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Factor Analysis of Dynamic PET Images:
Beyond Gaussian Noise

Yanna Cruz Cavalcanti , Member, IEEE , Thomas Oberlin , Member, IEEE ,
Nicolas Dobigeon , Senior Member, IEEE , Cédric Févotte , Senior Member, IEEE ,

Simon Stute , Maria-Joao Ribeiro, and Clovis Tauber, Member, IEEE

Abstract— Factor analysis has proven to be a relevant
tool for extracting tissue time-activity curves (TACs) in
dynamic PET images, since it allows for an unsupervised
analysis of the data. Reliable and interpretable results
are possible only if it is considered with respect to suit-
able noise statistics. However, the noise in reconstructed
dynamic PET images is very difficult to characterize, despite
the Poissonian nature of the count rates. Rather than explic-
itly modeling the noise distribution, this paper proposes
to study the relevance of several divergence measures to
be used within a factor analysis framework. To this end,
the β-divergence, widely used in other applicative domains,
is considered to design the data-fitting term involved in
three different factor models. The performances of the
resulting algorithms are evaluated for different values of β,
in a range covering Gaussian, Poissonian, and Gamma-
distributed noises. The results obtained on two different
types of synthetic images and one real image show the
interest of applying non-standard values of β to improve the
factor analysis.

Index Terms—β-divergence, unmixing, nonnegative
matrix factorization, dynamic PET, factor analysis, NMF,
Poisson noise.

I. INTRODUCTION

THANKS to its ability to evaluate metabolic functions
in tissues from the temporal evolution of a previously

injected radiotracer, dynamic positron emission tomogra-
phy (PET) has become an ubiquitous analysis tool to quantify
biological processes. After acquisition and reconstruction,
the main time-activity curves (TACs) (herein called fac-

tors), which represents the concentration of tracer in each

This work was supported in part by the Coordenação de 
Aperfeioamento de Ensino Superior (CAPES), Brazil, and in part by 
the European Research Council under Grant ERC FACTORY-
CoG-681839. This paper was presented in part at the International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP), 
2019 [1]. (Corresponding author: Yanna Cruz Cavalcanti.)
Y. C. Cavalcanti, T. Oberlin, N. Dobigeon, and C. Févotte are with the 

University of Toulouse, IRIT/INP-ENSEEIHT, CNRS, 31071 Toulouse, 
France (e-mail: yanna.cavalcanti@irit.fr; thomas.oberlin@irit.fr; 
nicolas.dobigeon@irit.fr; cedric.fevotte@irit.fr@irit.fr).
S. Stute is with MIV, CEA, INSERM, Université s Paris-Sud and 

Paris-Saclay, Service Hospitalier Frédéric Joliot, Orsay, France (e-mail: 
simon.stute@cea.fr).
M.-J. Ribeiro and C. Tauber are with UMRS Inserm U930, Univer-

sité de Tours, 37032 Tours, France (e-mail: maria.ribeiro@univ-tours.fr; 
clovis.tauber@univ-tours.fr).

Digital Object Identifier 10.1109/TMI.2019.2906828

tissue and blood over time, can be extracted from PET
images for subsequent quantification. For this purpose, factor
analysis of dynamic structures (FADS) has been intensively
used [2], [3], further leading to FADS with nonnegative penal-
izations [4], [5]. However, these solutions explicitly rely
on the assumption that the dynamic PET noise and the
model approximation errors follow Gaussian distributions.
To overcome this limitation, several works applied nonneg-
ative matrix factorization (NMF) techniques, allowing the
Kullback-Leibler (KL) divergence to be used, which is more
appropriate for data corrupted by Poisson noise [6]–[8]. NMF
with multiplicative updates is the approach generally employed
since the algorithm is simple and there are less parameters to
adjust than in FADS.

Nevertheless, even though the positron decay process can
be described by a Poisson distribution [9], the actual noise
in reconstructed PET images is not expected to be sim-
ply described by Poisson nor Gaussian distributions. Several
acquisition circumstances, such as the detector system and
electronic components, as well as post-processing correc-
tions for scatter and attenuation, significantly alter the initial
Poissonian statistics of the count-rates [10], [11]. Consid-
ering the difficulties in characterizing the noise properties
in PET images, many works have assumed the data to be
corrupted by a Gaussian noise [12]–[14]. Hybrid distributions,
such as Poisson-Gaussian [15] and Poisson-Gamma [16],
have been also proposed in an attempt to take into account
various phenomena occurring in the data. The work of
Teymurazyan et al. [17] tried to determine the statistical
properties of data reconstructed by filtered-back projection
(FBP) and iterative expectation maximization (EM) algo-
rithms. While FPB reconstructed images were sufficiently
described by a normal distribution, the Gamma statistics
were a better fit for EM reconstructions. The recent work of
Mou et al. [18] further studied the Gamma behavior that can
be found on PET reconstructed data.

While these works mainly put the emphasis on the noise
model, the present study aims at investigating the impact of the
divergence measure to be used for factor analysis of dynamic
PET images. This work applies a popular and quite general
loss function in NMF, namely the β-divergence [19], [20].
The β-divergence is a family of divergences parametrized by
a unique scalar parameter β. In particular, it has the great
advantage of generalizing conventional loss functions such as
the least-square distance, KL and Itakura-Saito divergences,



respectively corresponding to additive Gaussian, Poisson and
multiplicative Gamma noise.

The current paper will empirically study the influence of β

on the factor estimation for three different methods. First,
the standard β-NMF algorithm is applied. Then, an approach
that includes a normalization of the factor proportions (herein
called β-LMM) is used to provide factors with a physical
meaning. Finally, the β-divergence is also used to generalize
the previous model introduced in [21]. Simulations are con-
ducted on two different sets of synthetic data based on realistic
count-rates and one real image of a patient’s brain.

This paper is organized as follows. The considered fac-
tor analysis models are described in Section II. Section III
presents the β-divergence as a measure of similarity.
Section IV discusses the corresponding factor analysis algo-
rithms able to recover the factors, their corresponding propor-
tions in each voxel and other parameters of interest. Simulation
results obtained with synthetic data are reported in Section V.
Experimental results on real data are provided in Section VI.
A deeper discussion is conducted in Section VII. Section VIII
concludes the paper.

II. FACTOR ANALYSIS

Let Y be an L × N observation matrix containing a 3D
dynamic PET image composed of N voxels acquired in L

time-frames. This observation matrix Y can be approximated
by an estimated image X(θ) according to a factorization
model described by P physically interpretable variables θ =

[θ1, · · · , θP ], i.e.,

Y ≈ X(θ). (1)

The observation image is affected by a noise whose distri-
bution characterization is a highly challenging task, as pre-
viously explained. For this reason, for sake of generality,
the description in (1) makes use of an approximation symbol≈
that generalizes the relation between the factor-dependent
estimated image X(θ) and the observed data Y. Factor analysis
can be formulated as an optimization problem which consists
in estimating the parameter vector θ assumed to belong to a set
denoted C with possible complementary penalizations R(θ).
It is mathematically described as

θ̂ ∈ argmin
θ∈C

{
D(Y|X(θ))+ R(θ )

}
(2)

where D(·|·) is a measure of dissimilarity between the
observed PET image Y and the proposed model. The choice of
this dissimilarity measure will be discussed in Section III. The
following paragraphs describe three different factor analysis
techniques and detail particular instances of the explanatory
variable θ under this general formulation.

A. Nonnegative Matrix Factorization (NMF)

Factorizing a latent (i.e., unobserved) matrix X ∈ R
L×N

consists in decomposing it into two matrices as

X = MA, (3)

where M = [m1, . . . , mK ] is a L × K matrix of factors
and A = [A1, . . . , aN ] is a K×N matrix containing the factor

coefficients. In the dynamic PET setting, M is expected to
contain the elementary TACs characterizing the different kinds
of tissues, whereas the coefficient vector an contains their
corresponding proportions in the nth voxel. In most applicative
contexts, the number K of elementary TACs is supposed to
be lower than both the number of frames L and the number
of pixels N , i.e., K ≪ min{L, N}. This choice leads to a
low-rank factorization of the matrix X.

Moreover, to provide an additive and part-based description
of the data, nonnegative constraints are assumed for the factors
and respective proportions, resulting in the standard NMF
formalism [22], [23]

A � 0K ,N , M � 0L ,K , (4)

where � stands for a component-wise inequality. The formu-
lation of the corresponding NMF optimization problem has
been largely considered in the literature [20] and consists in
estimating the explanatory variables θ = {M, A} subject to the
constraints in (4).

B. Linear Mixing Model (LMM)

The factorization (3) and constraints (4) that describe a
typical NMF can also be envisaged under the light of the LMM
widely used in the hyperspectral imagery literature [24].
Additionally to the constraints defined in (4), to associate
factors coefficients with concentrations or proportions, LMM
assumes the following sum-to-one constraint

AT 1K = 1N , (5)

where 1N is the N-dimensional vector made of ones. The
corresponding minimization problem, also widely discussed
in the above-mentioned hyperspectral unmixing literature,
is formulated as for the NMF, complemented by the additional
constraint (5).

C. Specific Binding Linear Mixing Model (SLMM)

The LMM seems to be a relevant model for dynamic
PET data. Although the perfusion involved in the radiotracer
diffusion is not linear, in most cases the resulting TAC is
approximated by the sum of the pure TACs weighted by
the factor proportions. But as discussed in [21], in high
uptake regions, LMM may not provide a sufficient description
of the data. Therefore, a specific binding LMM (SLMM)
has been proposed to handle the variations in perfusion and
labeled molecule concentration affecting the TACs related to
specific binding. It describes the nonlinearity of these TACs
by an additive spatially variant perturbed component that is
approximated by a linear expansion over previously learned
basis elements. By specifically denoting M = [m̄1, . . . , mK ]
where m̄1 is the nominal specific binding factor, SLMM can
be formulated as [21]

X = MA+
[
E1A ·VB

]
,

︸ ︷︷ ︸
1

(6)

where “·” is the Hadamard point-wise product, [E1 is the
matrix

[
1L ,10L ,K−1

]
, V =

[
v1, . . . , vNv

]
is the L × Nv

matrix composed of the basis elements used to describe the



variability of the specific binding factor (SBF), (Nv ≪ L),
and B = [b1, . . . , bN ] is the Nv × N matrix composed of
internal proportions. If B = 0, the model in (6) becomes a
regular linear mix, as (3).

As in [21], to avoid ambiguity in the factor TACs due
to their strong correlation with the variability elements,
the intrinsic variability proportion matrix is constrained to be
nonnegative

B � 0Nv ,N . (7)

Therefore, the resulting SLMM optimization problem gen-
eralizes the NMF and LMM problems where the explana-
tory parameter vector is given by θ = {M, A, B}. Under
the general formalism (2), the set of constraints is defined
by (4), (5) and (7). Moreover, as the SBF variability is only
expected in the voxels belonging to the region affected by
specific binding, B is expected to be zero outside the high-
uptake region. Therefore, the spatial sparsity of the related
coefficients is enforced by defining the regularizer in (2) as

R(θ) , ‖B‖2,1 =

N∑

n=1

‖bn‖2. (8)

III. DIVERGENCE MEASURE

When analyzing PET data, most of the works in the liter-
ature have considered the squared Euclidean distance or the
Kullback-Leibler divergence as the loss function D(·|·) to be
used to design the approximation model (1). These choices
are intrinsically related to the assumption of Gaussian and
Poissonian noises, respectively. However, as previously dis-
cussed, the noise encountered in PET data is altered by several
external circumstances and parameters, even though its initial
count-rates is known to follow a Poisson distribution. Hence,
to provide a generalization of these PET noise models, this
work proposes to resort to the β-divergence as the dissimilarity
measure underlying the approximation in (1).

The β-divergence first appeared in the works of
Basu et al. [19] and Eguchi and Kano [25]. Since then,
it has been intensively used, with noticeable successes in
the audio literature for music transcription and separa-
tion [26]–[28]. More precisely, the β-divergence between two
matrices Y and X follows the component-wise separability
property

Dβ (Y|X) =

L∑

ℓ=1

N∑

n=1

dβ(yℓ,n|xℓ,n) (9)

and is defined for β ∈ R as

dβ(y|x) =



1

β(β − 1)
(yβ + (β − 1)xβ − βyxβ−1) β ∈ R\{0, 1}

y log
y

x
− y + x β = 1,

y

x
− log

y

x
− 1 β = 0.

(10)

The limit cases β = 1, 0 correspond to the KL and
IS divergences, respectively, while β = 2 coincides with

Fig. 1. β-divergence dβ(y|x) as a function of xwith y = 1 and for different
values of β.

the squared Euclidean distance. As an illustration, Fig. 1
compares the loss functions d(y = 1|x) as functions of x for
various values of β. For a comprehensive discussion of the β-
divergence, the interested readers are invited to consult [29].

Among its interesting properties, the β-divergence can be
related to a wide family of distributions, namely the Tweedie
distributions, via its corresponding density p(y|x) following

− log p(y|x) = ϕ−1dβ(y|x)+ const. (11)

where ϕ is a so-called dispersion parameter [30]. In particular,
the Tweedie distributions encompass a large class of popular
distributions, including the Gaussian, Poissonian and Gamma
distributions. In other words, choosing the β-divergence as the
loss function in (2) allows the approximation (1) to stand for a
wide range of noise models. For instance, the β-divergence in
the special cases β = 2, 1, 0 is related to additive Gaussian,
Poisson and multiplicative Gamma observation noises [20].
As a consequence, thanks to its genericity, the β-divergence
seems to be a relevant tool to conduct factor analysis when
the PET noise is difficult to be characterized.

IV. BLOCK-COORDINATE DESCENT ALGORITHM

The non-convex minimization problem stated in (2) is
solved through a block-coordinate descent (BCD) algorithm.
For each factor analysis model discussed in Section II, the cor-
responding algorithm iteratively updates a latent variable θi

while all the others are kept fixed, allowing for convergence
towards a local solution. The definition of these blocks nat-
urally arises according to the considered latent factor model.
The method detailed hereafter leads to multiplicative update
rules, i.e., consists in multiplying the current variable values by
nonnegative terms, thus preserving the nonnegativity constraint
along the iterations. To avoid undesirable solutions, given the
non-convexity of the problem, the algorithms require proper
initialization.

The algorithm and corresponding updates used for β-NMF
has been introduced in [20]. Therefore, the present paper
derives only the algorithm associated with the SLMM model,
that turns into LMM when fixing B = 0. The updates
are derived following the strategy proposed in [31], while
some heuristic rules are inspired by [28]. The principles
of these updates are briefly recalled in paragraph IV-A and
particularly instantiated for the considered SLMM-based factor
model in paragraphs IV-B–IV-D. For conciseness, we only



Algorithm 1 β-SLMM Unmixing
Data: Y

Input: A0, M0, B0, λ

1 k ← 0

2 Ỹ ← M0A0 +
[
E1A0 · VB0

]

3 while stopping criterion not satisfied do

4 % Update variability matrix

Bk+1 ← Bk ·

[
1T

Nv
A1,:·(V

T (Y·X̃β−2))

1T
Nv

A1,:·(VT X̃β−1)+λBkŴB

] 1
3−β

5 X̃ ← MkAk +
[
E1Ak · VBk+1

]

6 % Update factor TACs

Mk+1
2:K ← Mk

2:K

[
(Y·X̃β−2)AT

2:K

X̃β−1AT
2:K

]

7 X̃ ← Mk+1Ak +
[
E1Ak ·VBk+1

]

8 % Update SBF factor proportion

Ak+1
1 ← Ak

1 ·

[
1T

L ((M11T
N+VB)·(Y·X̃β−2)+X̃β )

1T
L ((M11T

N+VB)·X̃β−1+Y·X̃β−1)

]

9 % Update other factor proportions

Ak+1
2:K ← Ak

2:K ·

[
MT

2:K (Y·X̃β−2)+1K−1,L X̃β

MT
2:K X̃β−1+1K−1,L (Y·X̃β−1)

]

10 k ← k + 1

11 X̃ ← MkAk +
[
E1Ak · VBk

]

12 A ← Ak

13 M ← Mk

14 B ← Bk

Result: A, M, B

present derivations for β ∈ [1, 2] (the interval where dβ(x |y)

is convex with respect to y) but they can be easily gen-
eralized for other values using the methodology described
in [20], [31], [32]. The resulting algorithmic procedure is
summarized in Algo. 1 where all multiplications (identified
by the . . . symbol), divisions and exponentiations are entry-
wise operations, 1K ,L denote a K×L matrix of ones and ŴB ,

diag[‖b1‖1, . . . , ‖b1‖N ]
−1. Note that, although this algorith-

mic resolution differs from the one initially proposed in [21],
the final results obtained by setting β = 2 are very similar for
the same parameter values.

A. Majorization-Minimization and
Multiplicative Algorithms

Our methodology relies on majorization-minimization
(MM) and multiplicative algorithms that are common to
many NMF settings. Majorization-minimization (MM) algo-
rithms consist in finding a surrogate function that majorizes the
original objective function and then computing its minimum.
The algorithm iteratively updates each variable θi given all the
other variables θ j 6=i . Hence, the subproblems to be solved can
be written

min
θi

J (θi) = D(Y|X(θ))+ R(θi ) s.t. θi ∈ C. (12)

By denoting θ̃i the state of the latent variable θi at the
current iteration, we first define an auxiliary function G(θi |θ̃i )

that majorizes J (θi ), i.e., G(θi |θ̃i) ≥ J (θi ), and is tight
at θ̃i , i.e. G(θ̃i |θ̃i) = J (θ̃i ). The optimization problem (12)
is then replaced by the minimization of the auxiliary function.
In many NMF problems, canceling the auxiliary function
gradient leads to multiplicative updates of the form

θi = θ̃i

[
N(θ̃i )

D(θ̃i )

]γ

(13)

where the functions N(·), D(·) and the scalar exponent γ are
problem-dependent.

A heuristic alternative to this algorithm is described in [28].
It consists in decomposing the gradient of the objective func-
tion J with respect to (w.r.t.) the variable θ̃i as the difference
between two nonnegative functions, such that

∇θiJ (θ̃i) = ∇
+
θi
J (θ̃i )−∇

−
θi
J (θ̃i ) (14)

and using (13) with

N(θ̃i ) = ∇
−

θ̃i
J (θ̃i ), (15)

D(θ̃i ) = ∇
+

θ̃i
J (θ̃i ). (16)

The heuristic and MM algorithms coincide in many well-
known cases [20], [32], [33]. MM guarantees monotonic
decrease of the objective function at every iteration. This is not
guaranteed by the heuristic alternative, but is often observed in
practice [32]. Note that monotonic decrease of the objective
function does not automatically implies convergence of the
parameter iterates, though this is also typically observed in
practice.

B. Update of the Factor TACs M

According to the optimization framework described above,
given the current values A and B of the abundance matrix
and the internal proportions, respectively, updating the factor
matrix M can be formulated as the minimization subproblem

min
M

J (M) = D(Y|MA+1) s.t. M � 0L ,K , (17)

with 1 = E1A · VB. Following [31], when β ∈ [1, 2],
the objective function J (M) can be simply majorized using
Jensen’s inequality:

J (M) ≤
∑

lnk

[
m̃lkakn

x̃ln

d(yln|
x̃lnmlk

m̃lk

)+
δln

x̃ln

d(yln |x̃ln)

]

︸ ︷︷ ︸
G(M|M̃)

(18)

where x̃ln =
∑

k m̃lkakn+δln is the current state of the model-
based reconstructed data. The auxiliary function G(M|M̃)

essentially majorizes the divergence of the sum by the sum
of the divergences, allowing the optimization of M to be con-
ducted element-by-element. The gradient w.r.t. the element mlk

writes

∇mlk G(M|M̃) =
∑

n

akn x̃ln
β−1

(
mlk

m̃lk

)β−1

−
∑

n

akn yln x̃
β−2
ln

(
mlk

m̃lk

)β−2

. (19)



Thus, minimizing G(M|M̃) w.r.t. M leads to the following
element-wise multiplicative update

mlk = m̃lk

[∑
n akn yln x̃

β−2
ln∑

n akn x̃
β−1
ln

]γ (β)

. (20)

where γ (β) = 1 when β ∈ [1, 2]. More generally, it can be
shown that the update is still valid for β 6∈ [1, 2], with γ (β) =
1

2−β
for β < 1 and γ (β) = 1

β−1 for β > 2 [31].

C. Update of the Factor Proportions A

Given the current values M and B of the factor matrix and
internal propositions, the update rule for A is obtained by
solving

min
A

J (A) = D

(
Y|MA+

[
E1A ·W)

])

s.t. A � 0K ,N , AT 1K = 1N , (21)

with W = VB. Constructing a MM algorithm that enforces the
sum-to-one constraint is not straightforward and we instead
resort to the method described in [31], [34], which relies on
a change of variable. More precisely, by introducing an aux-
iliary matrix U, the components akn of the factor proportion
matrix A can be rewritten as

akn =
ukn∑
k ukn

, (22)

which explicitly ensures the sum-to-one constraint (5). The
new optimization problem is then

min
U

J (U) s.t. U � 0K ,N , (23)

with

J (U) = D

(
Y|M

[
u1

‖u1‖1
, . . . ,

uN

‖uN ‖1

]

+
[
E1

[
u11

‖u1‖1
, . . . ,

u1N

‖uN ‖1

]
. . . W)

])

=
∑

ln

d

(
yln |

∑

k

mlk

[
ukn

‖un‖1

]
+

[
u1n

‖un‖1

]
wln

)
.

(24)

Unfortunately, constructing a MM algorithm for U is not
straightforward. As such, we resort to the heuristic alternative
described in paragraph IV-A. Denoting x̃ln =

∑
k 6=1 mlk ãkn +

ã1nwln , this leads to the following multiplicative update:

ukn = ũkn rkn

where

rkn =





∑
l

(
x̃

β
ln + (ml1 +wln)x̃

β−2
ln yln

)
∑

l

(
(ml1 +wln)x̃

β−1
ln + yln x̃

β−1
ln

) , if k=1;

∑
l

(
x̃

β
ln + mlk yln x̃

β−2
ln

)
∑

l

(
mlk x̃

β−1
ln + yln x̃

β−1
ln

) , otherwise.

D. Update of the Internal Variability B

Given the current states M and A of the factor matrix and
factor proportions, respectively, updating B consists in solving

min
B

J (B) = D(Y|MA+
[
E1A ·VB)

]
)+ λ‖B‖2,1

s.t. B � 0Nv ,N , (25)

where the parameter λ controls the trade-off between the
data-fitting term and the spatial sparsity-inducing regulariza-
tion ‖B‖2,1. Denoting by B̃ the current state of B, the model-
based reconstructed data using the current estimates is now
defined by x̃ln = sln +

∑
i a1nvli b̃in with sln =

∑
k mlkakn .

Assuming β ∈ [1, 2], Jensen’s inequalities allows the data
fitting term to be majorized as

D(Y|S+ [E1A · VB])

≤
∑

ln

[
sln

x̃ln

d(yln|x̃ln)+
∑

i

a1nvli b̃in

x̃ln

d(yln |
x̃lnbin

b̃in

)

]

︸ ︷︷ ︸
F(B|B̃)

.

The auxiliary function associated with J (B) can be decom-
posed as G(B|B̃) = F(B|B̃)+ λ‖B‖2,1. However, minimizing
this auxiliary function w.r.t. B is not straightforward. Follow-
ing [31], the regularization ‖B‖2,1 is majorized itself by a
tangent inequality, thanks to the concavity of the square-root
function:

‖B‖2,1 ≤
1

2

∑

n

(
‖bn‖

2
2

‖b̃n‖2
+ ‖b̃n‖2

)

︸ ︷︷ ︸
H(B|B̃)

. (26)

Unfortunately, the resulting auxiliary function is not yet
amenable to optimization and our approach again closely fol-
lows [31], [32]. The leading monomial of F(B|B̃) (of degree
lower than 2 when β ∈ [1, 2]) must be majorized by a
quadratic term, matching the quadratic upper bound of the
penalty function. After canceling the gradient of the resulting
auxiliary function, this leads to the multiplicative update

bin = b̃in

(
a1n

∑
l vli yln x̃

β−2
ln

a1n

∑
l vli x̃

β−1
ln + λ b̃in

‖b̃n‖2

)ξ(β)

, (27)

where ξ(β) = 1
3−β when β ∈ [1, 2]. Again, the update can be

generalized to β ∈ R following [31] and references therein.
Experiments showed that dropping the exponent ξ(β) still
results in a valid algorithm while accelerating convergence.

V. EXPERIMENTS WITH SYNTHETIC DATA

A. Synthetic Data Generation

Simulations have been conducted on synthetic images with
realistic count-rate properties [35]. These images have been
generated from the Zubal high resolution numerical phan-
tom [36] with values derived from real PET images acquired
with the Siemens HRRT using the 11C-PE2I radioligand. The
original phantom data is of size 256×256×128 with a voxel
size of 1.1 × 1.1 × 1.4 mm3 , and was acquired over L =

20 frames of durations that range from 1 to 5 minutes for a
60 minutes total acquisition.



1) Phantom I Generation: A clinical PET image
with 11C-PE2I of a healthy control subject has been
segmented into regions-of-interest using a corresponding
magnetic resonance image. Then averaged TACs of each
region have been extracted and set as the TAC of voxels in
the corresponding phantom region. It is worth noting that
this supervised segmentation neglects any labeled molecule
concentration differences due to possible variability in
the specific binding region. Thus, it describes each entire
segmented region by a single averaged TAC. This phantom,
referred to as Phantom I, has been used to evaluate the
reconstruction error for different values of β.
2) Phantom II Generation: To evaluate the impact of β on

the factor analysis, a second synthetic phantom, referred to
as Phantom II, has been also created as follows. Phantom I
has been unmixed with the N-FINDR [37] to extract K = 4
factors [38] that correspond to tissues of the brain: specific
gray matter, blood or veins, white matter and non-specific gray
matter. The corresponding ground truth factor proportions have
been subsequently set as those estimated by SUnSAL [39].
Then, the SBF as well as the variability dictionary have
been generated from a compartment model [40], while the
internal variability have been generated by dividing the region
concerned by specific binding into 4 subregions with different
mean variabilities. Phantom II is finally obtained by mixing
these ground truth components according to SLMM in (6).
3) Dynamic PET Image Simulation: The generation process

that takes realistic count rates properties into consideration is
detailed in [35]. To summarize, activity concentration images
are first computed from the input phantom and TACs, apply-
ing the decay of the positron emitter with respect to the
provided time frames. To mimic the partial volume effect,
a stationary 4mm FWHM isotropic 3D Gaussian point spread
function (PSF) is applied, followed by a down-sampling to
a 128×128×64 image matrix of 2.2×2.2×2.8 mm3 voxels.
Data is then projected with respect to real crystal positions
of the Siemens Biograph TruePoint TrueV scanner, taking
attenuation into account. A scatter distribution is computed
from a radial convolution of this signal. A random distribution
is computed from a fan-sum of the true-plus-scatter signal.
Realistic scatter and random fractions are then used to scale
all distributions and compute the prompt sinograms. Finally,
Poisson noise is applied based on a realistic total number of
counts for the complete acquisition. Data were reconstructed
using the standard ordered-subset expectation maximization
(OSEM) algorithm (16 subsets) including a 4mm FWHM 3D
Gaussian PSF modeling as in the simulation. Two images,
referred to as 6it and 50it, are considered for the analysis: the
6th iteration without post-smoothing, and the 50th iteration
post-smoothed with a 4mm FWHM 3D Gaussian kernel [41].
A set of 64 independent samples of each phantom were
generated to assess consistent statistical performance.

B. Compared Methods

1) Phantom I: The main objective when using Phantom I
is to evaluate the influence of β on the factor model-
ing (i.e., by evaluating the reconstruction error) for images

TABLE I

STOPPING CRITERION AND VARIABILITY PENALIZATION PARAMETERS

reconstructed with 6 and 50 iterations. It also provides a
relevant comparison between β-NMF and the more con-
strained solution recovered by β-LMM. Within this exper-
imental setup, β ranges from 0 to 2.4 with a step size
of 0.2. Factor TACs are initialized by vertex component analy-
sis (VCA) [42], while the factor proportions are initialized
either by SUnSAL or randomly, depending on the consid-
ered setting (see paragraph V-D). The algorithmic stopping
criterion, relating the past and current states of the objective
function J , is defined as J (i−1)−J (i)

J (i−1) < ε, where the values of
ε are reported in Table I.
2) Phantom II: For the sake of comparison, Phantom II

will be analyzed with both the β-SLMM algorithm and its
simpler version, β-LMM, which does not take variability into
account. The corresponding algorithms are applied for β ∈

{0, 1, 2}. Since Phantom II exhibits a high variability in the
tissue corresponding to the SBF, the pure-pixel assumption
considered in VCA may not be enough to capture the com-
plexity of the mixture. For this reason, factor TACs have been
initialized with K-means, which is more robust to outliers.
Factor proportions have been initialized either with SUn-
SAL either randomly, depending on the considered setting
(see paragraph V-E). The variability matrix B is randomly
initialized on both settings. The values for ε in Table I are
also valid in this setting.

C. Performance Measures

1) Phantom I: In the first round of experiments, the recon-
struction error is computed in terms of peak signal-to-noise
ratio (PSNR)

PSNR(X̂) = 10 log10
max(X∗)2

‖X̂− X∗‖2F

(28)

where max(X∗) is the maximum value of the ground-truth
latent image X∗ and X̂ , X(θ̂) is the image recovered
according to the considered factor model (1) with the estimated
latent variables θ̂ .
2) Phantom II: In addition to the PSNR, performances on

Phantom II have been evaluated w.r.t. each latent variable by
computing the normalized mean square error (NMSE):

NMSE(θ̂i ) =
‖θ̂i − θ∗i ‖

2
F

‖θ∗i ‖
2
F

, (29)

where θ∗i and θ̂i are the actual and estimated latent variables,
respectively. In particular, the NMSE has been computed for
the following variables: the high-uptake factor proportions A1,
the remaining factor proportions A2:K , the SBF TAC M̃1,
the non-specific factor TACs M2:K and finally, when consid-
ering β-SLMM, the internal variability B.



Fig. 2. PSNR mean and standard deviation obtained on the 6it (left)
and 50it (right) images after factorization with β-NMF with fixed (top) and
estimated (bottom) factor TACs over 64 samples.

D. Results on Phantom I

In the first round of simulations, β-NMF and β-LMM algo-
rithms are evaluated in terms of the reconstruction error (28)
for several values of β. Two cases are considered. The first one
considers that the factor TACs previously estimated by VCA
are fixed. Thus, the algorithm described in Section IV updates
only the factor proportions, within a convex optimization
setting. In this case, the factor proportions have been randomly
initialized. Within the second and non-convex setting, the algo-
rithm estimates both factor TACs and proportions where the
factor proportions have been initialized using SUnSAL. Note
that complementary results are reported in the companion
report [43].

1) β-NMF Results: Figure 2 shows the PSNR mean and
corresponding standard deviation obtained on the 6it and 50it
images when analyzed with β-NMF. The first line corresponds
to the convex estimation setting (i.e., fixed factor TACs) while
the non-convex framework (i.e., estimated factor TACs) is
reported in the second line. The 6it images show higher PSNRs
for the values of β ∈ [0, 0.6] in both convex and non-
convex settings. This result indicates a residual noise that
is rather between Gamma and Poisson distributed, which is
consistent with previous studies from the literature [17], [18].
The best performance PSNR = 25dB with fixed M is
reached for β = 0, which significantly outperforms the result
obtained with the Euclidean divergence β = 2 commonly
adopted in the literature. Within a non-convex optimization
setting, when estimating both factor TACs and proportions,
the maximum PSNR = 22.2dB is obtained for β = 0.6,
followed by β = 0.4. In this case, the difference between the
greater and smaller PSNRs is of almost 3.5 dB. As non-convex
optimization problems are highly sensitive to the initialization,
the convex frameworks shows a better mean performance for
all values of β, as well as less variance among the different
realizations.

The reconstruction of the 50it images is clearly less
sensitive to the choice of the divergence. Yet, values

Fig. 3. PSNR mean and standard deviation obtained on the 6it (left) and
50it (right) images after factorization with β-LMM with fixed (top) and
estimated (bottom) factor TACs over 64 samples.

β = 1 and β = 0.5 in the convex and non-convex settings,
respectively, increase the reconstruction PSNR by about 1dB.
This is consistent with prior knowledge about the noise
statistics: whereas the nature of noise in the 50it image is
still Poissonian, its power is very low due to a higher level of
filtering.

2) β-LMMResults: Figure 3 shows the PSNR mean and stan-
dard deviation after factorization with β-LMM with fixed (top)
and estimated (bottom) factor TACs. The results look similar
as with the β-NMF for the convex case: the factorization of
the 6it image is optimal for a value of β around 0.5, which
is in agreement with the expected Poisson-Gamma nature of
the noise before post-filtering. Factor modeling with β = 0.5
is about 5dB better than the one obtained from the usual
Euclidean divergence relying on Gaussian noise (β = 2).
In the non-convex case, due to a high dependence on the
initialization, β-LMM exhibits a behavior different from the
convex case. In particular, the estimated models seem to be
affected by a smaller variance. This may result from the fact
that the minimization algorithm likely converges to the same
critical point. Indeed, for all 64 samples, the factors and factors
proportions have been initialized in the same systematic way,
using VCA and SUnSAL respectively. Again, the β parameter
has less impact for the 50it image which has been strongly
filtered, but the optimal β is still around 1 in the convex
case. The overall performance reached in the 50it seems to be
consistently better for the non-convex setting when β ≥ 0.5,
which may be explained by a good initialization and the joint
estimation of the factor TACs.

For the 50it image, once again it is possible to see a
more Poisson-like distributed noise with a higher PSNR
around 30dB with β = 1. In this setting, the difference
between the highest PSNR and the lowest one for β = 0
is of more than 3dB. The highest PSNR for the non-convex
case is reached with β = 1 and is of 32dB. The highest
PSNR is 9dB greater than the lowest one obtained with β = 0
when estimating both TAC factors and proportions. However,
the difference between the PSNR reached with β = 1 and



TABLE II

MEAN NMSE OF A1 , A2:K AND A1 · B AND PSNR OF REASSEMBLED

IMAGE ESTIMATED BY β-LMM AND β-SLMM WITH FIXED M

OVER THE 64 SAMPLES, FOR DIFFERENT VALUES OF β

β = 2 is of less than 0.5dB. All remarks previously made for
β-NMF in this case are confirmed with the results of β-LMM.

E. Results on Phantom II

This paragraph discusses the results of β-SLMM obtained
on Phantom II. This experiment considers both the reconstruc-
tion error (in terms of PSNR) and the estimation error for
each latent variable (in terms of NMSE). The factorization
with β-SLMM requires the tuning of parameter λ, which
controls the sparsity of the internal variability. In this work,
the value of this parameter has been empirically tuned to
obtain the best possible PSNR result for the different val-
ues of β and for the two 6it and 50it images. A priori

knowledge on the binding region could also be used to
adjust λ, monitoring the accuracy of the method with respect
to quantitative analysis. The optimal value can thus depend
on the objective of the subsequent analysis. Two settings have
been considered. In the first one, the factor TACs are fixed
to their ground-truth value. Thus, the algorithm described
in Section IV updates only the factor proportions and the
internal proportions B. In this case, the factor proportions have
been randomly initialized. In the second setting, the algorithm
estimates the factor TACs and proportions, as well as the
internal variability. In this setting, the factor proportions have
been initialized using SUnSAL.

Table I reports the values of λ for each value of β and
each image. The parameters were the same for fixed and
estimated M.

Table II presents the mean NMSE for A1, A2:K and A1 · B

as well as the PSNR for the 6it and 50it images in the
framework where M is fixed. The estimation performance
of A1 · B rather than B is evaluated because the partial
volume effect (due to the PSF) can be propagated either in
variable A1 or in B. Both 6it and 50it images present similar
results, with the smallest NMSE of A1 and A2:K obtained
for β = 1 and the best estimation performance of A1 · B

obtained for β = 0. However, the PSNR values show that,
while 6it reaches its best performance for β = 0 closely
followed by β = 1, 50it achieves its highest PSNR for β = 1,
followed by β = 2. This result confirms the previous results
on Phantom I, which exhibited a Poisson-Gamma noise dis-
tribution for the 6it image and a Poisson-Gaussian noise
distribution for the 50it images.

Table III shows the mean NMSE for A1, A2:K , M̃1, M2:K

and A1 · B in the setting where M is now estimated with

TABLE III

MEAN NMSE OF A1 , A2:K , M̃
1
, M2:K

AND A1 · B AND PSNR OF

REASSEMBLED IMAGE ESTIMATED BY β-LMM AND β-SLMM

WITH M ESTIMATED OVER THE 64 SAMPLES, FOR

DIFFERENT VALUES OF β

the other latent variables. Unlike the previous experiments,
the results here are less clear since, depending on the variable,
different values of β lead to the best results. This could
be explained by the strong non-convexity of the problem,
and possibly identifiability issues since 3 sets of latent vari-
ables need to be estimated. The results in Table III show
that β-LMM with β = 2 performs the best for the estimation
of A2:K and M2:K in the 6it image, and for the estimation of
A2:K in the 50it image. All variables related to specific bind-
ing, i.e., A1, M̃1 and A1 . . . B, are best estimated by β-SLMM
with β = 1. For 50it, due to the high level of filtering
along with the non-convexity of this setting, analyzing the
results is more difficult. It is, however, possible to state that
a rather Poisson-Gaussian distributed noise yields the overall
best mean NMSE of each variable.

Regarding the PSNRs, once again, the best PSNR on the
6it image is reached for β = 0, closely followed by β = 1.
Conversely, on the 50it image, the best performance is reached
for β = 1, then followed by β = 0. As also stated in the non-
convex case of Phantom I, the initialization plays a relevant
role when several sets of variables are to be estimated. This
explains the differences found for the results with M fixed and
estimated. Indeed, the high non-convexity of the problem with
estimated M may sometimes alter the expected response.

Finally note that, in practice, each of the three differ-
ent models evaluated above can be of interest. The most
adapted model depends on the data and the application.
NMF and LMM are simpler, thus less sensitive to initialization
and optimization issues. On the other hand, SLMM is based
on a finer modeling, and is expected to better explain the data
when the specific binding factor presents some variability.

VI. EXPERIMENTS WITH REAL DATA

A. Real Data Acquisition

To enrich our study on the impact of β for different
PET image generation settings, the experiments on real data
were conducted with both a different tracer and a different
scanner. More precisely, a real dynamic PET image of a stroke
subject injected with [18F]DPA-714 was used to evaluate the
behavior of β-SLMM in a real setting. The [18F]DPA-714 is
a ligand of the 18-kDa translocator protein (TSPO) and has



Fig. 4. From top to bottom: factor proportions (A2:K) from non-specific
graymatter, whitematter and bloodobtainedwithβ-SLMM forβ = 0,1, 2.

shown its relevance as a biomarker of neuroinflammation [44].
The image of interest was acquired seven days after the stroke
with an Ingenuity TF64 Tomograph from Philips Medical
Systems. The image was reconstructed using the Blob-OS-TF
algorithm [45] with 3 iterations, 33 subsets and an additional
postfiltering step. It consists of L = 31 frames with durations
that ranged from 10 seconds to 5 minutes over a total of
59 minutes. Each frame is composed of 128×128×90 voxels
of size 2× 2× 2 mm3. Each voxel TAC was assumed to be a
mixture of K = 4 types of elementary TACs: specific binding
associated with neuroinflammation, blood, non-specific gray
matter and white matter. A supervised segmentation from a
registered MRI image provided a ground-truth of the stroke
region, containing specific binding. The variability descrip-
tors V were learned by PCA from this ground-truth. The
cerebrospinal fluid was segmented and masked as a 5th class of
a K-means clustering that also provided the initialization of the
factors. Factor proportions were initialized with the clustering
labels found by K-means. For β-SLMM, the nominal SBF was
fixed as the empirical average of TACs from the stroke region
with area-under-the-curve (AUC) between the 5th and 10th
percentile. Note that the reconstruction settings typically used
on the Ingenuity TF64 tomograph for this kind of imaging
protocol produce PET images that are characterized by a
relatively high level of smoothness, inducing spatial noise
correlation.

B. Results

Figure 4 shows, from top to bottom, the factor proportions
for gray matter, white matter and blood estimated by β-SLMM
for β ∈ {0, 1, 2} where the stopping criterion ε was defined
as 5 × 10−4 and the hyperparameter λ was set to 9 × 10−2.
In particular, λ was ajusted by searching for a reasonable trade-
off between localization/sparsity and intensity of the variability
in relevant brain areas, in particular in the central region
that corresponds to the thalamus, which is also expected to
be affected by the variability. Another possible strategy for
choosing λ in a clinical context would be to incorporate arterial

Fig. 5. TACs corresponding to the specific binding factor, gray matter,
white matter and blood.

sampling for the acquisitions of the first few patients of a
given protocol. Visual analysis suggests that all the algorithms
provide a good estimation of both gray and white matters.
The results for β = 1 and β = 2 are very similar and it
is difficult to state which one achieves the best performance.
This is in agreement with the synthetic results previously
presented, that showed very similar estimation errors in case
of more post-reconstruction filtering. The result for β = 0
is quite different from the others with more contrasted factor
proportions. The sagittal view of the blood in the 3rd row has
been taken from the center of the brain. The proposed approach
correctly identifies the superior sagittal sinus vein of the brain
for all tested β values. However, some clear differences can be
observed and the blood is also more easily identified for β = 0
than for the other values of β.

Figure 5 confirms these findings, showing TACs that are
very similar for β ∈ {1, 2} while the TACs for β = 0
are always a bit apart from the others. The expected initial
pick characterizing the blood TAC is more easily identified
with β = 1 and β = 2. On the other hand, for β = 0 the TAC
associated with the non-specific gray matter has a lower AUC
than the two others, further differentiating from the specific
binding TAC.

Figure 6 shows a manually segmented ground-truth of the
stroke zone along with the corresponding factor proportions
and variability matrices estimated with SLMM. The results
obtained with β = 0 show a more accurate identification of
the stroke zone. Results with β = 1, 2 are very similar: they
localize the thalamus, known for having higher binding of
neuroinflammation. But they also recover non-specific gray
matter in the factor proportion related to specific binding. All
values of β show variability matrices that are consistent with
the stroke area.

The results for β ∈ {1, 2} are very similar but β = 2 shows
a stronger intensity, while β = 1 shows a more spread result,



Fig. 6. From left to right: Transversal, coronal and sagital planes (top to bottom) of MRI ground truth of the stroke zone, factor proportions (A1) from
specific gray matter and variability matrices (B) obtained with β-SLMM for β = 0, 1,2.

Fig. 7. Optimal beta computed with the β-NMF algorithm in the convex
setting for 3it, 6it, 15it, 30it and 50it over: (left) 16 samples without a
postfiltering step, (right) 16 samples with a postfiltering step.

even presenting the influence of the thalamus in the 2nd row,
similarly to β = 0.

VII. DISCUSSION

As previously discussed, different acquisition conditions
and reconstruction settings produce PET images with different
noise distributions. Therefore, the optimal value of β, i.e. the
value which produces the best decomposition, highly depends
on the experimental setting. This can be observed in the above-
presented experiments, where the optimal β was shown to be
driven by the reconstruction, the model, and even the way we
evaluate the factor decomposition.

One of the main objectives of this paper was to demonstrate
the flexibility of the β-divergence, and its ability to improve
the factor analysis even when the noise is not well character-
ized. However, this can also be seen as a weakness, because
how to choose β in real situations is not straightforward.
As a tentative to address this issue, we studied the optimal β

value for synthetic images generated with the same process
described in paragraph V-A.3 for 3, 6, 15, 30 and 50 recon-
struction iterations (respectively 3it, 6it, 15it, 30it and 50it
images). We run 16 independent simulations for each setting,
and evaluated the optimal β as a function of reconstruction
iterations, with and without final post-filtering. Figure 7 shows
the optimal β for 3it, 6it, 15it, 30it and 50it, computed
over 16 samples without a postfiltering step (left) and with
a postfiltering step (right). This figure can serve as a reference
to choose β in this experimental setting, and it is consistent

with the other results presented above. To summarize, without
the post-filtering step, a reasonable choice of β is around 0.5
for few iterations, and 1 or slightly above for more iterations.
We also remark that the influence of β is less clear when a
post-filtering step has been used within reconstruction.

This strategy is expected to remain valid for other tracers,
other cameras or other reconstruction algorithms. Specific
numerical simulations dedicated to the experimental setting
can be conducted to obtain a relevant tuning of the β.

Moreover, throughout this article, the main measure of
evaluation was the PSNR. A more insightful evaluation could
be obtained by separately measuring the final bias and variance
for each setting. To further enlighten the interest of using
a correct data-fitting measure, this study was conducted on
Phantom I. The analysis showed that the bias is the most
relevant element for the final PSNR, i.e., it is the measure that
is most affected by the use of different values of β (see [43]
for more details).

VIII. CONCLUSION

This paper studied the role of the data-fidelity term
when conducting factor analysis of dynamic PET images.
We focused on the beta-divergence, for which the NMF
and LMM decompositions were already proposed in other
applicative contexts. We also introduced a new algorithm for
computing a factor analysis allowing for variable specific-
binding factor, termed β-SLMM.

For all those three models, experimental results showed the
interest of using the β-divergence in place of the standard
least-square distance. The factor and proportion estimations
were indeed more accurate when computed with an suitable
value of β. The improvement was shown to be higher when
the image had not suffered too strong post-processing correc-
tions. The β-divergence thus appeared to be a general and
flexible framework for analyzing different kind of dynamic
PET images.

Future works should consider the use of the β-divergence in
the whole image processing pipeline, including the reconstruc-
tion from the sinograms and the denoising. This should further
improve the final factor analysis results. While the scope of



this paper was to study the relevance of a flexible divergence
measure in PET image processing, a deeper evaluation of the
impact of the method on input function estimation and quan-
tification parameter estimation within clinical applications for
which arterial sampling is available should also be envisaged
in the future.

REFERENCES

[1] Y. C. Cavalcanti, T. Oberlin, N. Dobigeon, C. Févotte, S. Stute, and
C. Tauber, “Unmixing dynamic PET images: Combining spatial het-
erogeneity and non-Gaussian noise,” in Proc. IEEE Int. Conf. Acoust.,

Speech, Signal Process. (ICASSP), Brighton, U.K., Apr. 2019.
[2] D. C. Barber, “The use of principal components in the quantitative

analysis of gamma camera dynamic studies,” Phys. Med. Biol., vol. 25,
no. 2, pp. 283–292, 1980.

[3] F. Cavailloles, J. P. Bazin, and R. Di Paola, “Factor analysis in gated
cardiac studies,” J. Nucl. Med., vol. 25, no. 10, pp. 1067–1079, 1984.

[4] H.-M. Wu et al., “Factor analysis for extraction of blood time-activity
curves in dynamic FDG-PET studies,” J. Nucl. Med., vol. 36, no. 9,
pp. 1714–1722, Sep. 1995.

[5] A. Sitek, E. V. R. Di Bella, and G. T. Gullberg, “Factor analysis with a

priori knowledge—Application in dynamic cardiac SPECT,” Phys. Med.

Biol., vol. 45, no. 9, pp. 2619–2638, 2000.
[6] J. S. Lee, D. D. Lee, S. Choi, K. S. Park, and D. S. Lee, “Non-negative

matrix factorization of dynamic images in nuclear medicine,” in Proc.

IEEE Nucl. Sci. Symp. Conf. (NSS), Nov. 2001, pp. 2027–2030.
[7] P. Padilla, M. López, J. M. Górriz, J. Ramírez, D. Salas-González, and

I. Álvarez, “NMF-SVM based CAD tool applied to functional brain
images for the diagnosis of Alzheimer’s disease,” IEEE Trans. Med.

Imag., vol. 31, no. 2, pp. 207–216, Feb. 2012.
[8] D. Schulz, “Non-negative matrix factorization based input function

extraction for mouse imaging in small animal PET—Comparison with
arterial blood sampling and factor analysis,” J. Mol. Imag. Dyn, vol. 2,
no. 108, p. 2, 2013.

[9] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for
emission tomography,” IEEE Trans. Med. Imag., vol. MI-1, no. 2,
pp. 113–122, Oct. 1982.

[10] N. M. Alpert et al., “Estimation of the local statistical noise in emis-
sion computed tomography,” IEEE Trans. Med. Imag., vol. 1, no. 2,
pp. 142–146, Oct. 1982.

[11] P. Razifar et al., “Noise correlation in PET, CT, SPECT and PET/CT
data evaluated using autocorrelation function: A phantom study on data,
reconstructed using FBP and OSEM,” BMC Med. Imag., vol. 5, no. 1,
p. 5, Aug. 2005.

[12] J. A. Fessler, “Penalized weighted least-squares image reconstruction
for positron emission tomography,” IEEE Trans. Med. Imag., vol. 13,
no. 2, pp. 290–300, Jun. 1994.

[13] P. G. Coxson, R. H. Huesman, and L. Borland, “Consequences of using
a simplified kinetic model for dynamic PET data,” J. Nucl. Med., vol. 38,
no. 4, pp. 660–667, 1997.

[14] M. E. Kamasak, “Clustering dynamic PET images on the Gaussian
distributed sinogram domain,” Comput. Methods Programs Biomed.,
vol. 93, no. 3, pp. 217–227, 2009.

[15] M. Slifstein, O. Mawlawi, and M. Laruelle, “Partial volume effect
correction: Methodological consideration,” in Physiological Imaging of

the Brain with PET, A. Gjedde, S. B. Hansen, G. M. Knudsen, and
O. B. Paulson, Eds. San Diego, CA, USA: Academic, 2000, ch. 11,
p. 413.

[16] Z. Irace, M. Pereyra, N. Dobigeon, and H. Batatia, “Bayesian segmen-
tation of chest tumors in PET scans using a Poisson-Gamma mixture
model,” in Proc. IEEE Stat. Signal Process. Workshop (SSP), Jun. 2011,
pp. 809–812.

[17] A. Teymurazyan, T. Riauka, H.-S. Jans, and D. Robinson, “Properties
of noise in positron emission tomography images reconstructed with
filtered-backprojection and row-action maximum likelihood algorithm,”
J. Digit. Imag., vol. 26, no. 3, pp. 447–456, Aug. 2012.

[18] T. Mou, J. Huang, and F. O’Sullivan, “The Gamma characteristic of
reconstructed PET images: Implications for ROI analysis,” IEEE Trans.

Med. Imag., vol. 37, no. 5, pp. 1092–1102, May 2018.
[19] A. Basu, I. R. Harris, N. L. Hjort, and M. C. Jones, “Robust and efficient

estimation by minimising a density power divergence,” Biometrika,
vol. 85, no. 3, pp. 549–559, 1998.

[20] C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization
with the β-divergence,” Neural Comput., vol. 23, no. 9, pp. 2421–2456,
2011.

[21] Y. C. Cavalcanti, T. Oberlin, N. Dobigeon, S. Stute, M. Ribeiro, and
C. Tauber, “Unmixing dynamic PET images with variable specific
binding kinetics,” Med. Image Anal., vol. 49, pp. 117–127, Oct. 2018.

[22] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factor-
ization,” in Proc. Neural Inf. Process. Syst. (NIPS), 2000, pp. 556–562.

[23] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791,
1999.

[24] J. M. Bioucas-Dias et al., “Hyperspectral unmixing overview: Geomet-
rical, statistical, and sparse regression-based approaches,” IEEE J. Sel.

Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354–379,
Apr. 2012.

[25] S. Eguchi and Y. Kano, “Robustifying maximum likelihood estimation,”
Tokyo Inst. Stat. Math., Tokyo, Japan, Tech. Rep., Jun. 2001.

[26] P. D. O’Grady and B. A. Pearlmutter, “Discovering speech phones
using convolutive non-negative matrix factorisation with a sparseness
constraint,” Neurocomputing, vol. 72, nos. 1–3, pp. 88–101, Dec. 2008.

[27] D. FitzGerald, M. Cranitch, and E. Coyle, “On the use of the beta
divergence for musical source separation,” in Proc. IET Irish Signals

Syst. Conf. (ISSC), Jun. 2009, pp. 1–6.
[28] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factor-

ization with the Itakura-Saito divergence: With application to music
analysis,” Neural Comput., vol. 21, no. 3, pp. 793–830, 2009.

[29] A. Cichocki and S.-I. Amari, “Families of alpha–beta- and Gamma–
divergences: Flexible and robust measures of similarities,” Entropy,
vol. 12, no. 6, pp. 1532–1568, 2010.

[30] V. Y. F. Tan and C. Févotte, “Automatic relevance determination in
nonnegative matrix factorization with the β-divergence,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 35, no. 7, pp. 1592–1605, Jul. 2013.
[31] C. Févotte and N. Dobigeon, “Nonlinear hyperspectral unmixing with

robust nonnegative matrix factorization,” IEEE Trans. Image Process.,
vol. 24, no. 12, pp. 4810–4819, Dec. 2015.

[32] Z. Yang and E. Oja, “Unified development of multiplicative algorithms
for linear and quadratic nonnegative matrix factorization,” IEEE Trans.

Neural Netw., vol. 22, no. 12, pp. 1878–1891, Dec. 2011.
[33] R. Kompass, “A generalized divergence measure for nonnegative matrix

factorization,” Neural Comput., vol. 19, no. 3, pp. 780–791, Mar. 2007.
[34] J. Eggert and E. Korner, “Sparse coding and NMF,” in Proc. IEEE Int.

Joint Conf. Neural Netw. (IJCNN), vol. 4, Jul. 2004, pp. 2529–2533.
[35] S. Stute, C. Tauber, C. Leroy, M. Bottlaender, V. Brulon, and

C. Comtat, “Analytical simulations of dynamic PET scans with realistic
count rates properties,” in Proc. IEEE Nucl. Sci. Symp. Med. Imag.

Conf. (NSS/MIC), Oct./Nov. 2015, pp. 1–3.
[36] I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi,

and P. B. Hoffer, “Computerized three-dimensional segmented human
anatomy,” Med. Phys., vol. 21, no. 2, pp. 299–302, 1994.

[37] M. E. Winter, “N-FINDR: An algorithm for fast autonomous spectral
end-member determination in hyperspectral data,” Proc. SPIE, vol. 3753,
pp. 266–275, Oct. 1999.

[38] M. Yaqub et al., “Optimization of supervised cluster analysis for
extracting reference tissue input curves in (R)-[11C]PK11195 brain
PET studies,” J. Cerebral Blood Flow Metabolism, vol. 32, no. 8,
pp. 1600–1608, May 2012.

[39] J. M. Bioucas-Dias and M. A. T. Figueiredo, “Alternating direction algo-
rithms for constrained sparse regression: Application to hyperspectral
unmixing,” in Proc. 2nd Workshop Hyperspectral Image Signal Process.,

Evol. Remote Sens. (WHISPERS), Jun. 2010, pp. 1–4.
[40] M. E. Phelps, J. C. Mazziotta, and H. R. Schelbert, Positron Emission

Tomography and Autoradiography: Principles and Applications for the

Brain and Heart. New York, NY, USA: Raven, 1986.
[41] S. Stute and C. Comtat, “Practical considerations for image-based PSF

and blobs reconstruction in PET,” Phys. Med. Biol., vol. 58, no. 11,
p. 3849, 2013.

[42] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex component
analysis: A fast algorithm to unmix hyperspectral data,” IEEE Trans.

Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005.
[43] Y. C. Cavalcanti, T. Oberlin, N. Dobigeon, S. Stute, M.-J. Ribeiro,

and C. Tauber, “Factor analysis of dynamic PET images: Beyond
Gaussian noise—Complementary results and supplementary materials,”
Univ. Toulouse, IRIT/INP-ENSEEIHT, Toulouse, France, Tech. Rep.,
Dec. 2018. [Online]. Available: http://dobigeon.perso.enseeiht.fr/papers/
Cavalcanti_TechReport_2018.pdf

[44] F. Chauveau et al., “Comparative evaluation of the translocator protein
radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat
model of acute neuroinflammation,” J. Nucl. Med., vol. 50, no. 3,
pp. 468–476, 2009.

[45] S. Matej and R. M. Lewitt, “Practical considerations for 3-D image
reconstruction using spherically symmetric volume elements,” IEEE

Trans. Med. Imag., vol. 15, no. 1, pp. 68–78, Feb. 1996.




