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Abstract

Glioblastoma (GBM) is a highly invasive brain tumor, whose cells infiltrate surrounding normal 

brain tissue beyond the lesion outlines visible in the current medical scans. These infiltrative cells 

are treated mainly by radiotherapy. Existing radiotherapy plans for brain tumors derive from 

population studies and scarcely account for patient-specific conditions. Here, we provide a 

Bayesian machine learning framework for the rational design of improved, personalized 

radiotherapy plans using mathematical modeling and patient multimodal medical scans. Our 

method, for the first time, integrates complementary information from high-resolution MRI scans 

and highly specific FETPET metabolic maps to infer tumor cell density in GBM patients. The 

Bayesian framework quantifies imaging and modeling uncertainties and predicts patient-specific 

tumor cell density with credible intervals. The proposed methodology relies only on data acquired 

at a single time point and, thus, is applicable to standard clinical settings. An initial clinical 

population study shows that the radiotherapy plans generated from the inferred tumor cell 

infiltration maps spare more healthy tissue thereby reducing radiation toxicity while yielding 

comparable accuracy with standard radiotherapy protocols. Moreover, the inferred regions of high 

tumor cell densities coincide with the tumor radioresistant areas, providing guidance for 

personalized dose-escalation. The proposed integration of multimodal scans and mathematical 

modeling provides a robust, non-invasive tool to assist personalized radiotherapy design.

Index Terms—

Glioblastoma; radiotherapy planning; Bayesian inference; FET-PET; multimodal medical scans
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I. Introduction

GLIOBLASTOMA (GBM) is the most aggressive and most common type of primary brain 

tumor, with a median survival of only 15 months despite intensive treatment [1]. The 

standard treatment consists of immediate tumor resection, followed by combined radio- and 

chemotherapy targeting the residual tumor. All treatment procedures are guided by magnetic 

resonance imaging (MRI). In contrast to most tumors, GBM infiltrates surrounding tissue, 

instead of forming a tumor with a well-defined boundary. The central tumor, which is visible 

on medical scans, is commonly resected. However, the distribution of the infiltrating residual 

tumor cells in the nearby healthy-appearing tissue, which are likely to contribute to tumor 

recurrence, is not known.

Current radiotherapy (RT) planning handles these uncertainties in a rather rudimentary 

fashion. Guided by population-level studies, standard-of-care RT plans uniformly irradiate 

the volume of the visible tumor extended by a uniform margin [1]–[3], which is referred as 

the clinical target volume (CTV). However, the extent of this margin varies by few 

centimeters even across the official RT guidelines [4]. Moreover, GBM infiltration is 

anisotropic and thus a uniform margin very likely does not provide an optimal dose 

distribution. In addition, GBM invasiveness is highly patient-specific, and thus not all 

patients benefit equally from the same margin, which impairs comparison and advancement 

of RT protocols.

Despite treatment almost all GBMs recur [5]. Biopsies [6] and post-mortem studies [7] show 

that tumor cells can invade beyond the CTV, which reduces RT efficiency, and is a possible 

cause of recurrence. At the same time radioresistance of tumor cells inside the CTV can also 

reduce RT efficiency. Radioresistance tends to occur in regions with complex 

microenvironment and hypoxia [8], both of which are commonly encountered in areas of 

high tumor cellularity. To address tumor radioresistance, several studies have suggested local 

dose-escalations [8]–[10]. In these approaches, a boosted dose is delivered into a single or 

multiple co-centered regions defined by adding uniform margins to the tumor outlines 

visible in MRI scans [11]. The Radiation Therapy Oncology Group (RTOG) phase-I-trial 

[10] showed an increase in median survival of 8 months with dose-escalation. However, no 

benefit in progression-free survival was observed, indicating a complex relationship between 

true progression of the underlying disease and the tumor extent visible in MRI scans.

Alternatively, positron emission tomography (PET) scans, which map tumor metabolic 

activities targeted by specific tracers, can be used to identify radioresistant regions. A 

promising tracer used in GBM imaging is 18F-fluoroethyl-tyrosine (FET) [12], whose 

uptake values have been shown to be proportional to tumor cell density, although the 

constant of proportionality is unknown and patient-specific [13], [14]. A prospective phase-

II-study [5] demonstrated that dose-escalation based on FET-PET enhancement delineates 

the tumor structure better than uniform margins, thus leading to lower radiation toxicity. 

Still, FET-PET based dose-escalation did not increase progression-free survival. One 

possible explanation is that PET enhances mainly the tumor core, which is usually resected, 

while the PET uptake values in the remaining tumor periphery coincide with the baseline 

signal from the healthy tissue. This, together with a rather low resolution of PET scans, 
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limits their ability to fully target radioresistant tumor residuals. This is also consistent with 

our results.

Standard RT plans can be improved by incorporating information from computational tumor 

models. These models, calibrated against patient medical scans, provide estimates of tumor 

infiltration that extend the information available in medical images and can guide 

personalized RT design. Despite extensive development of tumor growth models [15]–[20] 

and calibration strategies [21]–[28], their translation into clinical practice remains very 

limited. We postulate that there are (at least) three translational weakness: 1) Most model 

calibrations rely on data not commonly available in clinical practice. For example, in [22]–

[28] medical scans with visible tumor progression from at least two time points are used for 

the model calibration. However, for GBM patients only scans acquired at single preoperative 

time point are available. 2) Models are based on simplified assumptions motivated by in-
vitro studies. For instance, it is frequently assumed that the tumor cell density is constant 

along the tumor borders visible on MRI scans (e.g., [21]–[27]). However, the tumor cell 

density varies significantly along the visible lesion borders due to anatomical restrictions 

and anisotropic tumor growth. 3) Even if advanced calibration techniques as in [28] are 

used, it is not clear how robust the model predictions are and what benefits they offer over 

the standard treatment protocols.

Here, we address these translational issues and provide clinically relevant patient-specific 

tumor predictions to improve personalized RT design. We present a Bayesian machine 

learning framework to calibrate tumor growth models from multimodal medical scans. We 

show that an integration of information from complementary structural MRI and functional 

FET-PET metabolic maps enables the robust inference of the tumor cell densities from scans 

acquired at single time point. To the best of our knowledge, this is the first study making 

joint use of FET-PET and MRI scans for the patient-specific calibration of a tumor growth 

model. Our Bayesian approach infers modeling and imaging parameters under uncertainties 

arising from measurement and modeling errors. We propagate these uncertainties through 

the computational tumor model to obtain robust estimates of the tumor cell density together 

with credible intervals that can be used for personalized RT design. The patient-specific 

tumor estimates offer an advantage in determining margins of CTV as well as regions for 

dose-escalation. A clinical study is used to assess benefits of the personalized RT design 

over standard treatment protocols.

In the remainder of the paper, Section II introduces the Bayesian framework for model 

calibration, including the tumor growth and imaging models. The results are presented in 

Section III where the framework is applied to synthetic and clinical data, followed by a 

personalized RT study. Conclusions are presented in Section IV. Additional technical details 

are given in the Supplementary Materials (SM) available in http://ieeexplore.ieee.org.

II. Bayesian Model Calibration

The Bayesian framework we develop combines a deterministic model Mu for tumor growth 

with a stochastic imaging model Mℐ relating model predictions with tumor observations 

available from patient medical scans. Bayes theorem is used to estimate the probability 
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distribution of the unknown parameters of both models, accounting for modeling and 

measurement uncertainties. Identified parametric uncertainties are propagated to obtain 

robust patient-specific tumor predictions. An overview of the framework is given in Figure 

1.

A. Tumor Growth Model

Many tumor growth models are based on the Fisher-Kolmogrov (FK) equation [23], which 

captures the main tumor behavior: proliferation and infiltration. We use FK equation to 

describe the tumor model Mu. The equation is solved in a patient-specific brain anatomy 

reconstructed from MRI scans, where each voxel corresponds to one simulation grid point. 

Let Ω ∈ ℝ3 be the brain anatomy consisting of white and grey matter and ui(t) ∈ [0, 1] be 

normalized tumor cell density at time t and voxel i at location (ix, iy, iz) ∈ Ω, where i = {1, 

⋯, N} is index across all voxels. The dynamics of the tumor cell density u: = ui(t) i = 1
N  is 

modeled as:

∂u
∂t = ∇ ⋅ (D∇u) + ρu(1 − u) in Ω, (1)

∇u ⋅ n = 0 in  ∂Ω . (2)

The term ρ [1/day] denotes proliferation rate. The tumor infiltration into the surrounding 

tissues is modeled by the tensor D = DiI i = 1
N  where I is a 3 × 3 identity matrix and

Di =
pwiDw + pgiDg  if i ∈ Ω
0  if i ∉ Ω .

(3)

The terms pwi and pgi denote percentage of white and grey matter at voxel i, while Dw and 

Dg stand for tumor infiltration in the corresponding matter. We assume Dw = 10 Dg [mm2/
day] [28]. The skull and ventricles are not infiltrated by the tumor cells and act as a domain 

boundary with an imposed no-flux boundary condition Eq. (2), where n  is the outward unit 

normal to ∂Ω. The tumor is initialized at voxel (icx, icy, icz) and its growth is modeled from 

time t = 0 until detection time t = T [day]. The parameters θu = {Dw, ρ, T, icx, icy, icz} are 

considered unknown and patientspecific. The model is implemented in a 3D extension of the 

multi-resolution adapted grid solver [29] with a typical simulation time of 1–3 minutes using 

2 cores. An overview of the model Mu and its parameters is shown in Figure 1 (II. A-C).

B. Multimodal Imaging Model

We consider routinely acquired T1 gadolinium enhanced (T1Gd) and fluid attenuation 

inversion recovery (FLAIR) MRI scans in combination with FET-PET maps. A stochastic 

imaging model Mℐ is designed to relate model predictions of the tumor cell density u and 

the tumor observations D = yT1Gd, yFLAIR, yFET  available from the medical scans. Here, y

denotes a vector of tumor observations obtained from a certain image modality, yi is an entry 

in y and i enumerates all voxels in the given image. A voxel i corresponds to the same 
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location (ix, iy, iz) in each scan and the simulation domain Ω. See Figure 1 for an overview 

of all the imaging modalities (I.B), corresponding tumor observations (I.C) and their relation 

to tumor cell density u (II.D).

The MRI scans provide morphological information about the visible tumor in the form of 

binary segmentations. The segmentation yS , s ∈ {T1Gd, FLAIR} assigns a label yis = 1 to 

each voxel with visible tumor and yis = 0 otherwise. The probability of observing a 

segmentation yS with a simulated tumor cell density u is modeled by a Bernoulli distribution 

[28]:

ℙ ys θ, M = ∏
i = 1

N
ℙ yis |θ, ui = ∏

i = 1

N
ai

yis ⋅ 1 − αi
1 − yis . (4)

Here αi is the probability of observing the tumor in the MRI scan and it is assumed to be a 

double logistic sigmoid:

αi ui, ucs = 0.5 + 0.5 ⋅ sign ui − ucs 1 − e−
ui − ucs

2

σα2 , (5)

where ucS denotes an unknown cell density threshold below which tumor cells are not visible 

in the MRI scan, while the term σα2 represents uncertainty in ucS. The parameters 

θℐT1Gd, θℐFLAIR = ucT1Gd, ucFLAIR, σα2  are assumed unknown and patient-specific.

The FET-PET signal is proportional to tumor cell density with an unknown constant of 

proportionality [13], [14]. Let yFET  be the normalized FET-PET signal after subtracting the 

patient-specific baseline signal from healthy tissue i.e., yiFET ∈ 0, 1  and b the corresponding 

constant of proportionality. We assume that yiFET  can be related with the modeled tumor cell 

density ui as

yiFET = 1
bui + ε, (6)

where ε is prediction error accounting for modeling and measurement uncertainties. Because 

of the noisy nature of the PET scan, the error term is assumed to be a normal distribution 

ε N 0, σ2 . The probability of observing the PET signal yFET  with the simulated tumor cell 

density u is then modeled as

ℙ yFET |θ, M = ∏
i = 1

N
ℙ yiFET |θ, ui

= ∏
i = 1

N
N yiFET − 1

bui, σ2 .
(7)
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The PET scan, acquired at 4mm resolution, is registered to the MRI scans with 1mm 
resolution. To justify the product in Eq. (7) only voxels separated by distance 4mm are used. 

The parameters θℐFET = b, σ  are unknown and patient-specific. An overview of the 

imaging model Mℐ and its parameters is shown Figure 1 (II. D-F).

C. Parameters Estimation and Uncertainty Propagation

The parameters θ = θu, θℐ  of the model M = Mu, Mℐ  where 

ℐ = ℐT1Gd, ℐFLAIR, ℐPET , are assumed unknown and a probability distribution function 

(PDF) is used to quantify their plausible values. A prior PDF ℙ(θ |M) is used to incorporate 

any prior information about θ. Bayesian model calibration updates this prior information 

based on the available data D. The updated posterior PDF is computed by the Bayes 

theorem:

ℙ(θ |D, M) ∝ ℙ(D |θ, M) ⋅ ℙ(θ |M), (8)

where ℙ(D |θ, M) is the likelihood of observing data D from the model M for a given value 

of θ. Since each of the medical scans captures a different physiological process, the tumor 

observations are assumed independent and the likelihood function can be expressed as:

ℙ(D |θ, M) = ℙ yT1Gd |θ, M ⋅ ℙ yFLAIR |θ, M ⋅ ℙ yFET |θ, M .

The prior PDF is assumed uniform with details specified in the SM. Since an analytical 

expression for Eq. (8) is not available, sampling algorithms are used to obtain samples θ(l), l 
∈ {1, ⋯ , S} from the posterior ℙ(θ |D, M). We use Transitional Markov Chain Monte Carlo 

(TMCMC) algorithm [30] which iteratively constructs series of intermediate PDFs:

ℙj(θ |D, M) ℙ(D |θ, M)pj ⋅ ℙ(θ |M), (9)

where 0 = p0 < p1 < ⋯ < pm = 1 and j = {1, ⋯ ,m} is a generation index. The term pj 

controls the convergence of the sampling procedure and is computed automatically by the 

TMCMC algorithm. TMCMC method constructs a large number of independent chains that 

explore parameter space more efficiently than traditional sampling methods [30] and allow 

parallel execution. We use a highly parallel implementation of the TMCMC algorithm 

provided by the Π4U framework [31].

The inferred parametric uncertainties are propagated through the model M to obtain robust 

predictions about u given by:

ℙ(u |D, M) = ∫
Θ

ℙ(u |θ, M) ⋅ ℙ(θ |D, M) dθ, (10)

or by simplified measures such as the mean μu = E[u(θ)] ≡ m1 and variance 

σu2 = E u2(θ) − m1
2 ≡ m2 − m1

2 derived from the first two moments mk, k = 1, 2:
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mk = ∫Θ
(u(θ |M))k ⋅ ℙ(θ |D, M) dθ ≈ 1

S ∑
l = 1

S
u θ(l) |M k,

where Θ is the space of all unknown parameters. The most probable tumor cell density 

estimate, is given by the maximum a posteriori (MAP) defined as 

uMAP = argmaxθ ℙ(u |D, M).

III. Results

The Bayesian framework described in the previous section is first applied to synthetic data to 

test sensitivity of the inference and to show the role of multimodal image information on the 

model calibration. Afterwards, clinical data are used to infer patient-specific tumor cell 

densities and to design personalized RT plans. Tumor recurrence patterns are used to 

compare the proposed and standard RT plans. The software and data used in this paper are 

publicly available.1

A. Sensitivity Study

The model Mu is used to generate a 3D synthetic tumor in a brain anatomy obtained from 

[32] using the parameters reported in Table I. A 2D slice of the simulated ‘groundtruth’ (GT) 

tumor cell density is shown in Figure 2 (A). The synthetic T1Gd and FLAIR tumor 

segmentations are constructed by thresholding the GT tumor cell density at ucT1Gd = 0.7 and 

ucFLAIR = 0.25. The FET-PET signal is designed by taking the GT tumor cell density within 

the T1Gd and FLAIR segmentations, adding Gaussian noise with zero mean and standard 

deviation (std) σ, and normalizing the result. The value of σ is chosen as average std of the 

FET signal from the healthy brain tissue. The generated synthetic image observations are 

shown in Figure 2 (B).

A sensitivity study for the number of samples is performed, indicating that 6000 samples is 

adequate for the model. The manifold of the inferred probability distribution is presented in 

Figure 3 and the calibrated parameters are given in Table I. As seen from the probability 

distribution manifold, tumor observations from a single time point do not contain enough 

information to infer time dependent parameters (Dw, ρ, T) exactly, since different 

combinations of these parameters can generate the same tumor cell density as shown in 

Figure 4. The lack of identifiability of (Dw, ρ, T) poses a challenge for calibration 

approaches searching only for a single value of θ. Instead, Bayesian calibration provides 

fairer estimate; the inferred probability distribution shows a strong correlation between the 

parameters (Dw, ρ, T), while the high std values imply low confidence in these parameters. 

On the other hand, parameters that affect the tumor spatial pattern, e.g. (icx, icy, icz), are 

identified with high accuracy, which is reflected by their low std. The image related 

parameters (ucT1Gd,ucFLAIR, b, σ) are slightly overestimated due to the assumed correlation 

1https://github.com/JanaLipkova/GliomaSolver
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length and the effect of the complex brain anatomy. The role of the anatomy is discussed 

further in the SM.

The inferred parametric uncertainties are propagated to obtain robust posterior predictions 

about the tumor cell density shown in Figure 2 (C-E). Despite the large parametric 

uncertainties, the MAP and mean tumor cell density estimates are almost indistinguishable 

from the GT tumor. The low std values imply that, using our Bayesian formulation, the 

information contained in multimodal data is sufficient to infer tumor cell density from single 

time point scans.

For comparison, if the model calibration is performed only with the MRI data, i.e. 

D = yT1Gd, yFLAIR , the estimated tumor cell densities shown in Figure 2 (F-G) deviate 

from the GT tumor mainly in the central part of the lesion, which is also consistent with the 

regions of high std shown in Figure 2 (H). Nonetheless, the outlines of the predicted tumor 

are similar to those of the GT tumor. This is because the tumor morphology is mainly 

constrained by the MRI data, since the FET-PET signal coincides with the baseline signal of 

the healthy tissue in the regions of lower tumor infiltration. On the other hand, the FET-PET 

signal constrains the tumor cell density profile in the regions of high tumor infiltration. This 

highlights the importance of integrating structural and functional image information for the 

model calibration when dealing with single time point data.

B. Patient Study

A retrospective clinical study is conducted on 8 patients diagnosed with GBM. Scans of the 

patients P1–P8 are shown Figure 5 and the details about acquisition protocols and image 

processing are reported in the SM. All patients received the standard treatment, surgery 

followed by combined radio- and chemotherapy [2]. There was no visible tumor after the 

treatment and patients were regularly monitored for recurrence. The preoperative scans 

shown in Figure 5 (A-D) are used for the Bayesian inference. The calibrated parameters are 

reported in Table 1 in the SM and the posterior, patient-specific predictions for the tumor 

cell densities are shown in Figure 5 (E-G). These patient-specific predictions provide 

estimates about the possible tumor cell migration pathways in the surrounding of the visible 

tumor, constrained by the patient anatomy and the available tumor observations. The 

predicted tumor infiltration pathways can be validated by the patterns of the first detected 

tumor recurrence shown in Figure 5 (H), where the outlines of the predicted infiltrations 

(blue) and recurrence tumors (pink) are depicted. For patients P5, P7, P8 the model 

accurately predicts tumor infiltration also inside the healthy-appearing collateral hemisphere, 

whereas for cases P1–P4 the tumor predictions are correctly restricted only to one 

hemisphere. Moreover, despite a similar appearance of the preoperative tumors in patients 

P1 and P2, the model correctly predicts more infiltrative behaviour for the patient P1, which 

is consistent with the recurrence pattern. The high confidence in the predictions is reflected 

by low std shown in Figure 5 (F).

C. Personalized Radiotherapy Design

The patient-specific tumor cell density predictions can be used to design margins of the CTV 

and to identify high cellularity regions that could mark areas of increased radioresistance. 
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The personalized RT plan can be based either on the most probable scenario given by MAP 

estimate or the worst case scenario given as a sum of the mean and std of the tumor cell 

density. Since in the present study, the mean and MAP estimates are very similar, and the std 

values are small, the MAP estimates are used. An overview of the proposed personalized RT 

design is shown in Figure 1 (IV), while the details are described in the following 

subsections. The tumors recurrence patterns are used to assess the benefits of the proposed 

RT plan over the standard treatment protocol. For evaluation purposes, all recurrence scans 

are registered to the preoperative anatomy. To prevent registration errors arising from 

mapping the anatomy with the resection cavity to the preoperative brain, rigid registration is 

used. This provides a sufficient mapping for most cases, however it cannot capture the post-

treatment tissue displacement around the ventricles in patients P7–P8, making the mapping 

less accurate in these regions. The design of methods that provide robust registration 

between pre- and post-operative brain anatomies is still an open problem.

1) Dose Distribution: An ideal CTV covers all the residual tumor, including infiltrating 

tumor cells that are invisible on the pretreatment imaging scans, while sparing healthy 

tissue. We use the tumor recurrence pattern to evaluate the efficiency (ηCTV) of the CTV, 

defined here as the relative volume of the recurrence tumor (V REC) contained within the 

CTV:

ηCTV = |V REC ∩ CTV |
V REC × 100% . (11)

Figure 5 (H) shows the FLAIR scans with the first detected tumor recurrence outlined by the 

pink lines. The margin of the administered CTVRTOG, designed by the standard RTOG 

protocol with a 2cm margin around the visible tumor, is marked by the green lines in (E, F, 
H). The personalized CTV, referred as CTVMAP, is constructed by thresholding the MAP 

tumor cell density at u = 0.1% for all patients. (This value was MAP chosen so that the 

efficiency of the CTV is comparable to that of the CTVRTOG). The outlines of the proposed 

CTVMAP are shown as the blue isocontours in Figure 5 (H-I). A visual comparison of the 

CTVs shown in Figure 5 (H) and Figure 1 (IV), and a quantitative comparison presented in 

Figure 6, show that the proposed personalized plans spare more healthy tissue, hence 

reducing radiation toxicity, while maintaining the efficiency of the standard RTOG protocol. 

Both plans show reduced efficiency for patients P7–P8, mainly around the ventricles, which 

may be caused by misalignment between the preoperative and recurrence anatomies.

These preliminary results imply that the regions predicted as a tumor-free by the model, 

remain tumor-free and thus the model predictions have potential to guide personalized CTV 

design. The standard or hospital-specific protocols can be updated by the model predictions 

to spare brain tissue not infiltrated by the tumor. This can lead to significant savings in the 

healthy tissue, especially in the cases of large lesions or lesions close to hemispheres 

separation and other anatomical constraints.

2) Dose-Escalation: No dose-escalation plan for GBM patients has been yet approved 

by phase-III-clinical trials. Here, we present a theoretical comparison of two escalation plans 

targeting high tumor cellularity regions identified by: 1) FET-PET enhancement as proposed 
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in [5] and 2) MAP estimates. We evaluate the efficiency of an escalation plan by its 

capability of targeting T1Gd-enhanced tumor recurrence regions. In these regions, the 

recurrent tumor has high cellularity, despite having received the full radiation dose, 

suggesting tumor radioresistance. Figure 5 (I) shows the T1Gd scans with the first detected 

tumor recurrence. The margins of the T1Gd-enhanced tumor recurrence are marked by the 

yellow lines, while the outlines of the dose-escalation plans designed by the FET-PET 

enhancements are shown in magenta. The FET enhancements do not fully cover the T1Gd 

recurrent tumor in patients P4–P7, providing a possible explanation for why improvements 

in progression-free survival have not been observed in [5]. In comparison, the MAP 

estimates, calibrated by the FET-PET signal, extend the information about the tumor cell 

density in the periphery of the visible lesion. Figure 5 shows two possible dose-escalation 

plans based on the inferred MAP tumor cell density: (I) a single-level dose-escalation based 

on the thresholded MAP solution with threshold u = 30% marked by the orange lines and (J) 
a cascaded four-level escalation plan constructed by thresholding the MAP tumor cell 

density at u = [0.1, 25, 50, 75]%. The optimal design of a personalized dose-escalation plan 

would require more extensive studies. However, these preliminary results show that the 

inferred high cellularity regions coincide with the areas of tumor recurrence better than those 

suggested by the FET-PET enhancement alone. The Bayesian inference framework 

developed here thus provide a promising tool for a rational dose-escalation design.

IV. Conclusion

We have demonstrated that patient-specific, data-driven modeling can extend the capabilities 

of personalized RT design for infiltrative brain lesions. We combined patient structural and 

metabolic scans from a single time point with a computational tumor growth model through 

a Bayesian inference framework and predicted the tumor distribution beyond the outlines 

visible in medical scans. The patient-specific tumor estimates can be used to design 

personalized RT plans, targeting shortcomings of standard RT protocols. The software and 

data used in this work are publicly released2 to facilitate translation to clinical practice and 

to encourage future improvements. In the future, the Bayesian framework developed here 

could also be extended to predict individual patient responses to RT by incorporating data 

obtained during the course of treatment as done in [33], in which non-spatial tumor models 

were used. In this way, the treatment can be further improved by adaptively refining the RT 

plans based on the predicted patient responses. Moreover, the basic FK tumor growth model 

could be replaced by a Fokker-Planck diffusion model [16], which would not increase the 

number of unknown parameters or affect the computational complexity significantly, but 

might provide a better description of biological diffusion. Future work could also 

incorporate more advanced models, such as [34], that account for cancer stem cells, their 

progeny and nonlinear coupling between the tumor and the neovascular network. However, 

it remains to be seen whether scans acquired at a single time point would provide enough 

information to calibrate the advanced models sufficiently. If not, then simpler, well-

calibrated models may prove to be more informative. Finally, in future studies, the 

computational framework developed here will be tested on a larger patient cohort and 

2https://github.com/JanaLipkova/GliomaSolver
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prospective clinical trials will be performed. In summary, the results presented here provide 

a proof-of-concept that multimodal Bayesian model calibration holds a great promise to 

assist the development of personalized RT protocols.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The work of J. Lipková was supported in part by the Bavaria California Technology Center (BaCaTec) under Grant 
6090142. The work of J. Lowengrub was supported in part by the National Science Foundation-Division of 
Mathematical Sciences (NSF-DMS) under Grant DMS-1714973, in part by the Center for Multiscale Cell Fate 
Research, University of California at Irvine, through NSF-DMS under Grant DMS1763272, in part by the Simons 
Foundation under Grant 594598, QN, in part by the National Institutes of Health (NIH) through the National Center 
in Cancer Systems Biology, University of California at Irvine, under Grant 1U54CA217378-01A1, and through the 
Chao Comprehensive Cancer Center, University of California at Irvine, under Grant P30CA062203.

REFERENCES

[1]. Stupp R, Brada M, van den Bent MJ, Tonn J-C, and Pentheroudakis G, “High-grade glioma: 
ESMO clinical practice guidelines for diagnosis, treatment and follow-up,” Annals Oncol, vol. 
25, pp. iii93–iii101, 9 2014.

[2]. Stupp R et al., “Radiotherapy plus concomitant and adjuvant temo-zolomide for glioblastoma,” 
New England J. Med, vol. 352, no. 10, pp. 987–996, 2005. [PubMed: 15758009] 

[3]. Burnet NG, Thomas SJ, Burton KE, and Jefferies SJ, “Defining the tumour and target volumes for 
radiotherapy,” Cancer Imag, vol. 4, no. 2, pp. 153–161, 2004.

[4]. Paulsson AK et al., “Limited margins using modern radiotherapy techniques does not increase 
marginal failure rate of glioblastoma,” Amer. J. Clin. Oncol, vol. 37, no. 2, pp. 177–181, 2014. 
[PubMed: 23211224] 

[5]. Piroth M et al., “Integrated boost IMRT with FET-PET-adapted local dose escalation in 
glioblastomas,” Strahlentherapie und Onkologie, vol. 188, no. 4, pp. 334–339, 2012. [PubMed: 
22349712] 

[6]. Souhami L et al., “Randomized comparison of stereotactic radiosurgery followed by conventional 
radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with 
glioblastoma multiforme: Report of radiation therapy oncology group 93–05 protocol,” Int. J. 
Radiat. Oncol. Biol. Phys, vol. 60, no. 3, pp. 853–860, 2004. [PubMed: 15465203] 

[7]. Halperin EC, Bentel G, Heinz ER, and Burger PC, “Radiation therapy treatment planning in 
supratentorial glioblastoma multiforme: An analysis based on post mortem topographic anatomy 
with CT correlations,” Int. J. Radiat. Oncol. Biol. Phys, vol. 17, no. 6, pp. 1347–1350, 1989. 
[PubMed: 2557310] 

[8]. Rockwell S, Dobrucki IT, Kim EY, Marrison ST, and Vu VT, “Hypoxia and radiation therapy: Past 
history, ongoing research, and future promise,” Current Mol. Med, vol. 9, no. 4, pp. 442–458, 
2009.

[9]. Combs SE et al., “Randomised phase I/II study to evaluate carbonion radiotherapy versus 
fractionated stereotactic radiotherapy in patients with recurrent or progressive gliomas: The 
CINDERELLA trial,” BMC Cancer, vol. 10, p. 533, 2010. [PubMed: 20925951] 

[10]. Tsien C et al., “Phase I three-dimensional conformal radiation dose escalation study in newly 
diagnosed glioblastoma: Radiation therapy oncology group trial 98–03,” Int. J. Radiat. Oncol. 
Biol. Phys, vol. 73, no. 3, pp. 699–708, 2009. [PubMed: 18723297] 

[11]. Hingorani M, Colley WP, Dixit S, and Beavis AM, “Hypofractionated radiotherapy for 
glioblastoma: Strategy for poor-risk patients or hope for the future?” Brit. J. Radiol, vol. 85, no. 
1017, pp. e770–e781, 9 2012. [PubMed: 22919020] 

Lipková et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[12]. Rieken S et al., “Analysis of FET-PET imaging for target volume definition in patients with 
gliomas treated with conformal radiotherapy,” Radiotherapy Oncol, vol. 109, no. 3, pp. 487–492, 
2013.

[13]. Stockhammer F, Plotkin M, Amthauer H, van Landeghem FKH, and Woiciechowsky C, 
“Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast-
enhancing gliomas,” J. Neuro-Oncol, vol. 88, no. 2, pp. 205–210, 2008.

[14]. Hutterer M et al., “[18F]-fluoro-ethyl-l-tyrosine PET: A valuable diagnostic tool in neuro-
oncology, but not all that glitters is glioma,” Neuro-Oncol, vol. 15, no. 3, pp. 341–351, 2013. 
[PubMed: 23335162] 

[15]. Alfonso J et al., “The biology and mathematical modelling of glioma invasion: A review,” J. Roy. 
Soc. Interface, vol. 14, no. 136, p. 20170490, 2017. [PubMed: 29118112] 

[16]. Swan A, Hillen T, Bowman JC, and Murtha AD, “A patient-specific anisotropic diffusion model 
for brain tumour spread,” Bull. Math. Biol, vol. 80, no. 5, pp. 1259–1291, 2018. [PubMed: 
28493055] 

[17]. Hodgkinson A, Chaplain MA, Domschke P, and Trucu D, “Computational approaches and 
analysis for a spatio-structural-temporal invasive carcinoma model,” Bull. Math. Biol, vol. 80, 
no. 4, pp. 701–737, 2018. [PubMed: 29500719] 

[18]. Cristini V and Lowengrub J, Multiscale Cancer Modeling. Cambridge, U.K.: Cambridge Univ. 
Press, 2010.

[19]. Mohamed A and Davatzikos C, “Finite element modeling of brain tumor mass-effect from 3D 
medical images,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI. 
Berlin, Germany: Springer, 2005, pp. 400–408.

[20]. Hogea C, Biros G, Abraham F, and Davatzikos C, “A robust framework for soft tissue 
simulations with application to modeling brain tumor mass effect in 3D MR images,” Phys. Med. 
Biol, vol. 52, no. 23, pp. 6893–6908, 11 2007. [PubMed: 18029982] 

[21]. Unkelbach J et al., “Radiotherapy planning for glioblastoma based on a tumor growth model: 
Improving target volume delineation,” Phys. Med. Biol, vol. 59, no. 3, pp. 747–770, 2014. 
[PubMed: 24440875] 

[22]. Konukoglu E, Clatz O, Delingette H, Ayache N, “Personalization of reaction-diffusion tumor 
growth models in MR images: Application to brain gliomas characterization and radiotherapy 
planning,” in Multiscale Cancer Modeling, Deisboeck TS and Stamatakos G, Eds. Boca Raton, 
FL, USA: CRC Press, 2010 [Online]. Available: https://hal.inria.fr/inria00616111/ and https://
hal.inria.fr/file/index/docid/616111/filename/nihcvit-chapter.pdf

[23]. Harpold HL, Alvord EC Jr., and Swanson KR, “The evolution of mathematical modeling of 
glioma proliferation and invasion,” J. Neuropathol. Exp. Neurol, vol. 66, no. 1, pp. 1–9, 2007. 
[PubMed: 17204931] 

[24]. Jackson PR, Juliano J, Hawkins-Daarud A, Rockne RC, and Swanson KR, “Patient-specific 
mathematical neuro-oncology: Using a simple proliferation and invasion tumor model to inform 
clinical practice,” Bull. Math. Biol, vol. 77, no. 5, pp. 846–856, 2015. [PubMed: 25795318] 

[25]. Rockne RC et al., “A patient-specific computational model of hypoxia-modulated radiation 
resistance in glioblastoma using 18F-FMISO-PET,” J. Roy. Soc. Interface, vol. 12, no. 103, p. 
20141174, 2015. [PubMed: 25540239] 

[26]. Lê M et al., “Bayesian personalization of brain tumor growth model,” in Proc. Int. Conf. Med. 
Image Comput.-Assisted Intervent Cham, Switzerland: Springer, 2015.

[27]. Hawkins-Daarud A, Johnston SK, and Swanson KR, “Quantifying uncertainty and robustness in 
a biomathematical model–based patient-specific response metric for glioblastoma,” JCO Clin. 
Cancer Inform, vol. 3, pp. 1–8, 2019.

[28]. Menze B et al., “A generative approach for image-based modeling of tumor growth,” in 
Information Processing in Medical Imaging. Berlin, Germany: Springer, 2011.

[29]. Rossinelli D et al., “MRAG − I2D: Multi-resolution adapted grids for remeshed vortex methods 
on multicore architectures,” J. Comput. Phys, vol. 288, pp. 1–18, 5 2015.

[30]. Ching J and Chen Y-C, “Transitional Markov chain Monte Carlo method for Bayesian model 
updating, model class selection, and model averaging,” J. Eng. Mech, vol. 133, no. 7, pp. 816–
832, 2007.

Lipková et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hal.inria.fr/inria00616111/
https://hal.inria.fr/file/index/docid/616111/filename/nihcvit-chapter.pdf
https://hal.inria.fr/file/index/docid/616111/filename/nihcvit-chapter.pdf


[31]. Hadjidoukas PE, Angelikopoulos P, Papadimitriou C, and Koumoutsakos P, “ 4U: A high 
performance computing framework for Bayesian uncertainty quantification of complex models,” 
J. Comput. Phys, vol. 284, pp. 1–21, 3 2015.

[32]. Cocosco CA et al., “BrainWeb: Online interface to a 3D MRI simulated brain database,” 
NeuroImage, vol. 5, p. 425, 1997. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary. doi: 10.1.1.51.3917.

[33]. Tariq I, Chen T, Kirkby NF, and Jena R, “Modelling and Bayesian adaptive prediction of 
individual patients’ tumour volume change during radiotherapy,” Phys. Med., Biol, vol. 61, no. 5, 
p. 2145, 2016. [PubMed: 26907478] 

[34]. Yan H et al., “3D mathematical modeling of glioblastoma suggests that transdifferentiated 
vascular endothelial cells mediate resistance to current standard-of-care therapy,” Cancer Res, 
vol. 77, no. 15, pp. 4171–4184, 2017. [PubMed: 28536277] 

Lipková et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://citeseerx.ist.psu.edu/viewdoc/summary
http://citeseerx.ist.psu.edu/viewdoc/summary


Fig. 1. 
Overview of the inference framework. I) Medical images show preoperative patient scans: 

(I.A) 3D reconstruction of T1Gd images and (I.B) slices across all modalities. Tumor 

observations (e.g., segmentations) extracted from each modality are illustrated in (I.C). II) 
Computational medicine includes a tumor growth model Mu (II.B), which simulates tumor 

evolution in the patient anatomy (II.A), and imaging model MI (II.E) which relates the 

image observations with the modeled tumor cell density u. Subplot (II.D) shows a schematic 

representation of the actual tumor cell density along the dashed line shown in (I.C) and its 

relation to each tumor observation available from the medical scans. The unknown, patient-

specific parameters for each model are listed in Tables (II.C, F). III) Bayesian inference is 

used to identify the probability distributions of the unknown parameters, accounting for the 

modeling and measurement uncertainties. Parametric uncertainties are then propagated to 

obtain robust predictions about patient-specific tumor cell densities. The most probable 

tumor cell density, given by the maximum a posterior (MAP) estimate, is shown in (III.A,B), 

while the mean and standard deviation (std) are shown in (III.B). IV) Personalized 
Radiotherapy uses the patient-specific predictions to improve dose-distribution and 

escalation design. A comparison of a standard and personalized dose distributions is shown 

in (IV.A-C). The regions of estimated high tumor cell densities are marked by the orange 

isocontour in (IV.D, F). Observed tumor recurrences in T1Gd and FLAIR, marked by the 

pink and yellow curves in (IV.E, F), are used to compare the treatment plans. The 

personalized plan spares more healthy tissue, while achieving tumor coverages comparable 

to the standard protocol and guides the design of personalized dose escalation plans.
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Fig. 2. 
Synthetic test case. Orange box: a 2D slice of the synthetic ground truth (GT) tumor cell 

density (A) and corresponding image observations (B): the normalized FET-PET signal with 

additive noise (red-blue color scale) and the outlines of the T1Gd (yellow) and FLAIR 

(pink) binary tumor segmentations. Blue box: results of the Bayesian calibration with 

multimodal data. The results are in close agreement with GT data. Green box: calibration 

results using only the MRI data, which do not provide enough information to recover the 

tumor cell density profile correctly.
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Fig. 3. 
The results of the Bayesian calibration for the synthetic case. Above the diagonal: 
projection of the TMCMC samples of the posterior distribution ℙ(θ |D, M) in 2D space of the 

indicated parameters. The colors indicate likelihood values of the samples. The number in 

each plot shows the Pearson correlation coefficient between the parameter pairs. The colored 

triangles mark the four selected parameters used in Figure 4. Diagonal: marginal 

distributions obtained with Gaussian kernel estimates. Boxplot whiskers demarcate the 95% 

percentiles. Below the diagonal: projected densities in 2D parameter space constructed by 

2D Gaussian kernel estimates. The black dots mark the values used to generate the synthetic 

data.
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Fig. 4. 
Insensitivity of the tumor cell density to the speed of the growth. Shown are slices of the 

tumor cell densities computed with different combinations of parameters (Dw, ρ, T) as listed 

at the bottom of each plot. These correspond to the colored triangles in Figure 3. Despite 

significant variation in the parameter values, all combinations lead to very similarly-

appearing tumors. In the absence of temporal information, the time dependent parameters 

are not identifiable, since the model calibration cannot distinguish between compensating 

effects among the parameters that affect the dynamics. As shown here, tumors with similar 

Dw/ρ and Tρ values appear very similar to one another (here Dw/ρ ≈ 4.5, Tρ ≈ 7.7). Hence, 

the Bayesian calibration identifies the probability distribution of all the plausible values.
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Fig. 5. 
Results of the Bayesian calibration for patients P1–P8. Orange box: preoperative scans 

showing (A) T1Gd; (B) FLAIR; (C) tumor segmentations: T1Gd (yellow) and FLAIR 

(pink); (D) FET-PET. Blue box: (E) MAP and (F) std of the inferred tumor cell densities 

shown in the preoperative FLAIR scans. The CTVRTOG margin is shown as the green 

curves. (G) The 3D reconstructions show outlines of the MAP tumor (blue) together with 

tumor extent visible on the FET-PET scans (orange) in the preoperative anatomy (white). 

Green box: scans of the first detected tumor recurrence. (H) FLAIR tumor recurrence 

(pink), CTVRTOG(green), and CTVMAP(blue) margins. (I) T1Gd tumor recurrence (yellow) 

and the dose-escalation outlines proposed by FET enhancement (magenta) and MAP 

estimates (orange). (J) Multilevel dose-escalation designed by MAP estimates.
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Fig. 6. 
A comparison of the RT plan based on the RTOG protocol (green) and MAP estimates 

(blue). (A) The overall irradiated volume VCTV.(B)The corresponding efficiency ηCTV. The 

CTVMAP uses a smaller irradiation volume while having a comparable efficiency as the 

CTVRTOG.
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