degenerate and in general uninteresting. However, we need to
properly take care of this case too in order to verify that the
corollary statement holds for all possible type-1 convolutional
codes.) From the above condition it follows thatH(y) must
be such that for all setsS ⊆ [I] with |S| = J + 1
and for all i ∈ S it holds that perm

(
HS\i(y)

)
= 0,

i.e., det
(
HS\i(y)

)
= 0. This latter statement, however, is

equivalent to the statement thatH(y) does not have full
row rank. The codeCconv can therefore also be defined by
a suitably chosen(J−1) × I sub-matrix ofH(y). If J > 1
then applying this corollary recursively to this(J−1)×I sub-
matrix we obtaindfree(Cconv) 6 ((J−1)+1)! = J !, which
implies dfree(Cconv) 6 (J+1)!. Otherwise (i.e., whenJ = 1),
it clearly holds thatdfree(Cconv) 6 (J+1)! = 2! = 2.

APPENDIX C
PROOF OFTHEOREM 18

We prove only the QC code part of the theorem. The
convolutional code part follows by a similar argument.

Assume thatC has polynomial parity-check matrixH(x).
We establish upper bounds on the girth of the Tanner graph
of H(x) by exhibiting the existence of certain cycles in that
graph. These cycles are found using techniques from [5], [36].

a) Let
[
xa xb xc

xd xe xf

]

be any sub-matrix ofH(x) having the first weight
configuration. The path

xa → xd → xf → xc → xb → xe → xd → xa

→ xc → xf → xe → xb → xa,

shows that the Tanner graph ofH(x) has at least one
12-cycle since

(a−d) + (f−c) + (b−e) + (d−a)

+ (c−f) + (e−b) = 0

in Z (and therefore also inZ/rZ).
b) Let

[
xa xc

xb xd + xe

]

be a sub-matrix matrix ofH(x) having the second
weight configuration. The path

xa → xb → xd → xe → xb → xa

→ xc → xd → xe → xc → xa

shows that the Tanner graph ofH(x) has at least one
10-cycle since

(a−b) + (d−e) + (b−a) + (c−d) + (e−c) = 0

in Z (and therefore also inZ/rZ).
c) Let

[
xa + xb xc + xd

]

be a sub-matrix matrix ofH having the third weight
configuration. The path

xa → xb → xc → xd → xb → xa → xd → xc → xa

shows that the Tanner graph ofH(x) has at least one
8-cycle since

(a−b) + (c−d) + (b−a) + (d−c) = 0

in Z (and therefore also inZ/rZ).
d) Let

[
xa + xb + xc

]

be a sub-matrix matrix ofH having the stated weight
configuration. The path

xa → xb → xc → xa → xb → xc → xa

shows that the Tanner graph ofH(x) has at least one
6-cycle since

(a−b) + (c−a) + (b−c) = 0

in Z (and therefore also inZ/rZ).

APPENDIX D
PROOF OFLEMMA 20

We prove only the QC code part of the lemma. The
convolutional code part follows by a similar argument.

Note that a2 × 2 sub-matrixB(x) must, up to row and
column permutations, look

either like

[
xa xb

xc xd

]
or like

[
xa xb

0 xd

]
or like

[
xa 0
0 xd

]

or like

[
xa 0
xc 0

]
or like

[
xa xb

0 0

]
or like

[
xa 0
0 0

]
,

for somea, b, c, d ∈ Z/rZ.
In the first case,

wt
(
perm

(
B(x)

))
< perm

(
wt
(
B(x)

))

holds if and only if

wt
(
xa+d + xb+c

)
< 2,

if and only if

xa+d + xb+c = 0 (in F
〈r〉
2 [x]),

if and only if

a+ d = b + c (in Z/rZ),

if and only if

a− c+ d− b = 0 (in Z/rZ),

which is equivalent to the existence of a4-cycle in the Tanner
graph, see the conditions in [5], [36].
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In the second and third case,wt
(
perm(B(x))

)
<

perm
(
wt(B(x))

)
holds if and only ifwt

(
xa+d

)
< 1, i.e., if

and only if1 < 1. However, this is never the case. This agrees
with the observation that such2×2 sub-matrices cannot induce
a four-cycle in the Tanner graph [5], [36].

In the fourth, fifth, and sixth case,wt
(
perm(B(x))

)
<

perm
(
wt(B(x))

)
holds if and only ifwt(0) < 0, i.e., if and

only if 0 < 0. However, this is never the case. This agrees with
the observation that such2 × 2 sub-matrices cannot induce a
four-cycle in the Tanner graph [5], [36].

The proof is concluded by noting that a4-cycle can appear
only in a2×2 sub-matrix of a type-1 polynomial parity-check
matrix.

APPENDIX E
PROOF OFTHEOREM 22

The main part of this appendix is devoted to proving the
convolutional code part of Theorem 22. The QC code part
will be considered at the end of this appendix.

The proof of this theorem is based on upper bounding the
free Hamming distance upper bound in (3), thereby taking
advantage of the fact thatH(y) , Hconv(y) is assumed to be
of type1 and to have a4-cycle. For ease of reference, Eq. (3)
is repeated here,i.e.,

dfree(Cconv) 6 min∗

S⊆[I]
|S|=J+1

∑

i∈S

wt
(
perm

(
HS\i(y)

))
. (14)

Without loss of generality, we can assume that the rows and
columns ofH(y) are labeled such that the present4-cycle
implies that the sub-block

[
h00(y) h01(y)
h10(y) h11(y)

]
(15)

has permanent0 (in F2((y))), i.e., that

h00(y)h11(y) + h01(y)h10(y) = 0 (in F2((y))). (16)

We define the following sets.

• Let S+{0,1} be the set of all setsS ⊆ [I] with |S| = J+1

that arenot supersets of{0, 1}.
• Let S⊇{0,1} be the set of all setsS ⊆ [I] with |S| = J+1

that are supersets of{0, 1}.

Then (14) can be rewritten to read

dfree(Cconv) 6 min

(
min∗

S∈S+{0,1}

∑

i∈S

wt
(
perm

(
HS\i(y)

))
,

min∗
S∈S⊇{0,1}

∑

i∈S

wt
(
perm

(
HS\i(y)

)))
.

(17)

The first argument of the min-operator in (17) can be addressed
with a reasoning that is akin to the reasoning in the proofs of
Theorem 8 (cf. Appendix A) and Corollary 9 (cf. Appendix B).
This yields

min∗
S∈S+{0,1}

∑

i∈S

wt
(
perm

(
HS\i(y)

))
6 (J + 1)!. (18)

Therefore, let us focus on the second argument of the min-
operator in (17),i.e.,

min∗

S∈S⊇{0,1}

∑

i∈S

wt
(
perm

(
HS\i(y)

))
. (19)

We consider two sub-cases. First, assume that the polynomial
parity-check matrixH(y) is such that there is at least one set

S ′ ∈ S⊇{0,1} such that
∑

i∈S′ wt
(
perm

(
HS′\i(y)

))
> 0.

Any upper bound on this sum will be a valid upper bound on
the expression in (19). Fori ∈ {0, 1} we find that

wt
(
perm

(
HS′\i(y)

))
6 J !, (20)

where we used the fact thatH(y) is a type-1 polynomial
parity-check matrix.

For i ∈ S ′ \ {0, 1}, however, we want to use a more refined
analysis. We define the following sets.

• We defineP ′ to be the set of all permutation mappings
from [J ] to S ′ \ {i}.

• We defineP ′′ ⊆ P ′ to be the set of all permutation
mappings from[J ] to S ′ \ {i} that map(0, 1) to (0, 1)
or map(0, 1) to (1, 0).

• We defineP ′′
{0,1} to be the set of all permutation map-

pings from[J ] \ {0, 1} to S ′ \ {0, 1, i}.

With these definitions, we obtain

perm
(
HS′\i(y)

)

=
∑

σ∈P′

∏

j∈[J]

hj,σ(j)(y)

=
∑

σ∈P′′

∏

j∈[J]

hj,σ(j)(y) +
∑

σ∈P′\P′′

∏

j∈[J]

hj,σ(j)(y)

=
(
h00(y)h11(y)+h01(y)h10(y)

)
·
∑

σ∈P′′
{0,1}

∏

j∈[J]\{0,1}

hj,σ(j)(y)

+
∑

σ∈P′\P′′

∏

j∈[J]

hj,σ(j)(y)

=
∑

σ∈P′\P′′

∏

j∈[J]

hj,σ(j)(y) (in F2((y))),

where in the last equality we have taken advantage of (16).
Clearly, |P ′ \P ′′| = |P ′| − |P ′′| = J !− 2(J − 2)!, so that we
can upper bound the weight ofperm

(
HS′\i(y)

)
as follows

wt
(
perm

(
HS′\i(y)

))
6 J ! − 2(J−2)!, (21)

where we have again used the fact thatH(y) is a type-1
polynomial parity-check matrix. Combining (20) and (21), we
obtain

∑

i∈S′

wt
(
perm

(
HS′\i(y)

))

=
∑

i∈{0,1}

wt
(
perm

(
HS′\i(y)

))

+
∑

i∈S′\{0,1}

wt
(
perm

(
HS′\i(y)

))

6 2J ! + (J−1)(J !− 2(J−2)!)

6 (J+1)! − 2(J−1)!. (22)
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It remains to address the second sub-case, namely where
we assume that the polynomial parity-check matrixH(y)
is such that for all setsS ∈ S⊇{0,1} it holds that
∑

i∈S wt
(
perm

(
HS\i(y)

))
= 0. This, however, is equiv-

alent to the assumption that for all setsS ∈ S⊇{0,1} and all
i ∈ S it holds thatperm

(
HS\i(y)

)
= det

(
HS\i(y)

)
= 0,

which in turn is equivalent to the assumption that for all
S ∈ S⊇{0,1} the sub-matrixHS(y) does not have full row
rank.

Pick any S ′ ∈ S⊇{0,1} and let codeC′
conv be the code

defined byHS′(y). Without loss of generality, we can assume
that the rows ofH(y) are ordered such that the last row
of HS′(y) is a linear combination of the firstJ − 1 rows
of HS′(y). Let C′′

conv be the code that is defined by the
(J−1)× (J+1) sub-matrixH[J−1],S′(y) of HS′(y). Clearly,

dfree(Cconv) 6 dfree(C
′
conv) = dfree(C

′′
conv)

6
(
(J−1) + 1

)
! = J !,

where the first step follows from the fact that any nonzero
codeword inC′

conv induces a nonzero codeword inCconv, the
second step follows from the equivalence ofC′

conv andC′′
conv,

and the third step follows from Corollary 9. Without loss of
generality we can assume thatJ > 2 (otherwise a type-1
polynomial parity-check matrixH(y) cannot have a four-
cycle), and so we can upper bound the previous result as
follows

dfree(Cconv) 6 (J+1)! − 2(J−1)!. (23)

Finally, combining (18) and (22), or (18) and (23), we
conclude that the convolutional code part of Theorem 22 is
indeed correct, independently of which sub-case applies.

The QC code part of Theorem 22 can now be obtained as
follows. Without loss of generality, we can assume that the
rows and columns ofH(x) are labeled such that the present
4-cycle implies that the sub-block

[
h00(x) h01(x)
h10(x) h11(x)

]

has permanent0 (in F
〈r〉
2 [x]), i.e., that

h00(x)h11(x) + h01(x)h10(x) = 0 (in F2[x]/〈x
r−1〉).

Note that this doesnot imply (16) for H(y) , H(x)|x=y.
However, because multiplying a row ofH(x) by an invertible
element ofF2[x]/〈x

r−1〉 produces a parity-check matrix for
the same code, and because multiplying a column ofH(x) by
a monomial produces a parity-check matrix of an equivalent
code,19 we can, without loss of generality, assume thatH(x)
is such that [

h00(x) h01(x)
h10(x) h11(x)

]
=

[
1 1
1 1

]
.

For such a reformulatedH(x), the polynomial parity-check
matrix H(y) , H(x)|x=y satisfies condition (16). With this,
the application of convolutional code part of Theorem 22,

19Two binary codes are called equivalent if the two codeword sets are
equal (up to coordinate permutations). Clearly, equivalent codes have the same
minimum Hamming distance.

along with Tanner’s inequality (1), yields the QC code part
of Theorem 22.

APPENDIX F
PROOF OFLEMMA 24

We prove only the QC code part of the lemma. The
convolutional code part follows by a similar argument.

We consider only the case where all the entries ofB(x) are
monomials,i.e.,

B(x) =



xa xb xc

xd xe xf

xg xh xi




for somea, b, c, d, e, f, g, h, i ∈ Z/rZ. (The discussion for
matricesB(x) where some entries are the zero polynomial is
analogous.) By expanding the permanentperm

(
B
)

of B(x)
we obtain

xa+e+i+xb+f+g+xc+d+h+xc+e+g+xa+f+h+xb+d+i.

Therefore,

wt
(
perm

(
B(x)

))
< perm

(
wt
(
B(x)

))

holds if and only if

xa+e+i+xb+f+g+xc+d+h+xc+e+g+xa+f+h+xb+d+i < 6.

For this to hold, there must be at least two monomials that are
the same (inF〈r〉

2 [x]). Two different cases can happen.

• Suppose that two monomials likexa+e+i andxb+f+g are
the same (inF〈r〉

2 [x]).20 Then

a+ e+ i = b+ f + g (in Z/rZ),

i.e.,

a− g + i− f + e− b = 0 (in Z/rZ).

According to the conditions in [5], [36], this is equivalent
to the existence of a6-cycle in the Tanner graph.

• Suppose that two monomials likexa+e+i and xa+f+h

are the same (inF〈r〉
2 [x]).21 Then

a+ e+ i = a+ f + h (in Z/rZ),

i.e.,

e− h+ i− f = 0 (in Z/rZ).

According to the conditions in [5], [36], this is equivalent
to the existence of a4-cycle in the Tanner graph.

The proof is concluded by noting that a6-cycle can only
appear in a3 × 3 sub-matrix of a type-1 polynomial parity-
check matrix.

20Here,xa+e+i andxb+f+g are such that the variables that appear in the
exponents are all distinct.

21Here,xa+e+i andxa+f+h are such that there is exactly one variable,
i.e., a, that appears in both exponents.
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APPENDIX G
PROOF OFTHEOREM 25

The proof is very similar to the proof of Theorem 22 in
Appendix E and so we will only discuss the main steps of
the argument. The following steps are necessary to adapt the
proofs of Theorem 22 in Appendix E to the present corollary.

Convolutional code part:
• S+{0,1} is replaced by a similarly defined setS+{0,1,2}.
• S⊇{0,1} is replaced by a similarly defined setS⊇{0,1,2}.
• The line of argument leading to (22) is replaced by the

observation that for anyS ′ ∈ S⊇{0,1,2} and anyi ∈
S ′ \ {0, 1, 2} it holds that

wt
(
perm

(
HS′\i(x)

))
6 J ! − 2(J−3)!.

Therefore, for anyS ′ ∈ S⊇{0,1,2} we have
∑

i∈S′

wt
(
perm

(
HS′\i(x)

))

=
∑

i∈{0,1,2}

wt
(
perm

(
HS′\i(x)

))
+

∑

i∈S′\{0,1,2}

wt
(
perm

(
HS′\i(x)

))

6 3J ! + (J−2)(J !− 2(J−3)!)

6 (J+1)! − 2(J−2)!.

• The line of argument leading to (23) is replaced by the
observation that

dfree(Cconv) 6 dfree(C
′
conv) = dfree(C

′′
conv)

6
(
(J−1) + 1

)
! = J !.

Without loss of generality we can assume thatJ > 3
(otherwise a type-1 polynomial parity-check matrixH(y)
cannot have a six-cycle), and so we can upper bound the
previous result as follows

dfree(Cconv) 6 (J+1)! − 2(J−2)!.

QC code part:
• Without loss of generality, we can assume that the rows

and columns ofH(x) are labeled such that

h00(x)h11(x)h22(x) + h01(x)h12(x)h20(x) = 0

(in F2[x]/〈x
r−1〉). Because multiplying a row ofH(x)

by an invertible element ofF2[x]/〈x
r−1〉 produces a

polynomial parity-check matrix for the same code, and
because multiplying a column ofH(x) by a monomial
produces a parity-check matrix of an equivalent code, we
can, without loss of generality, assume thatH(x) is such
that


h00(x) h01(x) h02(x)
h10(x) h11(x) h02(x)
h20(x) h21(x) h22(x)



 =




1 1 h02(x)

h10(x) 1 1
1 h21(x) 1



 .

(See the end of Appendix E for a similar reasoning.)
For such aH(x), the polynomial parity-check matrix
H(y) , H(x)|x=y satisfies

h00(y)h11(y)h22(y) + h01(y)h12(y)h20(y) = 0

(in F2((y))).

APPENDIX H
PROOF OFTHEOREM 26

We prove only the QC code part of the theorem. The
convolutional code part follows by a similar argument.

The proof of the first part of the QC code part of the theorem
is very similar to the proof of Theorem 22 in Appendix E and
the proof of Theorem 25 in Appendix G, and is therefore
omitted.

So, let us focus on the second part of the QC code part of
the corollary. Because the products on the left-hand and right-
hand side of (9) are assumed to be nonzero, for everyj ∈ R
there exists an integerpj,σ(j) ∈ Z/rZ such that

hj,σ(j)(x) = xpj,σ(j) .

Similarly, for everyj ∈ R there exists an integerpj,τ(j) ∈
Z/rZ such that

hj,τ(j)(x) = xpj,τ(j) .

The condition (9) can then be rewritten to read
∏

j∈R

xpj,σ(j) =
∏

j∈R

xpj,τ(j) (in F
〈r〉
2 [x]).

Clearly, this holds if and only if
∑

j∈R

pj,σ(j) =
∑

j∈R

pj,τ(j) (in Z/rZ). (24)

Now we defineπ to be the permutation mappingπ , σ−1 ◦
τ from R to R. (By assumption,π is cyclic of orderR.)
Moreover, we letj′0 be some element ofR and we setj′t ,
πt(j′0), t = 1, . . . , R−1. Then, the condition in (24) holds if
and only if

R−1∑

t=0

pj′t,σ(j′t) =

R−1∑

t=0

pj′t,τ(j′t) (in Z/rZ),

which holds if and only if

R−1∑

t=0

(
pj′t,σ(j′t) − pj′t,τ(j′t)

)
= 0 (in Z/rZ). (25)

Because we assumed thatπ = σ−1 ◦ τ is a cyclic per-
mutation of orderR, the condition in (25) is equivalent to
Tanner’s condition on the existence of a2R-cycle, see [5],
[36]. (Note that σ(j′t+1) = σ

(
π(j′t)

)
= τ(j′t) and that

σ(j′0) = σ
(
π(j′R−1)

)
= τ(j′R−1).)

APPENDIX I
GRAPH COVERS

This appendix collects some results that are used in Sec-
tion VII. The focus is on QC codes, however, similar results
can also be stated for convolutional codes.

Let C be a QC code with polynomial parity-check matrix

H(x) =
[
hj,i(x)

]
j,i

∈ F
〈r〉
2 [x]J×I .

We define the decomposition

H(x) = H
(1)(x) +H

(2)(x)
(

in F
〈r〉
2 [x]J×I

)
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with matrices

H
(1)(x) =

[
h
(1)
j,i (x)

]

j,i
∈ F

〈r〉
2 [x]J×I

and

H
(2)(x) =

[
h
(2)
j,i (x)

]

j,i
∈ F

〈r〉
2 [x]J×I .

Based on this decomposition, we define a new codeC̃ with
the polynomial parity-check matrix

H̃(x) ,

[
H

(1)(x) H
(2)(x)

H
(2)(x) H

(1)(x)

]
∈ F

〈r〉
2 [x]2J×2I .

Lemma 31. The minimum Hamming distances ofC and C̃
satisfy

dmin(C) 6 dmin(C̃) 6 2 · dmin(C). (26)

Proof: Let us start by proving the first inequality in (26).
Let c̃(x) = (c(1)(x), c(2)(x)) be a codeword inC̃ with
Hamming weightwH

(
c̃(x)

)
= wH

(
c
(1)(x)

)
+wH

(
c
(2)(x)

)
=

dmin(C̃). We show thatc(x) , c
(1)(x)+ c

(2)(x) ∈ C. Indeed,
becausẽc(x) ∈ C̃, we have (inF〈r〉

2 [x])

H
(1)(x) · c(1)(x)T +H

(2)(x) · c(2)(x)T = 0
T, (27)

H
(2)(x) · c(1)(x)T +H

(1)(x) · c(2)(x)T = 0
T. (28)

Adding these two equations we obtain (inF〈r〉
2 [x])

(
H

(1)(x) +H
(2)(x)

)
·
(
c
(1)(x) + c

(2)(x)
)T

= 0
T,

showing thatc(x) ∈ C. If c(x) 6= 0 then

dmin(C) 6 wH

(
c(x)

)

= wH

(
c
(1)(x) + c

(2)(x)
)

6 wH

(
c
(1)(x)

)
+ wH

(
c
(2)(x)

)

= wH

(
c̃(x)

)
= dmin(C̃),

thus proving the first inequality in (26). Ifc(x) = 0 then
c
(1)(x) = c

(2)(x) and so both (27) and (28) can be rewritten
to read (inF〈r〉

2 [x])
(
H

(1)(x) +H
(2)(x)

)
· c(1)(x)T = 0

T,

showing thatc(1)(x) = c
(2)(x) ∈ C. With this,

dmin(C) 6 wH

(
c
(1)(x)

)
< 2 · wH

(
c
(1)(x)

)

= wH

(
c̃(x)

)
= dmin(C̃),

thus proving the first inequality in (26).
We now prove the second inequality in (26). Letc(x) be a

codeword inC with Hamming weightwH

(
c(x)

)
= dmin(C)

and definec̃(x) ,
(
c(x), c(x)

)
. We show thatc̃(x) ∈ C̃.

Indeed, becausec(x) ∈ C, we have (inF〈r〉
2 [x])

H(x) · c(x)T = 0
T.

Therefore (inF〈r〉
2 [x]),

(
H

(1)(x) +H
(2)(x)

)
· c(x)T = 0

T,

and so (inF〈r〉
2 [x])

H
(1)(x) · c(x)T +H

(2)(x) · c(x)T = 0
T,

H
(2)(x) · c(x)T +H

(1)(x) · c(x)T = 0
T.

which are exactly the equations thatc̃(x) must satisfy in order
to be a codeword iñC. Therefore, becausẽc(x) 6= 0,

dmin(C̃) 6 wH

(
c̃(x)

)
= 2 · wH

(
c(x)

)
= 2 · dmin(C),

thus proving the second inequality in (26).

Assume that the matricesH(1)(x) andH
(2)(x) are such

that whenh(1)
j,i (x) andh(2)

j,i (x) are added to obtainhj,i(x), then
no terms cancel for anyj and andi. In this case it can easily
be seen that the Tanner graph ofH̃(x) is a double cover of
the Tanner graph ofH(x). This means that Lemma 31 relates
the minimum Hamming distance of a Tanner graph and the
minimum Hamming distance of a certain double cover of that
Tanner graph.

There is another way to obtain the same double cover (up
to relabeling of the coordinates). Namely, based on codeC we
define the codẽC′ with the polynomial parity-check matrix

H̃
′(x) ∈ F

〈r〉
2 [x]2J×2I .

This time the matrixH̃ ′(x) is obtained fromH(x) by
replacing, for eachj and eachi, the 1× 1 entry

hj,i(x) = h
(1)
j,i (x) + h

(2)
j,i (x)

by the2× 2 entry
(
h
(1)
j,i (x) h

(2)
j,i (x)

h
(2)
j,i (x) h

(1)
j,i (x)

)
.

It can easily be checked that̃H ′(x) equals H̃(x) up to
reshuffling of rows and columns. Therefore, the Tanner graphs
of H̃(x) and of H̃ ′(x) are isomorphic, showing that they
define the same double cover of the Tanner graph ofH(x)
(up to relabeling of the bit and check nodes).

Let us remark that [43]–[45] consider similar2-covers.22

Namely, for some (scalar) parity-check matrixH , these au-
thors first constructed the trivial2-cover

H̃ =

[
H 0

0 H

]
.

Then, in a second step they splitH intoH = H
′+H

′′, where
the matricesH ′ andH

′′ were chosen such that the nonzero
entries do not overlap. Finally, they formulated a modified2-
cover as follows

H̃
′ =

[
H

′
H

′′

H
′′

H
′

]
.

We conclude this appendix by remarking that similar results
can be proved for generalM -covers, whereM is a power of
2, by iterating the results of this section multiple times.

22The paper [45] also considers higher-degree covers, in particular covers
whose degree is a power of2.
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