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Abstract—Using generative models to synthesize visual features
from semantic distribution is one of the most popular solutions
to ZSL image classification in recent years. The triplet loss (TL)
is popularly used to generate realistic visual distributions from
semantics by automatically searching discriminative representa-
tions. However, the traditional TL cannot search reliable unseen
disentangled representations due to the unavailability of unseen
classes in ZSL. To alleviate this drawback, we propose in this
work a multi-modal triplet loss (MMTL) which utilizes multi-
modal information to search a disentangled representation space.
As such, all classes can interplay which can benefit learning
disentangled class representations in the searched space. Fur-
thermore, we develop a novel model called Disentangling Class
Representation Generative Adversarial Network (DCR-GAN) fo-
cusing on exploiting the disentangled representations in training,
feature synthesis, and final recognition stages. Benefiting from
the disentangled representations, DCR-GAN could fit a more re-
alistic distribution over both seen and unseen features. Extensive
experiments show that our proposed model can lead to superior
performance to the state-of-the-arts on four benchmark datasets.
Our code is available at https://github.com/FouriYe/DCRGAN-
TMM.

Index Terms—Zero-shot Learning, Generative Adversarial
Network, Representation Learning, Deep Learning.

I. INTRODUCTION

Classical pattern recognition classifies images into cate-
gories only seen in the training stage [1], [2], [3]. In contrast,
zero-shot learning (ZSL), one of the most active research
topics in multimedia, aims at exploring unseen categories,
which has recently drawn much attention [4], [5], [6], [7],
[8], [9], [10], [11], [12]. Furthermore, Chao et al. propose the
generalized zero-shot learning (GZSL) [13] in a more practical
scenario. Different from ZSL, GZSL intends to recognize both
seen and unseen classes during test time. Since ZSL/GZSL
does not require a vast amount of new data, ZSL models
could be utilized as an imitative solution in crucial and life-
saving situations, e.g. current COVID-19 literature search [14],
autonomous driving planning [15], [16].

To conduct zero-shot classification, researchers usually en-
gage intermediate semantic features to bridge the gap from
seen to unseen classes. Intermediate semantic features have
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Fig. 1. Comparison between the traditional triplet loss (TL) and our multi-
modal triplet loss (MMTL) on three unseen bird classes of CUB. Due
to overlapped unseen visual distributions, searched representations by the
tradition TL are too entangled. However, MMTL mitigates the overlapped
unseen visual feature problem by combining visual and semantic features,
and searches disentangled unseen representations consequently.

many alternatives, including attribute annotations [7], text
representations from online text corpora [9], and even gaze
embedding [17]. Based on these semantic features, researchers
have explored two dominated types of ZSL methods, i.e.
embedding methods, and generative methods. Embedding
methods learn a projection from single modal features to
another modal space for similarity measurement [18], [4],
[10]. In contrast, generative methods focus on learning realistic
unseen visual distributions from semantic features. They take
advantages of the expressive power of generative adversarial
networks (GANs) [19], [20] to generate plausible visual fea-
tures for unseen classes [9], [21], [22], [23], [24]. In this way,
ZSL can be converted to a conventional classification problem.

The connection between semantic and visual relationships is
the key of the most ZSL/GZSL methods. Recently, researchers
focus on how to define manually the constraints about the
connection. For example, LsrGAN [25] claims that synthesized
visual features of different classes should have a similar
relationship to their semantic features. Thus, they propose
to utilize the semantic relationship for guiding visual feature
synthesis. However, semantic features might also be too am-
biguous to be classified. Our previous work, SRGAN [22]
investigates the visual relationships of different classes and
argues that it could be used to rectify their over-smoothing
semantics of some classes, and then, synthesize visual fea-
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Fig. 2. Illustration of our proposed DCR-GAN approach. We develop the metric network to construct a clear class representation space SRS by the combination
of visual and semantic spaces. Unseen class representation R(a) is used to synthesize unseen visual features x̃. As a result, we can recognize unseen class
in the generated feature space.

tures from rectified semantic features. Other researchers also
construct a re-representation space to align visual and semantic
features simultaneously [12]. These methods focus on using
single modal information, semantics or vision. Obviously, sin-
gle modal information could be incomplete for classification.
Using one modality to constrain the other is imperfect and
would cause semantic-to-visual confusion. Thus, we pay our
attention to two important questions: (1) how to find more
disentangled/separable class representations by utilizing both
semantic and visual information? (2) and consequently how to
make the best use of disentangled representations for visual
feature generation and recognition. Our idea is illustrated in
Fig. 2.

To answer the first question, we notice that recent studies
have designed a series of methods for automatically discrimi-
native representation search [22], [11], [25], [12], [10] where
the triplet loss is often used [26], [27], [28], [24], [10]. For
example, Latent Discriminative Features Learning (LDF) [10]
recognizes unseen samples in semantic and latent semantic
space, which is searched by triplet loss (TL). TL is usually
considered in the same fashion among these methods, i.e.
they train a metric network (MN) and search a representation
space from seen visual features by regulating both inter-
class and intra-class distances. A well-designed MN would
minimize the margin among intra-class samples and maximize
the margin among inter-class samples. As a hypothetical result,
these works suggest that the unseen classes could also form
disentangled searched representations in the searched space.

In this paper, however, we find that TL may lead to a serious
problem in ZSL/GZSL due to the inherited nature of ZSL,
i.e. the unavailability of unseen visual features. Particularly,
both visual feature extraction models and MN cannot access
unseen features in ZSL. Since the feature extraction models
are not trained for unseen classes, extracted visual distributions
of different unseen classes would be overlapped, leading
that unseen features will be entangled. Even if MN could

search discriminative seen class representations from seen
visual features well, the TL training may be highly fragile to
out-of-training-distribution features, which is similar to other
margin-based losses [29], [30]. As a consequence, MN would
produce non-separable and entangled unseen representations
due to the under-fitting of unseen visual features, as shown
in Fig. 1 (a). As such, we entitle the problem as entangled
unseen visual features problem. This problem prevents the
ZSL models from achieving the original purpose of using
triplet loss, i.e. minimizing the distance among samples of
the same classes and maximizing the distance among samples
of different classes.

In this work, we propose to address the entangled unseen
visual features problem by mitigating the entangled input
condition. To this end, we develop the novel multi-modal
triplet loss (MMTL), which combines two modal features,
visual and semantic, to form more complete class descriptions.
Compared to the traditional TL, our MMTL can utilize multi-
modal information which can benefit disentanglement of the
feature representations. Concretely, when visual features of
samples from different classes are close, MMTL can utilize
semantic information of samples to distinguish samples, and
vice versa. Therefore, as shown in Fig. 1 (b), our MMTL is
capable of searching disentangled representations for all the
classes, even when some unseen visual features of different
classes are close. In the testing stage for unseen samples, we
can take sampling methods to obtain unseen representations.
Note that, due to the instability in training GAN and triplet-
based loss, we train our MN and our generator separately in
this work.

To answer the second question, we further design the Disen-
tangled Class Representation Generative Adversarial Network
(DCRGAN), trying to make the best use of searched repre-
sentations. DCR-GAN integrates searched representations in
all the stages of the ZSL pipeline, i.e. features synthesis,
model training, and final classification. First of all, our gener-
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ator synthesizes visual features from semantics and searched
representations. Next, for model training, we point out that
general GAN-based ZSL adversarial loss is not applicative for
ZSL since they adopt a classification loss to make synthesized
visual features more discriminative. However, though such
classification loss intends to make synthesized features more
separable, our investigation indicates that they cause the real
features mixed-up together [28]; such learned synthesized
features would lead to serious misclassification of real samples
which are located in class boundaries. To tackle this problem,
we propose our adversarial loss LWGAN−SR by integrating
auxiliary information, i.e. semantic features and searched
representations, into our critical loss instead of attaching a
classification loss. In the final classification stage, we train
three softmax classifiers in visual, semantic, and searched
representations spaces, respectively. Our results show that such
integration can largely improve the accuracy both in seen and
unseen classes.

Overall, this work has three main contributions.
1. We argue that the traditional TL has the inherited short-

coming for ZSL called the entangled unseen visual fea-
ture problem, i.e., the traditional TL cannot search appro-
priately disentangled representations for unseen classes.

2. We propose the MMTL to mitigate the entangled unseen
feature problem. MMTL could search more disentangled
representations than the traditional TL, which can be
utilized to generate a more realistic distribution.

3. We propose a novel GAN-based framework named Dis-
entangled Class Representation Generative Adversarial
Network (DCR-GAN) for ZSL. DCR-GAN is capable
of searching disentangled representations that are readily
integrated in all the parts of ZSL. DCR-GAN achieves
not only a high accuracy for classifying unseen images
but also leads to significant improvement for classifying
seen images.

II. RELATED WORK

A. Zero-shot Learning

Zero-shot Learning (ZSL) [5], [31], [32], [33], [34], [35],
[22], [21], [36], [37] is one active research topic in multimedia,
which aims at recognizing images from categories that are not
included in the training set. Generalized Zero-Shot Learning
proposed in [13] considers a more practical situation, in which
both seen and unseen instances are mixed in the test data. One
main challenge of ZSL/GZSL is that empirical risk minimiza-
tion becomes unreliable [38], since unseen visual samples are
not available in the training stage. This challenge also occurs
in other relevant problems, i.e., Few-Shot Learning [39].
To overcome the limitations, researchers utilize semantics as
intermediate representations of unseen classes. Such semantics
are often manually defined attributes [4], word vectors [40] and
text descriptions [9]. Other works also utilize gaze embedding,
that is collected by non-experts, as semantics [17], [41].

Mainstreams ZSL methods can fall into embedding methods
and generative methods. Embedding ZSL methods learn a
visual-to-semantic embedding [18], [4], [10], a semantic-to-
visual embedding [42], or an unified embedding space [43],

[12]. Generative ZSL methods focus on leveraging Generative
Adversarial Network [19] and/or Variational Autoencoders
(VAE) [44] to synthesize unseen visual features from semantic
features.

Obviously, the quality of semantic features are the key
of all the ZSL methods. Incomplete semantics would cause
confusions of visual features generation. Semantic Rectifying
GAN (SRGAN) [22] utilizes manually designed distance func-
tions to rectify over-smoothing semantic features by visual
similarities. Some embedding methods [10] and VAE-based
methods [27], [28] try to utilize the triplet loss to search
automatically more discriminative representations from visual
features.

Though previous embedding methods and VAE-based meth-
ods have introduced TL to augment class representations,
GAN-based methods hardly take concentration on utilizing
representations searched by TL or other metric learning (par-
tially due to their notorious training instability).

In this work, we make an attempt to fill the gap. We focus
on searching automatically disentangled representations to
enhance the fidelity of synthesized features; this is significantly
different from the previous ways that manually define con-
straints between visual and semantic spaces. We also identify
a novel problem of the traditional TL, and design a framework
to utilize the searched representation in training, synthesizing,
and recognition stages.

B. Triplet Loss in ZSL

The traditional TL was discussed by Google in FaceNet
to search face representations for recognition [45]. It takes
a metric network (MN) to project an anchor feature a, a
positive feature p, and a negative feature n into the searched
representation space. The anchor and positive features share
the same class, while the anchor and negative features belong
to different classes. MN aims to tighten up the margin between
positive pairs (a, p), and widen the margin between negative
pairs (a, n).

In previous ZSL works using TL, their MN are all trained
by single-modal visual features. For example, one embed-
ding ZSL method, Latent Discriminative Features Learning
(LDF) [10], utilizes TL to mine new latent semantic fea-
tures from visual features. In generative methods, Entropy-
based Uncertainty calibration VAE (EUC-VAE) [27] and Over-
Complete Distribution VAE (OCD-VAE) [28] integrate TL in
VAE to enhance the separability of encoded representations.
EUC-VAE designs two TLs trained by visual features and
semantic features, respectively. OCD-VAE develops an online
batch TL to speed up the process of gradient backward, but it
still adopts the same TL formulation as that of LDF.

The above mentioned methods all ignore the entangled
unseen visual features problem. Traditional TL is highly frag-
ile for out-of-training-distribution features, which is similar
to other margin-based losses [29]. In ZSL, TL is required
to search representations not only for seen classes, but also
for unseen features. However, unseen visual features are
entangled. Traditional TL in ZSL lacks the ability in defense
of overlaps among unseen distributions. Differently, in this
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paper, we develop the Multi-Modal Triplet Loss (MMTL) that
can mitigate the entangled problem by concatenating multi-
modal features to form more complete descriptions of unseen
classes. Benefiting from other modal information, the unseen
distributions do not overlap. Consequently, our MN trained
by MMTL can search disentangled representations which are
usually entangled in the traditional TL. As such, MMTL can
better meet the intention of using margin-based losses, i.e.
maximizing inter-class variation and minimizing intra-class
variation.

III. DISENTANGLED CLASS REPRESENTATION
GENERATIVE ADVERSARIAL NETWORK

The training pipeline of our model follows two steps:
(1) Pre-training Metric Network (MN, or in short M ) for

searching disentangled representations, and Semantic
Rectify Network (SRN or in short R) for sampling
searched representations from the semantic space.
This step will be described in Section III-B and be
summarized in Algorithm 1.

(2) Training a visual feature generator G with a discrimi-
nator D to synthesize pseudo visual features. We also
utilize two regressors F1 and F2 to enhance the multi-
modal consistencies among visual space, semantic space,
and searched representation space.
This step will be introduced in Section III-C and III-D,
and be summarized in Algorithm 2.

Once G is trained , we can train the final ZSL classifier with
synthesized unseen features. Previous generative ZSL methods
only train a visual ZSL classifier. Differently in this work, we
also train a semantic and a searched representation classifier
to make the best of auxiliary information. The test step will
be presented in Section III-E.

A. Notations

Given an image I , the proposed model can recognize it
as a specific class c even if it is unseen during training.
We take instance {x,as, cs} as input in the training stage,
where x describes the instance-level visual feature in the visual
feature space V , as in the seen semantic space, As is class-
level semantic extracted from attributes or other description
information, and cs denotes the corresponding seen class label.
Cs is the set of seen class labels. In the testing stage, given an
image, ZSL and GZSL will recognize it as an unseen class Cu
or a class cs+u (either seen or unseen). The unseen semantic
space and the whole semantic space are denoted as Au, and
A = As ∪ Au respectively.

B. Multi-modal Triplet Loss and Sampling Strategy

1) Triplet loss in ZSL: One primary obstacle of generative
methods for ZSL mainly comes from the incomplete class
semantic features. Such semantic features would confuse the
model, as well as generating less reliable visual features.
To search more comprehensive class representations, previous
works try to engage TL to search discriminative class repre-
sentations. Given an anchor visual feature xs

a with its label

Algorithm 1 Training algorithm of MN and SRN.
Require: The batch size, m1; the number of epoch of training

MN, nM ; the number of epoch of training SRN, nR; initial
MN parameters, θM ; the margin parameter, m; initial SRN
parameters, θR; Adam hyper-parameters, α, β1, and β2.

1: for iter = 1, · · · , nM do
2: Sample a minibatch of seen visual features xs, matching

semantic features as.
3: Compute the MMTL loss LMMTL using Eq. 3.
4: θM ← Adam(∇LMMTL

, θM , α, β1, β2)
5: end for
6: for iter = 1, · · · , nR do
7: for t = 1, · · · , ||Cs|| do
8: Sample all seen visual features xs, and matching

semantic features as of a certain class in Cs.
9: Compute the sampling loss Lsam using Eq. 4.

10: θR ← Adam(∇Lsam
, θR, α, β1, β2)

11: end for
12: end for
13: fix θM and θR

Algorithm 2 Training algorithm of feature generator.
Require: The maximal loops Nloop; the batch size m; the

iteration number of discriminator in a loop Nd; the itera-
tion number of generator Ng; initial generator parameters
θG; initial discriminator parameters θD; the trained se-
mantic rectifying Network R; the gradient penalty hyper-
parameter λ; the two reconstruction parameters λ1 and λ2;
Adam hyper-parameters α, β1, and β2.

1: for iter = 1, · · · , Nloop do
2: for iter = 1, · · · , Nd do
3: Sample a mini-batch of seen visual features xs,

matching semantic features as, and random noise z
4: Compute the discriminator loss LD using Eq. 9.
5: θD ← Adam(∇LD

, θD, α, β1, β2)
6: end for
7: for iter = 1, · · · , Ng do
8: Sample a mini-batch of seen visual features xs, cor-

responding semantic features as, and random noise
z

9: Compute the reconstruction loss LF1 using Eq. 7.
10: θF1 ← Adam(∇LF1

, θF1 , α, β1, β2)
11: Compute the reconstruction loss LF2

using Eq. 8.
12: θF2

← Adam(∇LF2
, θF2

, α, β1, β2)
13: Compute the generator loss LG using Eq. 9.
14: θG ← Adam(∇LG

, θG, α, β1, β2)
15: end for
16: end for

csa, the traditional TL in ZSL attempts to find a positive visual
feature xs

p with the same label csp = csa and a negative visual
feature xs

n with csn 6= csa. Then, TL trains a MN by minimizing
the distance of the positive pair d(M(xs

a),M(xs
p)) and maxi-

mizing the distance of the negative pair d(M(xs
a),M(xs

n)) by
a margin m. MN would search a vector according to the input:
M(x) ∈ RL, where L is a hype-parameter to control the size
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Fig. 4. Illustration of the sampling strategy for unseen representations.
We need train another network Semantic Rectifying Network (SRN). The
class-level searched representation is an average of all instance-level rep-
resentations searched by MN. Then, we can train our SRN to learn the
mapping: semantics → searched representations. After that, we can obtain
unseen searched representations that only need take unseen semantic features
as input of SRN.

of searched vector. d(·, ·) is usually the Euclidean distance. It
can be formulated as:

LTL = max(0,m+d(M(xs
a),M(xs

p))−d(M(xs
a),M(xs

n))).
(1)

The searched representation M(xs) is instance-level represen-
tation. By averaging on all samples of the same classe, we can
obtain class-level representations.

2) Limitations: The tradition TL does not consider the en-
tangled unseen visual features problem caused by overlapped
unseen visual distributions in ZSL. MN cannot access any un-
seen features during the training stage. For example, there exist
some very similar unseen visual features implying xu

i ≈ xu
j ,

where i and j belong to two different classes. Although their
semantic features, denoted as aui and auj , are different, visual
features xu

i and xu
j are too smoothing to be distinguished by

MN. Such entangled unseen visual features would confuse
MN, and finally undermine the discrimivativeness of searched
unseen representations, i.e. M(xu

i ) ≈M(xu
j ).

3) Multi-modal Triplet Loss: To tackle the entangled prob-
lem, we try to combine two modal features, i.e. both visual and
semantic features, to form more complete class descriptions,
as shown in Fig. 3. Mathematically, our proposed multi-modal
triplet loss can be represented as:

LMMTL = max(0,m+d(M(esa),M(esp))−d(M(esa),M(esn))),
(2)

where e is a concatenated feature from multiple modalities,
e.g. vision, semantics, and/or gaze embedding. In this work,
we concatenate visual and semantic modalities, i.e. es =
[xs,as] where [·, ·] denotes the concatenation operation.

Compared to the traditional TL, our MN can utilize multi-
modal information to search a latent space which is sharp
enough to distinguish different unseen classes. Obviously,
when visual features of samples from different classes are
close, MN can utilize semantic information of samples to
distinguish samples, and vice versa. Additionally, we also use
the weight decay to prevent over-fitting. The total loss of
training MN is:

LMN = LMMTL + ‖θM‖2. (3)
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Then, we can use sampling methods to get unseen represen-
tations from MN for generator training.

4) Sampling Unseen Representation Strategy: In recog-
nizing unseen samples, we cannot know their labels before
recognition. However, for a certain unseen class that has Nc

samples, we need to recognize all visual features of the class
to produce its class-level representation 1

Nc

∑Nc

i=1M(eui ). It is
completely reversed with the training process of MN, whether
using TL or MMTL. Thus, we need to design a sampling
representation strategy to get unseen representations.

The traditional LDF [10] method designs a sampling method
by training a relationship matrix W that maps all seen seman-
tics As to all unseen semantics As, i.e. Au ≈ W · As. Then,
unseen representations M(au) can be obtained from the matrix
and searched seen representations, i.e. M(Au) =W ·M(As).
Such sampling strategy has several drawbacks: (1) It is a
transductive method since it takes unseen semantics to train.
(2) It may bring incorrect semantic relationships into the
searched representation space. For example, semantics of some
classes are too smoothing to be distinguished [22]. (3) It forces
that the searched representations have the same dimension with
semantic features.

In contrast, instead of learning the whole seen-unseen rela-
tionships from semantics, we train another network, Semantic
Rectifying Network (SRN), for directly mapping semantics, no
matter whether seen or unseen, to the searched representation
space, as shown in Fig. 4. Our sampling strategy need not
unseen semantics in training. Thus it is inductive. Moreover,
it can determine flexibly the dimensions of the searched rep-
resentations. Our experiments also verify that the dimensions
of searched representations can affect the ZSL classification.

Specifically, MN will be fixed after we finish its training.
For any seen class, we minimize the l2 loss between the
average searched class representation and rectified semantic
feature by SRN with the weight decay, i.e.

Lsam = ‖ 1

Nc

Nc∑
i=1

M(esi )−R(asi )‖2 + ‖θR‖2, (4)

where Nc is the number of all samples of the chosen seen
class. Then, for an unseen class u, we can directly get its
searched class representation by rectifying its semantic feature,
i.e. R(aui ). SRN and MN consist of a multi-layer perceptron
(MLP) activated by Leaky ReLU, and the output layer does
not apply any activation.

C. Visual Feature Synthesis with Search Representation

Generative Adversarial Network has demonstrated its use-
fulness for ZSL [9], [21], [22], [23], [24], [46], due to its
promising ability to generate visual features from semantic
features. The most popular generative ZSL methods are based
on the conditional WGAN architecture with gradient penalty,
which consists of a generator G, a discriminator D, and a
classifier. The generator G synthesizes visual features from
semantic features and normal distribution z ∼ N (0, 1), The
discriminator D distinguishes the synthesized samples xfake

from real samples x. The classifier predicts the probabilities
of their label, logP (y|xfake) and logP (y|x). The classifier, G

[0,1]

Fake/RealDG
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SRN C
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𝒛
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𝒂
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𝑅(𝒂)

C
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𝒂
Searched Representation
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C

𝒂 𝑅(𝒂)
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Fig. 5. Detailed illustration of the training process for DCR-GAN. G and
D represent respectively the generator/discriminator of our feature GAN. The
SRN projects semantic space to searched representation space. The F1 and
F2 are two regress networks that respectively projects fake visual features
G([a, R(a), z]) to semantic space and searched class representation space for
the inter-class diversity.

and D are trained at the same time by the following minimax
objective:

min
G

max
D
LWGAN = Ez∼pz [D(xfake)]−Ex∼pdata

[D(x)]

+E[logP (y|xfake)]−E[logP (y|x)] (5)

+ λ(‖∇x̂D(x̂)‖2 − 1)2,

where E(·) denotes the expected value, xfake = G(a, z), λ
is a parameter, and the last term λ(‖∇x̂D(x̂)‖2 − 1)2 is the
gradient penalty to enforce the Lipschitz constraint [47], in
which x̂ = µx+ (1− µ)xfake with µ ∼ U(0, 1).

However, indiscriminately feeding vague semantic features
into a generator may undermine the generated visual features.
By a pre-trained SRN model, we can easily obtain more
distinguished class representations. Therefore, we design a
feature GAN model that translates these rectified semantic
features into visual features.
LWGAN has two limitations: (1) It does not consider that

semantic and visual space are heteroid. Some information
might be missing completely in the other modal space. (2) Due
to the entangled unseen visual features problem, many visual
features are in the boundary area of other classes. In order to
reduce the classification risk, G only generates samples that
are far from the boundaries of classification, and thus, does
not generate hard samples.

To address this problem, we propose the WGAN with the
searched representations loss LWGAN−SR:

LWGAN−SR = Ez∼pz [D([xfake,a, R(a)])]

−Ex∼pdata
[D([x,a, R(a)])] (6)

+ λ(‖∇x̂D([x̂,a, R(a)])‖2 − 1)2,

where xfake = G(a, R(a), z). The training process of our
DCR-GAN is described in Fig. 5. Our LWGAN−SR enjoys
two differences with LWGAN : (1) We integrate searched
representations to align two modalities. (2) We remove the
classifier and leverage auxiliary information, i.e. semantic
features and searched representations, to train a class-sensitive
discriminator D. With the integrated auxiliary information,
interlaced class boundaries are pushed off. In this case, our
generator G does not worry about the classification risk for
hard samples.
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D. Feature Reconstruction

With the above process, our model is able to synthesize
proper visual features to some extent. However, there exists
a significant problem, e.g. the generated visual features have
poor consistencies with the input semantics and searched rep-
resentations. Accordingly, we utilize two regression networks
to keep the consistencies of semantic → visual → semantic
space and searched representation → visual → searched
representation space, respectively. Specifically, the regression
network F1, keeping in step with the generator G, takes the
generated feature xfake as input, and builds consistency losses
between original semantics and reconstructed semantics from
visual features. The regression network F2 works in the same
way for searched representations. The two regression loss for
F1 and F2 can be computed by

LF1
= ‖F1(xfake)− a‖1, (7)

LF2 = ‖F2(xfake)−R(a)‖1. (8)

Obviously, G◦F1 and G◦F2 can be considered as two Auto-
Encoders [44], where A ◦ B denotes the composite of two
mappings. The reconstruction G◦F1 enhances the relationship
between the synthetic visual features and the corresponding
class semantics by minimizing the difference between the
reconstructed and original semantic features. The searched
representation reconstruction G ◦ F2 works in the same way.

Finally, by integrating the reconstruction losses, the new
objective of our DCR-GAN can be modified as:

min
G,F1,F2

max
D
LDCRGAN = LWGAN−SR + λ1LF1 + λ2LF2,

(9)

where λ1 and λ2 are two reconstruction parameters for se-
mantic and searched representation, respectively.

G

SRN

Visual space 
prediction

F1

Semantic space 
prediction

Searched representation 
space prediction

Final results

Test unseen visual feature

add

C
a

R(a)

G([a,R(a),z])

Reconstructed
a a

R(a)Reconstructed
R(a)

F2

z

Fig. 6. Overview of zero-shot classification. We use our trained generator
for unseen visual feature synthesis. Then, the synthesized feature is used to
train a softmax classifier. Analogously, a semantic classifier and searched
representation classifier are trained. We also use F1 and F2 to map all the
real unseen visual features into the semantic space and searched representation
space, respectively. We integrate the final results from visual, semantic, and
searched representation space.

E. Zero-shot Classification with Searched Representation

By Eq. 9, we can train a GAN generator G which is able
to synthesize virtual visual features for unseen categories.
Then, we use the synthesized features to train a classifier, e.g.
softmax, to recognize the real unseen instances. In other words,
zero-shot learning is converted into a supervised classification
problem that is performed in the visual space. As shown in
Fig. 6, we train a softmax classifier by synthesized unseen
visual features. We also use F1 and F2 to map all the real
unseen visual features into the semantic space and searched
representation space, respectively. Analogously, a semantic
classifier and searched representation classifier are trained.
Thus, in our model, we take full advantages of the visual
space prediction score fV S , semantic space prediction score
fSS , and searched representation space prediction score fSRS .
Finally, we get the final classification scores as:

f = fV S + ω1fSS + ω2fSRS , (10)

where ω1 and ω2 are two parameters used to balance the three
terms, as shown in Fig. 6.

For GZSL, the main steps are the same as ZSL. The only
difference lies in the final classification process. Specifically,
the testing data of GZSL are from both the seen and unseen
categories. Thus, we need to train a classifier on both real seen
features and synthesized unseen features.

IV. EXPERIMENTS

A. Datasets

We evaluate our approach on four benchmark datasets for
ZSL and GZSL: (1) Caltech-UCSD-Birds 200-2011 (CUB)
[48] consisting of 11,788 images of 200 classes of birds an-
notated with 312 binary attributes; (2) Animals with Attributes
(AWA) [7] consisting of 30,475 images of 50 animals classes
with 85 attributes; (3) Attribute Pascal and Yahoo (APY) [49]
containing of 15,339 images, 32 classes and 64 attributes
from both PASCAL VOC 2008 dataset and Yahoo image
search engine; (4) SUN Attribute (SUN) [50] annotating 102
attributes on 14,340 images from 717 types of scene. For the
four datasets, we use the widely-used ZSL and GZSL split
proposed in [5]. For clarity, the statistics of these datasets are
summarized in Table I.

We adopt the evaluation metrics proposed in [5]. For ZSL,
we measure average per-class top-1 accuracy (T1) of unseen
classes Cu. It is defined as follows:

T1 =
1

‖Cu‖

‖Cu‖∑
i

# of correction predictions in i
# of samples in i

. (11)

For GZSL, we compute the average per-class top-1 accuracy
of seen classes Cs, denoted by S, the average per-class top-
1 accuracy of unseen classes Cu, denoted by U , and their
harmonic mean, i.e. H = 2× (S × U)/(S + U).

B. Comparison to State-of-the-arts

We compare our model with the recent state-of-the-arts
published in the last few years. Embedding methods in-
clude DEVISE [18] (NeurIPS13), DAP [4] (TPAMI14), SSE
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TABLE I
STATISTICS OF DATASETS.

Dataset #attributes #seen classes
(train+val) #unseen classes #images

(total)
#images

(train+val)
#images

(test unseen/seen)
AWA1 [7] 85 27+13 10 30475 19832 4958/5685
CUB [48] 312 100+50 50 11788 7057 2679/1764
APY [49] 64 15+5 12 15339 5932 7924/1483
SUN [50] 102 580+65 72 14340 10320 1440/2580

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON FOUR DATASETS.

Zero-shot Learning Generalizaed Zero-shot Learning
AWA1 CUB APY SUN AWA1 CUB APY SUN

Approach T1 T1 T1 T1 U S H U S H U S H U S H
Embedding approaches

DEVISE [18] 54.2 52.0 39.8 56.5 13.4 68.7 22.4 23.8 53.0 32.8 4.9 76.9 9.2 16.9 27.4 20.9
DAP [4] 44.1 40.0 33.8 39.9 0.0 88.7 0.0 1.7 67.9 3.3 4.8 78.3 9.0 4.2 25.1 7.2
SSE [43] 60.1 43.9 34.0 51.5 7.0 80.5 12.9 8.5 46.9 14.4 0.2 78.9 0.4 2.1 36.4 4.0
SJE [34] 65.6 53.9 32.9 53.7 11.3 74.6 19.6 23.5 59.2 33.6 3.7 55.7 6.9 14.7 30.5 19.8
ESZSL [51] 58.2 53.9 38.3 54.5 6.6 75.6 12.1 12.6 63.8 21.0 2.4 70.1 4.6 11.0 27.9 15.8
ALE [6] 59.9 54.9 39.7 58.1 16.8 76.1 27.5 23.7 62.8 34.4 4.6 73.7 8.7 21.8 33.1 26.3
LATEM [52] 55.1 49.3 35.2 55.3 7.3 71.7 13.3 15.2 57.3 24.0 0.1 73.0 0.2 14.7 28.8 19.5
SYNC [53] 54.0 55.6 23.9 56.3 8.9 87.3 16.2 11.5 70.9 19.8 7.4 66.3 13.3 7.9 43.3 13.4
SAE [32] 53.0 33.3 8.3 40.3 1.8 77.1 3.5 7.8 54.0 13.6 0.4 80.9 0.9 8.8 18.0 11.8
PSR [54] - 56.0 38.4 61.4 - - - 24.6 54.3 33.9 13.5 51.4 21.4 20.8 37.2 26.7
CDL [12] 69.9 54.5 43.0 63.6 28.1 73.5 40.6 23.5 55.2 32.9 19.8 48.6 28.1 21.5 34.7 26.5
CRNet [55] - - - - 58.1 74.7 65.4 45.5 56.8 50.5 32.4 68.4 44.0 34.1 36.5 35.3
DVBE (fixing) [56] - - - - - - - 53.2 60.2 56.5 32.6 58.3 41.8 45.0 37.2 40.7

Generative approaches
f-CLSWGAN [21] 68.2 57.3 40.5 60.8 57.9 61.4 59.6 43.7 57.7 49.7 32.9 61.7 42.9 42.6 36.6 39.4
cycle-CLSWGAN [23] 66.3 58.6 - 59.9 56.9 64.0 60.2 45.7 61.0 52.3 - - - 49.4 33.6 40.0
DASCN [57] - - - - 59.3 68.0 63.4 45.9 59.0 51.6 39.7 59.5 47.6 42.4 38.5 40.3
AFC-GAN [58] 69.1 62.9 45.5 63.3 58.2 66.8 62.2 53.5 59.7 56.4 36.5 62.6 46.1 49.1 36.1 41.6
GDAN [24] - - - - - - - 39.3 66.7 49.5 30.4 75.0 43.4 38.1 89.9 53.4
GAZSL [9] 68.2 55.8 41.1 61.3 19.2 86.5 31.4 23.9 60.6 34.3 14.2 78.6 24.0 21.7 34.5 26.7
SRGAN [22] 72.0 55.4 44.0 62.3 41.5 83.1 55.3 31.3 60.9 41.3 22.3 78.4 34.8 22.1 38.3 27.4
OCD-VAE [28] - 60.3 - 63.5 - - - 44.8 59.9 51.3 - - - 44.8 42.9 43.8
EUC-VAE [27] 65.7 61.7 39.1 63.5 60.4 70.4 65.1 50.8 55.1 52.9 44.1 36.8 40.1 35.0 62.7 44.9
LsrGAN [25] 66.4 60.3 - 62.5 54.6 74.6 63.0 48.1 59.1 53.0 - - - 44.8 37.7 40.9
DCR-GAN (ours) 71.0 61.0 48.0 63.7 62.7 73.3 67.6 55.8 66.8 60.8 37.2 71.7 49.0 47.1 38.5 42.4

TABLE III
ABLATION STUDY IN THE GZSL SETTING. THE RESULTS ARE REPORTED AS AVERAGE PER-CLASS TOP-1 ACCURACY OF UNSEEN CLASSES (U), SEEN
CLASSES (S) AND THE HARMONIC MEAN (H). VS, SS AND SRS REPRESENTS CLASSIFIERS IN VISUAL, SEMANTIC, AND SEARCHED REPRESENTATION

SPACE, RESPECTIVELY.

Variant Loss Classifier
Generalized Zero-Shot Learning

AWA1 CUB APY SUN
U S H U S H U S H U S H

A LWGAN + LF1

(xfake = G(a, z)) VS 55.1 64.7 59.5 30.5 51.0 38.2 21.6 55.2 31.1 34.1 37.3 35.6

B LWGAN + LF1 + LF2

(xfake = G(a, R(a), z)) VS 58.5 62.0 60.2 38.5 50.7 43.8 22.7 54.0 32.0 36.3 35.1 35.7

C
LDCRGAN =
LWGAN−SR + LF1 +
LF2

(C-1) VS 54.1 64.7 58.9 44.0 54.6 48.7 29.8 60.6 39.9 40.5 36.0 38.1
(C-2) SS 56.3 75.7 64.6 54.4 34.4 42.1 31.1 44.9 36.8 48.0 8.6 15.0
(C-3) SRS 49.9 62.5 57.1 33.6 27.3 30.1 32.3 71.1 44.4 24.0 9.8 14.0
(C-4) VS+SRS 56.1 65.9 60.6 47.1 54.8 50.6 37.9 66.3 48.2 42.1 36.0 38.8
(C-5) VS+SS+SRS 62.7 73.3 67.6 55.8 66.8 60.8 37.2 71.7 49.0 47.1 38.5 42.4



IEEE TRANSACTIONS ON MULTIMEDIA 9

[43] (ICCV15), SJE [34] (CVPR15), ESZSL [51] (ICML15),
ALE [6] (TPAMI16), LATEM [52] (CVPR16), SYNC [53]
(CVPR16), SAE [32] (CVPR17), CRNet [55] (ICML19) and
DVBE [56] (CVPR20); generative methods include GAZSL
(CVPR18) [9], PSR (CVPR18) [54], f-CLSWGAN [21]
(CVPR18), CDL [12] (ECCV18), SRGAN [22] (ICME19),
GDAN [24] (CVPR19), DASCN [57] (NeurIPS19), AFC-
GAN [58] (ACM MM19), OCD-VAE [28] (CVPR20), EUC-
VAE [27] (arxiv21) and LsrGAN [25] (ECCV20). The results
of ZSL and GZSL are reported in Table II. We first take an
overall comparison with the state-of-the-arts in Section IV-B1
for ZSL and GZSL. Then, we compare our approach with
others in Section IV-B2 and Section IV-B3 from two aspects,
GAN-based and triplet-loss-based viewpoints, respectively.

1) (Generalized) Zero-shot Learning: For ZSL, from the
results reported in Table II, we can see that we obtain 2.5%,
0.1% improvements on APY and SUN, respectively, against
the previous state-of-the-art.

For GZSL, we follow previous work [5] and report the
harmonic mean that can avoid the effects of extreme values.
For instance, we can see from the results that SAE gets 1.8%
for unseen and 77.1% for seen on CUB. Although the accuracy
of seen classes is the best, the harmonic mean is only 3.5%
due to the extremely low result on unseen categories. In a
nutshell, the harmonic mean is high only if the accuracies on
both seen and unseen categories are high. From the results, we
can observe that our method achieves overall the best harmonic
mean on all of the evaluations besides SUN. It indicates
that our DCR-GAN is a stable method which can work well
for both seen and unseen instances. In details, DCR-GAN
outperforms the state-of-the-art LsrGAN with 4.6%, 7.8% and
1.5% improvements on AWA1, CUB and SUN, respectively.
Notably, our method achieves the best on AWA1, CUB of
the unseen categories, which significantly outperforms AFC-
GAN by 4.5% and 2.3%. It is worth mentioning that we do
not use any explicit constraint to avoid “train bias” problem,
but our proposed model can still surpass AFC-GAN that uses
the boundary loss to compel synthesized unseen features to be
far away from seen features.

2) Comparison with GAN-based Approaches: The GAN-
based methods, f-CLSWGAN, cycle-CLSWGAN, AFC-GAN,
GAZSL, SRGAN and LsrGAN, share the same basic loss
LWGAN . Benefiting from the prior semantic features to gener-
ate missing data, these GAN-based methods can obtain better
performance than those earlier embedding approaches though
one recent embedding method, i.e. DVBE also demonstrates
excellent performance. In addition, GDAN is a new method
that unifies generative, embedding, and metric learning as a
basic architecture . Benefiting from the change in the basic
architecture, GDAN demonstrates an excellent score S for seen
classification in SUN, which indicates a better basic loss may
be necessary.

Our approach DCR-GAN adopts the proposed loss
LWGAN−SR. Comparing our DCR-GAN with other GAN-
based methods, we observe that our method leads to compet-
itive performance with others both in ZSL and GZSL. More
concretely, just SRGAN and our DCR-GAN can recognize
more than 70% unseen samples of AWA1 in ZSL. Although

DCR-GAN cannot beat GDAN on SUN in the GZSL setting, it
attains 63.7% and shows much better performance than GDAN
and all the other methods on SUN for ZSL. These outstanding
performance of our DCR-GAN demonstrates the effectiveness
of our proposed basic loss LWGAN−SR.

It is noted that GDAN appears to perform much better
than all the other methods including DCR-GAN on SUN
in terms of H . Exploiting an adversarial loss LGDAN to
train the model, it is observed that GDAN may overfit seen
samples almost on all the datasets. This results in its excellent
performance S for seen classes (particularly S = 89.9% in
SUN), while the accuracy of U appears much worse: lower
than almost all the other GAN-based methods. Such drawback
may limit its application in ZSL/GZSL where recognition
of unseen samples may be more crucial. In contrast, our
proposed adversarial loss LWGAN−SR appears to achieve an
outstanding balance for both seen and unseen classes. As a
matter of fact, our method outperforms GDAN in CUB and
APY in both U and H; it is also better than GDAN in terms
of U in SUN.

3) Comparison with Triplet-loss-based Approaches: Be-
sides our DCR-GAN, the methods OCD-VAE and EUC-
VAE also introduce TL for searching discriminative latent
features. Our DCR-GAN exploits the proposed MMTL, while
the other methods use the traditional single-modal TL. As
observed, for ZSL, DCR-GAN outperforms the others on
APY and SUN; for GZSL, the proposed method demonstrates
the best performance on AWA1, CUB and APY. It is noted
that, although DCR-GAN performs not as well as them on
SUN for GZSL, our model generates better performance for
unseen recognition. Namely, our DCR-GAN recognizes 47.1%
unseen samples in SUN, while OCD-VAE and EUC-VAE only
recognize 44.8% and 35.0%, respectively.

C. Ablation Study

To further verify the effectiveness of our approach, we
take an ablation study on the searched class representations.
Table III reports three variants in the setting of GZSL, re-
spectively. We also provide convergence curve of three visual
classifiers in Fig. 7. The variant A indicates the traditional
WGAN-based ZSL method trained by:

LA = LWGAN + λ1LF1, (12)

where xfake = G(a, z). To fairly verify the effectiveness
of the searched representations, we also train the variant
B. We only change xfake as G(a, R(a), z), and add in its
reconstruction loss. In a word, the variant B is trained by:

LB = LWGAN + λ1LF1 + λ2LF2, (13)

where xfake = G(a, R(a), z). Another variant C presents
the complete DCR-GAN model trained by LDCRGAN . VS,
SS and SRS represents classifiers in the visual, semantic and
searched representation space, respectively. Comparing the
results, we highlight our discussion as follows:

(1) Effectiveness of our searched representation: Com-
paring Table III A and B, we can find that the harmonic
mean accuracies H are significantly improved in both
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(a) Errors curve in CUB (b) Errors curve in APY (c) Errors curve in SUN

Fig. 7. Comparison between the visual softmax classifiers from DCRGAN and two Variants.

CUB and APY; unseen accuracies U are greatly im-
proved on AWA1 and SUN. These results show that our
searched representations can help G to fit more realistic
distributions.
Then, comparing the variants C-1 and C-4, we can
find that accuracies H in all the datasets are improved
by integrating the classification results in the searched
representation space. Specifically, H increases most no-
tably in APY, from 39.9% to 48.2%. Even in the most
indistinctive dataset SUN, our classifier SRS can still
bring 1.6% improvement for unseen recognition.

(2) Effectiveness of our LWGAN−SR: The variant B and
C-1 are different only in terms of the generation loss.
B is trained by LWGAN , while C-1 is trained by our
proposed LWGAN−SR. Inspecting Table III B and C-
1, we can find that though H is slightly decreased
in AWA1, H is increased notably in the remained
three datasets. For example, in the mid-scale dataset
SUN, H is lifted up by 2.4% (from 35.7% to 38.1%).
These results validate the effectiveness of our proposed
LWGAN−SR.

D. Visualization of Feature Space

In order to provide a qualitative evaluation on our proposed
DCR-GAN, we first visualize two kinds of unseen class
representations as shown in Fig. 8, where (a) is one kind
of augmented semantic learned by a triplet loss only from
the visual space, i.e. the semantic augmentation method of
LDF [10]. Clearly, this augmented semantic is muddled. Vari-
ous categories are mixed in the representation space. Fig. 8 (b)
shows the visualization of our searched class representations,
which are learned both from visual and semantic spaces.
As observed, by utilizing the original semantic information,
our model decouples searched class representations where
boundaries between each category are clear. Note that our
model does not use any unseen features in training. This
confirms our idea —the original semantic information is also
necessary in the augmented semantic searching process.

In addition, we visualize synthetic image features along with
real image features. These results are illustrated in Fig. 9.
Since the numbers of categories of CUB and SUN are too
large to visualize, we only show the results of seen classes
of APY and unseen classes of APY, AWA1 and CUB. For

AWA1

APY

CUB

SUN

(a) Unseen class representations 
only learned from visual space

(b) Unseen class representations 
learned from the joint of visual and 

semantic spaces

Fig. 8. Visualization of unseen class representations. (a) is searched by the
traditional TL (Eq. 1); (b) is searched by the MMTL (Eq. 2). Different colors
indicate different classes.

each class we synthesize 100 features, and then we use t-
SNE [59] to reduce the dimension to two for visualization.
The synthesized features of i-th class are marked by fi, and
real features are marked by ri. It is evident that our searched
class representations successfully help DCRGAN to synthesize
more realistic visual features than those of the baseline. Some
synthesized features by our DCRGAN are almost the same
as real features, e.g. 14-th seen class in APY, 1-st unseen
class in APY, 5-th unseen class in AWA1 and 28-th of
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Ablation A Ablation B DCRGAN

(a) APY

seen classes

(b) APY

unseen classes

(c) AWA1

unseen classes

(d) CUB

unseen classes

Fig. 9. Visualization of synthesized visual features. Points denote real features and crosses denote synthesized features. Different colors and numbers indicate
different classes.

unseen classes in CUB. This visualization again indicates the
identified entangled unseen visual feature problem problem.
More importantly, our searched class representation can help
generative models to fit more realistic distribution.

V. CONCLUSION

In this paper, we argue that the entangled unseen visual
feature problem exists in the current Zero-shot Learning (ZSL)
and Generalized ZSL. We propose our generative framework
DCR-GAN to address the problem. DCR-GAN contains two
novel loss: a multi-modal triplet loss (MMTL), and an adver-
sarial loss LWGAN−SR. Compared with the traditional TL,
MMTL is capable of searching more decoupled unseen class

representations. Our designed LWGAN−SR can reduce high
risks of hard sample generation. Benefiting from our MMTL
and LWGAN−SR, our model learns more realistic distribution
and generates more disentangled features. With the searched
class representations, our DCR-GAN synthesizes visual fea-
tures from semantic features and searched class representation.
Given synthesized visual features, we train a softmax classifier
for the visual space. Additionally, we ensemble the semantic
and searched class representation softmax with the visual
one. Experimental results show that the proposed approach
achieves state-of-the-art performance on ZSL task and boosts
the performance by a great margin for Generalized ZSL.
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