
1

Greedy methods, randomization approaches and
multi-arm bandit algorithms for efficient

sparsity-constrained optimization
A. Rakotomamonjy Member, IEEE, S. Koço, L. Ralaivola

Abstract—Several sparsity-constrained algorithms such as Or-
thogonal Matching Pursuit or the Frank-Wolfe algorithm with
sparsity constraints work by iteratively selecting a novel atom
to add to the current non-zero set of variables. This selection
step is usually performed by computing the gradient and then
by looking for the gradient component with maximal absolute
entry. This step can be computationally expensive especially for
large-scale and high-dimensional data. In this work, we aim at
accelerating these sparsity-constrained optimization algorithms
by exploiting the key observation that, for these algorithms to
work, one only needs the coordinate of the gradient’s top entry.
Hence, we introduce algorithms based on greedy methods and
randomization approaches that aim at cheaply estimating the
gradient and its top entry. Another of our contribution is to cast
the problem of finding the best gradient entry as a best arm
identification in a multi-armed bandit problem. Owing to this
novel insight, we are able to provide a bandit-based algorithm
that directly estimates the top entry in a very efficient way.
Theoretical observations stating that the resulting inexact Frank-
Wolfe or Orthogonal Matching Pursuit algorithms act, with high
probability, similarly to their exact versions are also given. We
have carried out several experiments showing that the greedy
deterministic and the bandit approaches we propose can achieve
an acceleration of an order of magnitude while being as efficient
as the exact gradient when used in algorithms such as OMP,
Frank-Wolfe or CoSaMP.

Index Terms—Sparsity, Orthogonal Matching Pursuit, Frank-
Wolfe algorithm, Greedy methods, Best arm identification.

I. INTRODUCTION

Over the last decade, there has been a large interest in
inference problems featuring data of very high-dimension and
a small number of observations. Such problems occur in a wide
variety of application domains ranging from computational
biology and text mining to information retrieval and finance.
In order to learn from these datasets, statistical models are
frequently designed so as to feature some sparsity properties.
Hence, fueled by the large interest induced by these application
domains, an important amount of research work in the machine
learning, statistics and signal processing communities, has
been devoted to sparse learning and as such, many algorithms

AR is with University of Rouen, LITIS Lab. Most of this work has
been carried while he was visiting LIF at Aix-Marseille University. Email
alain.rakoto@insa-rouen.fr

SK is with University of Rouen, LITIS LAB. Email:
sokol.koco@gmail.com

LR is with Aix-Marseille University, LIF. Email: liva.ralaivola@lif.univ-
mrs.fr

This work is supported by Agence Nationale de la Recherche, project
GRETA 12-BS02-004-01.

Manuscript received August2015; revised XXX.

have been developed for yielding models that use only few
dimensions of the data. To obtain these models, one typically
needs to solve a problem of the form

min
w

L(w) subject to ‖w‖0 ≤ K (1)

where L(w) is a smooth convex objective function that mea-
sures a goodness of fit of the model, ‖w‖0 is the `0 pseudo-
norm that counts the number of non-zero components of the
vector w and K is a parameter that controls the sparsity level.

One usual approach that has been widely considered is the
use of a convex and continuous surrogate of the `0 pseudo-
norm, namely an `1-norm. The resulting problem is the well-
known Lasso problem [1] and a large variety of algorithms
for its resolution exist, ranging from homotopy methods [2]
to the Frank-Wolfe (FW) algorithm [3]. In the same flavour,
non-convex continuous penalties are also common solutions
for relaxing the `0 pseudo-norm [4], [5]. Another possible
approach is to consider greedy methods that provide local
optimal solution to the problem (1). In this last context, a
flurry of algorithms have been proposed, the most popular
ones being the Matching Pursuit (MP) and the Orthogonal
Matching Pursuit (OMP) algorithms [6], [7], [8]. One common
point of the aforementioned algorithms for solving problem
(1) is that they require, at each iteration, the computation
of the objective function’s gradient. For large-scale and high-
dimensional setting, computing the gradient at each iteration
may be very time-consuming.

Stochastic gradient descent (SGD) algorithms are now clas-
sical methods for avoiding the computation of the full gradient
in large-scale learning problems [9], [10]. Most of these works
have been devoted to smooth composite optimization although
some efforts addressing `1-regularized problems exist [11].
Recently, these SGD algorithms have been further accelerated
through the introduction of variance reduction methods for
gradient estimation [12]. In the context of problem (1) where
a non-smooth non-convex constraint appears, very few works
have envisaged the use of stochastic optimization. Nguyen
et al. [13] have proposed stochastic versions of a gradient
pursuit algorithm. Following a similar direction, by exploiting
inexact gradient information, we address the problem of accel-
erating sparsity-inducing algorithms such as Matching Pursuit,
Orthogonal Matching Pursuit and the Frank-Wolfe algorithm
with an `1 ball constraint. However, unlike stochastic gradient
approaches, the acceleration we propose leverages on the fact
that at each iteration, these algorithms seek for the gradient’s
component that has the largest (absolute) value.

ar
X

iv
:1

50
8.

06
47

7v
2 

 [
cs

.L
G

] 
 2

2 
A

ug
 2

01
6



2

Hence, our main contribution in this paper is to propose
novel algorithms that allow to efficiently find this top entry
of the gradient. By doing so, our objective is to design
novel efficient versions of MP, OMP and FW algorithms
while keeping intact all the properties of these algorithms
for sparse approximation. Indeed, this becomes possible if at
each iteration of MP, OMP or FW, our inexact gradient-based
estimation of the component with largest value is the same as
the one obtained with the exact gradient.

We propose two approaches, the first one based on a greedy
deterministic algorithm and the second one based on a random-
ized method, whose aim is to build an inexact estimation of
the gradient so that its top entry in the same as the exact one.
Next, by casting the problem as a best arm identification multi-
armed bandit problem [14], we are able to derive an algorithm
that directly estimates the best component of the gradient.
Interestingly, these algorithms are supported by theoretical
evidences that with high probability, they are able to retrieve
the correct component of the gradient. As a consequence,
we show that MP, OMP and FW algorithms employing these
approaches for spotting the correct component of the gradient
behave as their exact counter part with high probability.

This paper is an extended version of the conference paper
[15]. It provides full details on the context of the problem and
proposes a novel key contribution based on multi-arm bandits.
In addition, it gives enlightning insights compared to related
works. Extended experimental analysis also strengthen the
results compared to the conference version. The remainder of
the paper is organized as follows. Section II presents sparsity-
constrained algorithms, formalizes our problem and introduces
the key observation on which we build our acceleration strat-
egy. Section III provides the different algorithms we propose
for efficiently estimating the extreme gradient component of
interest. A discussion with related works is given in Section
IV. Experimental results are depicted in Section V while
Section VI concludes the work and presents different outlooks.

II. SPARSE LEARNING ALGORITHM WITH EXTREME
GRADIENT COMPONENT

In this section, we introduce the sparse learning problem we
are interested in, as well as some algorithms that are frequently
used for sparse learning. We then point out the prominent
common trait of those algorithms, namely the extreme gradient
component property, and discuss how its estimation can be
employed for accelerating some classes of sparse learning
algorithms.

A. Framework

Consider the problem where we want to estimate a relation
between a set of n samples gathered in a vector y ∈ Rn
and the matrix X ∈ Rn×d. In a sparse signal approximation
problem, X would be a matrix whose columns are the elements
of a dictionary and y the target signal, while in a machine
learning problem, the i-th row of matrix X, formalized as x>i ,
xi ∈ Rd, depicts the features of the i-th example and yi is the
label or target associated to that example. In the sequel, we
denote as xi,j the entry of X at the i-th row and j-th column.

Algorithm 1 Gradient Pursuit Algorithm
1: set k = 0, initialize w0 = 0
2: for k=0,1, · · · do
3: i? = arg maxi |∇L(wk)|i
4: Γk = Γk ∪ {i?}
5: wk+1 = arg minL(w) over Γk with wΓC

k
= 0

6: end for

Our objective is to learn the relation between y and X
through a linear model of the data denoted Xw by looking
for the vector w that solves problem (1) when the objective
function is of the form

L(w) =

n∑
i

`(yi, g(w>xi)),

where ` is an individual loss function that measures the
discrepancy between a true value y and its estimation, and
g(·) is a given differentiable function that depicts the (po-
tential) non-linear dependence of the loss to w. Typically,
` might be the least-square error function, which leads to
L(w) = 1

2‖y − Xw‖22 or the logistic loss and we have
L(w) =

∑n
i=1 log(1 + exp{−yix>i w}). In the sequel, we

present two algorithms that solve problem (1) by a greedy
method and by a continuous and a convex relaxation of the `0
pseudo-norm, respectively.

B. Algorithms

1) Gradient Pursuit: This algorithm is a generalization of
the greedy algorithm known as Orthogonal Matching Pursuit
(OMP) to generic loss functions [16]. It can be directly applied
to our problem given in Equation (1). Similarly to OMP,
the gradient pursuit algorithm is a greedy iterative procedure,
which, at each iteration, selects the largest absolute coordinate
of the loss gradient. This coordinate is added to the set of
already selected elements and the new iterate is obtained as
the solution of the original optimization problem restricted to
these selected elements while keeping the other ones at 0. The
detailed procedure is given in Algorithm 1.

While conceptually simple, this algorithm comes with theo-
retical guarantees on its ability to recover the exact underlying
sparsity pattern of the model, for different types of loss
functions [7], [17], [18].

Several variations of this algorithm have been proposed
ranging from methods exploring new pursuits directions in-
stead of the gradient [16], to methods making only slight
changes to the original one that have strongly impacted the
ability of the algorithm to recover signals. For instance, the
CoSaMP [19] and GraSP [20] algorithms select the top 2K
entries in the absolute gradient, K being the desired sparsity
pattern, optimize over these entries and the already selected
K ones, and prune the resulting estimate to be K-sparse.
In addition to being efficient, these algorithms output sparse
vectors whose distances from the true sparse optimum are
bounded.



3

Algorithm 2 Frank-Wolfe Algorithm
1: set k = 0, initialize w0 = 0
2: for k=0,1, · · · do
3: sk = arg mins∈C s>∇L(wk)
4: dk = sk −wk

5: set, linesearch or optimize γk ∈ [0; 1]
6: wk+1 = wk + γkdk
7: end for

2) Frank-Wolfe algorithm: The Frank-Wolfe (FW) algo-
rithm aims at solving the following problem

min
w∈C

L(w) (2)

with w ∈ Rd, L a convex and differentiable function with
Lipschitz gradient and C a compact subset of Rd. The FW
algorithm, given in Algorithm 2, is a straightforward procedure
that solves problem 2 by first iteratively looking for a search
direction and then updating the current iterate. The search di-
rection sk is obtained from the following convex optimization
problem (line 3 Alg 2)

sk = arg min
s∈C

s>∇L(wk), (3)

which may be efficiently solved, depending on the constraint
set C. For achieving sparsity, we typically choose C as a
`1-norm ball, e.g. C = {w : ‖w‖1 ≤ 1}, which turns (3)
into a linear program. Despite its simplistic nature, the FW
algorithm has been shown to be linearly convergent [21],
[3]. Interestingly, it can also be shown that convergence is
preserved as long as the following condition holds

s>k∇L(wk) ≤ min
s∈C

s>∇L(wk) + ε, (4)

where ε depends on the smoothness of L and the step-size
γk. In general cases where the minimization problem (3) is
expensive to solve, this condition suggests that an approximate
solution sk may be sufficient, provided that the true gradient
is available. Similarly, if an inexact gradient information
∇̂L(wk) is available, convergence is still guaranteed under
the condition that s>k ∇̂L(wk) ≤ mins∈C s>∇L(wk) + ε,
and some conditions relating ∇̂L(wk) and ∇L(wk). For
instance, if C is a unit-norm ball associated with some norm
‖ · ‖ and sk a minimizer of mins∈C s>∇̂L(wk), i.e. sk =
arg mins∈C s>∇̂L(wk), then in order to ensure convergence,
it is sufficient to have sk so that [3]

‖∇̂L(wk)−∇L(wk)‖? ≤ ε, (5)

where ‖ · ‖? is the conjugate norm associated with ‖ · ‖.
Interestingly, the above equation provides a guarantee on the

convergence on an inexact gradient Frank-Wolfe algorithm, but
unfortunately, the precision needed on the inexact gradient is
given with respect to the exact one. However, while condition
(5) is impractical, it conveys the important idea that inexact
gradient computation may be sufficient for solving sparsity-
constrained optimization problems.

C. Leveraging from the extreme gradient component estima-
tion

As stated above, the gradient pursuit algorithm needs
to solve at each iteration the following problem j? =
arg maxj |∇L(wk)|j , i.e., the goal is to find at each iteration
the gradient’s component with the largest absolute value.

In the Frank-Wolfe algorithm, similar situations where find-
ing sk corresponds to looking for an extreme component of the
(absolute) gradient, occur. For instance, when the constraint set
is the `1-norm ball C1 = {w ∈ Rd : ‖w‖1 ≤ 1} or the posi-
tive simplex constraint C2 = {w ∈ Rd : ‖w‖1 = 1, wj ≥ 0}
and we denote

s? = arg min
s∈C1

s>∇L(wk) and j? = arg max
j
|∇L(wk)|j | ,

or

s? = arg min
s∈C2

s>∇L(wk) and j? = arg min
j
∇L(wk)|j ,

then s? = ej? , with ej? the j?-th canonical vector of Rd.
Hence, as in Matching Pursuit, OMP or the gradient pursuit
algorithm, for specific choices of C, we are not interested in
the full gradient, nor in its extreme values, but only on the
coordinate of the gradient component with the smallest, the
largest (absolute) value.

Our objective in this paper is to leverage on these observa-
tions for accelerating sparsity-inducing algorithms which look
for one extreme component of the gradient. In particular, we
are interested in situations where the gradient is expensive
to compute and we aim at providing computation-efficient
algorithms that produce either approximated gradients whose
extreme component of interest is the same as the exact
gradient’s one, or identify the extreme component without
computing the whole (exact) gradient.

III. LOOKING FOR THE EXTREME GRADIENT COMPONENT

This section formalizes the problem of identifying the
extreme gradient component and provides different algorithms
for its resolution. We first introduce a greedy approach, then
a randomized one and finally exhibit how this problem can
be cast as best arm identification in a multi-armed bandit
framework.

A. The problem

As mentioned in Section II, we are interested in learning
problems where the objective function is of the form∑

i

`(yi, g(w>xi)).

The gradient of our objective function is thus given by

∇L(w) =
∑
i

`′(yi, g(w>xi)))g
′(w>xi)xi = X>r (6)

where r ∈ Rn is the vector whose i-th component is
`′(yi, g(w>xi)))g

′(w>xi). This particular form entails that
the gradient may be computed iteratively. Indeed, the sum
∇L(w) =

∑n
i=1 xiri is invariant to the order according to

which index i decribes the set [1, ..., n]. This makes possible



4

Algorithm 3 Greedy deterministic algorithm to compute ∇̂L
Input: : r, {‖xi‖}, X

1: [values, indices]=sort {|ri|‖xi‖}i in decreasing order
2: ∇̂Lt = 0, t = 0
3: repeat
4: i =indices(t+ 1)
5: ∇̂Lt+1 = ∇̂Lt + xiri
6: t = t+ 1
7: until stopping criterion over ∇̂Lt+1 is met

Output: ∇̂Lt+1

the computation, at each iteration t, of an approximate gradient
∇̂Lt. Denote It the first t indices used for computing the
sum and it+1 the (t + 1)-th index, then, at iteration t,
∇̂Lt =

∑
i∈It xiri and

∇̂Lt+1 = ∇̂Lt + xit+1rit+1 . (7)

According to this framework, our objective is then to find an
efficient way for computing an approximate gradient ∇̂Lt for
which the desired extreme entry is equal to the one of the exact
gradient. Note that the computational cost of the exact gradient
X>r is about O(nd) and a naive computation of the residual
r has the same cost, which leads to a global complexity of
O(2nd). However, because w is typically a sparse vector in
Gradient Pursuit or in the Frank-Wolfe algorithm, we compute
the residual vector r as r = y − XΩwΩ where Ω are the
indices of the non-zero elements of the k-sparse vector w.
Hence, computing r has only a cost of O(nk) and it does not
require a full pass on all the elements of X. The main objective
of our contributions is to estimate the extreme entry of X>r
with algorithms having a complexity lower than O(nd). We
propose and discuss, in the sequel, three different approaches.

B. Greedy deterministic approach

The first approach we propose is a greedy approach which,
at iteration t, looks for the best index i so that rixi optimizes
a criterion depending on ∇̂Lt and ∇L.

Let It be the set of indices of the examples chosen in the
first t iterations for computing ∇̂Lt. At iteration t+1, our goal
is to find the example i? that is the solution of the following
problem:

i? = argmini∈{1,...,n}\It ‖∇L− ∇̂Lt − xiri‖, (8)

with ∇̂Lt+1 = ∇̂Lt + xiri. The solution of this problem
is thus the vector product rixi that has minimal norm dif-
ference compared to the current gradient estimation residual
∇L − ∇̂Lt. While simple, this solution cannot be computed
because ∇L is not accessible. Hence, we have to resort to an
approximation based on the following equivalent problem:

i? = argmaxi∈{1,...,n}\It −‖∇L− ∇̂Lt+1‖ (9)

= argmaxi∈{1,...,n}\It ‖∇L− ∇̂Lt‖ − ‖∇L− ∇̂Lt+1‖

where we use the fact that ‖∇L−∇̂Lt‖ does not depend on i.
By upper bounding the above objective value, one can derive

Algorithm 4 Computing ∇̂L as an empirical average
Input: : r, ‖xi‖,X

1: build p ∈ ∆∗n e.g pi ∝ 1
n or pi ∝ |ri|‖xi‖

2: repeat
3: random draw i ∈ 1, · · · , n according to p
4: ∇̂Lt+1 = ∇̂Lt + 1

pi
xiri

5: t = t+ 1
6: until stopping criterion over ∇̂Lt+1 is met

Output: ∇̂Lt+1

the best choice of rixi that achieves the largest variation of
the gradient estimation norm residual. Indeed, we have

‖∇L− ∇̂Lt‖ − ‖∇L− ∇̂Lt+1‖ ≤ ‖ − ∇̂Lt + ∇̂Lt+1‖

The right-hand side of this equation can be further simplified

‖∇̂Lt+1 − ∇̂Lt‖ = ‖∇̂Lt − xiri − ∇̂Lt‖
= ‖xiri‖ = ‖xi‖|ri|. (10)

Equation (10) suggests that the index i that should be
chosen at iteration t + 1 is the one with the largest absolute
residual weighted by its example norm. Simply put, in the
first iteration, the algorithm chooses the index that leads to the
largest value ‖xi‖|ri| , in the second one, it selects the second
best, and so forth. That is, the examples are considered in a
decreasing order with respect to the weighted value of their
residuals. Pseudo-code of the approach is given in Algorithm
3.

Note that for this method, at iteration t = n we recover the
exact gradient,

∇̂Ln = ∇L.

Hence, when t = n, we are assured to retrieve the correct
extreme entry of the gradient at the expense of extra compu-
tations needed for running this greedy approach compared to
a plain computation of the full gradient. On the other hand, if
we stop this gradient estimation procedure before t = n, we
save computational efforts at the risk of missing the correct
extreme entry.

C. Matrix-Vector Product as Expectations

The problem of finding the extreme component of the
gradient can also be addressed from the point of view of
randomization, as described in Algorithm 4.

The approach consists in considering the computation of
X>r as an the expectation of a given random variable. Recall
that X is composed of the vectors {x>i }ni=1 and xi ∈ Rd.
Hence, the matrix-vector product X>r can be rewritten:

X>r =

n∑
i=1

rixi. (11)

From now on, given some integer n, ∆∗n denotes the interior
of the probabilistic simplex of size n:

∆∗n
.
=

{
p = [p1 · · · pn] :

n∑
i=1

pi = 1, pi > 0, i = 1, . . . , n

}
.

(12)



5

For any element p = (pi)i∈[n] ∈ ∆∗n we introduce a random
vector C that takes value in the set

C .
= {ci

.
= rixi/pi : i = 1, . . . , n}

so that P(C = ci) = pi. This way,

EC =

n∑
i=1

pici =

n∑
i=1

pirixi/pi =

n∑
i=1

rixi = X>r (13)

Hence, if C1, · · · , Cs are independent copies of C and Ĉs is
defined as: Ĉs .

= 1
s

∑s
i=1 Ci then EĈs = X>r. Ĉs is thus an

estimator of the matrix-vector product that we are interested
in i.e the gradient of our objective function.

According to the above, a relevant approach for estimating
the extreme component of the gradient is to randomly sample
s copies of C, to average them and then to look for the extreme
component of this estimated gradient.

Interestingly, this approach based on randomized matrix
multiplication can be related to our deterministic approach.
Indeed, a result given by [22] (Lemma 4) says that the element
p ∈ ∆∗n that minimizes E[‖X>r− Ĉs‖2F ] is such that

pi ∝ |ri|‖xi‖. (14)

It thus suggests that vectors ci of large values of |ri|‖xi‖
have higher probability to be sampled. This resonates with
the greedy deterministic approach in which vectors xiri are
accumulated in the order of the decreasing values of |ri|‖xi‖.

D. Best arm identification and multi-armed bandits

The two preceding approaches seek at approximating the
gradient, at a given level of accuracy that has yet to be defined,
and then at evaluating the coordinate of its extreme component.

Yet, the problem of finding the extreme component co-
ordinate of a gradient vector obtained from matrix-vector
multiplication can also be posed as the problem of finding
the best arm in a multi-armed bandit problem. In a nutshell,
given a slot machine with multiple arms, the goal in the bandit
problem is to find the arm that maximizes the expected reward
or minimizes the loss. For this, an iterative procedure is used,
where at each step, a forecaster selects an arm, based on his
previous actions, and receives a reward or observes a loss.
Depending on how the reward is obtained, the problem can
be stochastic (the reward/loss is drawn from a probability
distribution) or non-stochastic. Bubeck et al. [14] propose an
extensive review of these methods for various settings.

We cast our problem of finding the extreme gradient com-
ponent as a best arm identification problem as follows. In
the remainder of this section, we suppose that we look for
a minimum gradient component and thus we look for the arm
with minimal loss instead of maximal reward. We consider
that the arms are the components of the gradient (we have d
arms) and at each pull of a given arm, we observe a loss that is
built from a term of the gradient matrix-vector multiplication
X>r, as made clear in the sequel.

In a stochastic setting, we consider a similar framework
as the one we described in Section III-C. We model the loss

obtained from the k-th pull of arm j ∈ [1, · · · , d] as a random
variable V , independent of k, that takes value in the set

{vj,i
.
= rixi,j/pi : i = 1, . . . , n}

so that P(V = vj,i) = pi. From this definition, the expected
loss of arm i is

EV =

n∑
i=1

pivj,i =

n∑
i=1

rixi,j = (X>r)j ,

which is the j-th component of our gradient vector. In this
setting, given a certain number of pulls, one pull providing a
realization of the random variable V of the chosen arm, the
objective of a best arm identification algorithm is to provide
recommendation about the arm with minimal expected loss,
which in our case is the coordinate of smallest value in the
d-dimensional vector X>r.

Several algorithms for identifying this best arm have been
provided in the literature. Most of them are built around an
empirical average loss statistic. This latter can be computed,
after s pulls of an arm j, as V̂j,s = 1

s

∑s
t=1 vj,i(k,j), where

i(k, j) is the index i drawn at the k-th pull for arm j. Some
of the most interesting algorithms are the successive reject
[23] and successive halving [24] algorithms which, given a
fixed budget of pulls, iteratively discard after some predefined
number of pulls (say s) the worst arm or the worst-half
arms, respectively, according to the values {V̂j,s}dj=1. These
approaches are relatively simple and the successive halving
approach is depicted in detail in Algorithm 5. They directly
provide some guarantees on the probability to correctly es-
timate the extreme component of the gradient. For instance,
for a fixed budget of pulls T , under some minor and easily
satisfied conditions on {vj,i}, the successive halving algorithm
correctly identifies the minimum gradient component with
probability at least 1 − 3 log2 d · exp(− T

8H2 log2 d
) where H2

is a problem-dependent constant (the larger H2 is, the harder
the problem is).

However, these two algorithms have the drawbacks to work
on individual entries xi,j of the matrix X. Hence, overload
due to single memory accesses compared to those needed for
accessing chunks of memory may hinder the computational
gain obtained by identifying the component with minimal
gradient value without computing the full gradient.

For the successive halving algorithm, one way of overcom-
ing this issue is to consider non i.i.d sampling of the arm’s
loss. As such, we consider that at each iteration, the losses
generated by pulling the remaining arms come from the same
component j of the residual. This approach has the advantage
of working on the full vector xiri, allowing thus efficient
memory caching, instead of on individual elements of X.

Let As′ and A denote the sets of components i that have
been drawn after s′ and the subsequent s† pulls such that
s = s′ + s† respectively, then the loss for arm j after s pulls
can be defined as

V̂j,s = V̂j,s′ +
∑
i∈A

rixi,j
pi

, (15)

where V̂j,0 = 0 and the set A is the same for all arms.
In practice, as implemented in the numerical simulations we



6

Algorithm 5 Successive Halving to find the minimum gradient
component

1: inputs: X, r, set T the budget of pulls
2: Initialize S0 = [d ]
3: V̂j,0 = 0,∀j ∈ S0

4: for `= 0,1, · · · , dlog2(d)e -1 do
5: Pull each arm in S` for r` = b T

|S`|dlog2(n)ec additional
times and compute resulting loss (non-iid) V̂·,R`

in
Equation (15) or (non-stochastic) v·,R`

in Equation (16)
with R` =

∑`
u=0 ru

6: Sort arms in S` by increasing value of losses
7: Define S`+1 as the b|S`|/2c indices of arms with

smallest values
8: end for
9: output: index of the best arm

provide, each component i of A is randomly chosen according
to a uniform distribution over 1, · · · , n. The non-iidness of
the stochastic process comes from that the arm losses are
dependent through the set A. However, this does not hinder
the fact that empirical loss V̂j,s is still a relevant estimation of
the expected loss of arm j.

Non-stochastic best arm identification has been barely stud-
ied and only a very recent work has addressed this prob-
lem [25]. In this latter work, the main hypothesis about
the non-stochasticity of the loss is that they are assumed
to be generated before the game starts. This is exactly our
situation since before each estimation of the minimum gradient
component, all losses are given by xi,jri and thus can be
computed beforehand. In this non-stochastic setting [25], the
framework is that the k-th pull of an arm j provides a loss
vj,k and the objective of the bandit algorithm is to identify
arg minj limk→∞ vj,k, assuming that such limits exist for
all j. Again we can fit our problem of finding the extreme
gradient component (here the minimum) into this framework
by defining the loss for a given arm at pull k as

vj,k =

 0 if k = 0
vj,k−1 + rτkxτk,j if 1 ≤ k ≤ n
vj,k−1 if k > n

(16)

where τ is a predefined or random permutation of the rows of
the vector r and the matrix X, and τk its k-th entry. In practice,
we choose τ to be the same for all the arms for computational
reasons as explained above, but in theory this is not necessary
[25]. According to this loss definition, we have

lim
k→∞

vj,k =

n∑
k=1

rτkxτk,j =

n∑
k=1

rkxk,j = (X>r)j .

Hence, an algorithm that recommends the best arm after a
given number of pulls, will return the index of the minimum
component in our gradient. Interestingly, the algorithm pro-
posed by Jamieson et al. [25] for solving the non-stochastic
best arm identification problem is also the one used in the
stochastic setting namely the successive halving algorithm
(Alg. 5). This algorithm can be shown to work as is despite
the dependence between arm losses. Indeed, each round-robin

pull of the surviving arms can have dependent values, and as
long as the algorithm does not adapt to the observed losses
during the middle of a round-robin pull [25].

As already mentioned, for a fixed budget T of pulls, this
successive halving bandit algorithm comes with theoretical
guarantee in its ability to identify the best arm. In the stochas-
tic case, the probability of success depends on the number of
arms, the number of pulls T and on a parameter denoting the
hardness of the problem (see Theorem 4.1 in [24]). In the non-
stochastic case, the budget of pulls needed for guaranteeing
the correct recovery of the best arm essentially depends on a
function γj(k) such that |vj,k− limk→∞ vj,k| ≤ γj(k) and on
a parameter denoting the gap between any of (X>r)j and the
smallest component of X>r which is not accessible unless we
compute the exact gradient.

One may note the strong resemblance between the matrix-
vector product approximation as given in (13) and the non-iid
bandit strategy, as in this latter setting, we consider the full
vector xiri to compute V̂·,s for all remaining arms. This non-
iid strategy can also be related to the non-stochastic setting if
we choose τ as a random permutation of 1, . . . , n. In addition,
in the non-stochastic bandit setting, we can recover the greedy
deterministic approach if we assume that the permutation τ
defines a re-ordering of ‖xi‖|ri| in decreasing order, then
the accumulation given in Equation (16) is exactly the one
given in the greedy deterministic approach. This is the choice
of τ we have considered in our experiments. Multi-armed
bandit framework and the gradient approximation approaches
use thus similar ways for computing the criteria used for
estimating the best arm. The main difference resides in the fact
that with multi-armed bandit, one is directly provided with the
estimation of the best arm.

E. Stopping criteria

In the greedy deterministic and randomized methods in-
troduced in this section, we have no clues on how many
elements rixi have to be accumulated in order to achieve
a sufficient approximation of the gradient or in the multi-
armed bandit approach how many pulls we need to draw. Here,
we discuss two possible stopping criteria for the non-bandit
algorithms: one that holds for any approach and a second
one that holds only for the Frank-Wolfe algorithm in the
deterministic sampling case. Discussion on the budgets that
needs to be allocated to the bandit problem is also provided.

1) Stability condition: For the sake of simplicity, we limit
the exposition to the search of the smallest component of the
gradient, although the approach can be generalized to other
cases.

Denote by j? the coordinate such that j? =
arg minj ∇L(wk)|j and let Ts be the maximal number
of iterations or samplings allowed for computing the inexact
gradient (for instance, in the greedy deterministic approach,
Ts = n). Our objective is to estimate j? with the fewest
number t of iterations. For this to be possible, we make the
hypothesis that there exists an iteration t1, t1 ≤ Ts, and

j? = arg min
j
∇̂Lt(wk)|j ∀t : t1 ≤ t ≤ Ts



7

in other words, we suppose that starting from a given number
of iterations t1, the gradient approximation is sufficiently accu-
rate so that the updates of the gradient will leave the minimum
coordinate unchanged. Formally, this condition means that
∀t ∈ [t1, · · · , n], we have

[
∇̂Lt+

Ts−t∑
u=0

Ut+u

]
j?
≤
[
∇̂Lt+

Ts−t∑
u=0

Ut+u

]
j
∀j ∈ [1, · · · , d].

where each Ut+i = ri(t+u)xi(t+u), i(t+ u) being an index of
samples that depends how the greedy or randomized strategy
considered. However, checking the above condition is as
expensive as computing the full gradient, thus we propose an
estimation of j? based on an approximation of this inequality,
by truncating the sum to few iterations on each side. Basically,
this consists in evaluating j? at each iteration and checking
whether this index has changed over the last Ns iterations. We
refer to this criterion as the stability criterion, parametrized by
Ns.

2) Error bound criterion: In Section II-B2, we discussed
that the convergence of the Frank-Wolfe inexact algorithm
can be guaranteed as long as the norm difference between
the approximate gradient and the exact one could be upper-
bounded by some quantity ε. Formally, this means that the
iterations over gradient approximation can be stopped as soon
as ‖∇̂Lt −∇L‖∞ ≤ ε, where ε depends on the curvature of
the function L(w) [3]. In practice, the criterion ‖∇̂Lt−∇L‖∞
cannot be computed as it depends on the exact gradient but
it can be upper-bounded by a term that is accessible. For the
greedy deterministic approach, by norm equivalence, we have

‖∇̂Lt −∇L‖∞ =
∥∥∥∑
i6∈It

xiri

∥∥∥
∞
≤
∑
i 6∈It

‖xi‖∞|ri| ≤ ε (17)

Hence if the norms {‖xi‖∞} have been precomputed before-
hand, this criterion can be easily evaluated at each gradient
update iteration.

3) Pull budget for the bandit: In multi-armed bandit algo-
rithms, one typically specifies the number of pulls T available
for estimating the best arm. As such, T can be considered
as hyperparameter of the algorithm. A possible strategy for
removing the dependency of the bandit algorithm to this pull
budget, is to use the doubling trick [25], which consists in
running the algorithm with a small value of T and then
repeatedly doubling it until some stopping criterion is met.
The algorithm can then be adapted so as to exploit the loss
computations that have already been carried from iteration to
iteration. However, this strategy needs a stopping criterion
for the doubling trick. According to Theorem 1 in [25],
there exists a lower bound of pulls for which the algorithm
is guaranteed to return the best arm. Hence, the following
heuristic can be considered: if T ′ and 2T ′ number of pulls
return the same best arm, then we conjecture that the proposed
arm is indeed the best one. One can note that this idea is
similar to the above-described stability criterion. While this
strategy is appealing, in the experiment, we have just fixed
the budget of pulls T to a fixed predefined value.

IV. DISCUSSION

This section provides comments and discussions of the
approaches we proposed compared to existing works.

A. Relation and gains compared to OMP and variants

Several recent works on sparse approximation have pro-
posed theoretically founded algorithms. These works include
OMP [7], [26], greedy pursuit [16], [27], CoSaMP [19] and
several others like [28]. Most of these algorithms make use of
the top absolute entry of the gradient vector at each iteration.
The work presented in this paper is strongly related to these
ones as we share the same quest for the top entry. Indeed,
the proposed methodology provides tools that can be applied
to many sparse approximation algorithms including the afore-
mentioned ones. What makes our work novel and compelling
is that at each iteration, the gradient is computed with as few
information as possible. If the stopping criterion for estimating
this gradient is based on a maximal number of samples — e.g.
we are interested in constructing the best approximation of the
gradient from only 20% of the samples—, our approach can
be interpreted as a method for computing the gradient on a
limited budget. Hence, the proposed method allows to obtain
a gain in the computational time needed for the estimation
of the gradient. On the downside, if other stopping criteria
are used (alone or jointly with the budget criterion), this gain
may be partly impaired by further computations needed for
their estimation. As an example, the stability criterion induces
a O(d) overhead at each iteration due to the max computation.

B. Relation with other stochastic MP/FW approaches

Some prior works from the literature are related to the
approaches we have proposed in the present paper. Chen
et al. [29] have recently introduced a stochastic version of
a Matching Pursuit algorithm in a Bayesian context. Their
principal contribution was to define some prior distribution
over each component of the vector w and then to sample over
this distribution so as to estimate w. In their approach, the
sparsity pattern related to Matching Pursuit is controlled by
the prior distribution which is assumed to be a mixture of
two distributions one of which induces sparsity. While this
approach is indeed stochastic, it strongly differs from ours in
the way stochasticity is in play. As we will discuss in the
next subsection, our framework is more related to stochastic
gradient than to the stochastic sampling of Chen et al.

Stronger similarities with our work appear in the work of
Peel et al. [30]. Indeed, they propose to accelerate the atom
selection procedure by randomly selecting a subset of atoms
as well as a subset of example for computing X>r. This idea
is also the base of our work. However, an essential difference
appears as we do not select a subset of atoms. By doing so, we
are ensured not to discard the top entry of X>r and thus we
can guarantee for instance that our bandit approaches are able
to retrieve this top entry with high probability given enough
budget of pulls.

Stochastic variants of the Frank-Wolfe algorithm have been
recently proposed by Lacoste-julien et al. [31] and Ouyang



8

et al. [32]. These works are mostly tailored for solving large-
scale SVM optimization problem and do not focus on sparsity.

C. About stochasticity

The randomization approach for approximating the gradient,
introduced in Section III-C, involves random sampling of the
columns. In the extreme situation where only a single column
i is sampled, we thus have ∇̂L = xiri, and the method
we propose boils down to a stochastic gradient method. In the
context of sparse greedy approximation, the first work devoted
to stochastic gradient approximation has been recently released
[13]. Nguyen et al. [13] show that their stochastic version
of the iterative hard thresholding algorithm, or the gradient
matching pursuit algorithm which aim at greedily solving a
sparse approximation problem with arbitrary loss functions,
behave properly in expectation.

The randomized approach we propose in this work goes
beyond the stochastic gradient method for greedy approxima-
tion, since it also provides a novel approach for computing
stochastic gradient. Indeed, we differ from their setting in
several important aspects:
• First, in our stochastic gradient approximation, we always

consider a number of samples larger than 1. As such, we
are essentially using a stochastic mini-batch gradient.

• Second, the size of the mini-batch is variable (depending
on the stopping criterion considered) and it depends on
some heuristics that estimates on the fly the ability of the
approximate gradient to retrieve the top entry of the true
gradient.

• Finally, one important component of our approach is
the importance sampling used in the stochastic mini-
batch sampling. This component theoretically helps in
reducing the error of the gradient estimation [33]. In the
context of matrix multiplication approximation we used
for developing the randomized approach in Section III-C,
theoretical results of Drineas et al. [22] have also shown
there exists an importance sampling that minimizes the
expectation of the Frobenius norm of the matrix multipli-
cation approximation. Our experiments corroborate these
results showing that, compared to a uniform sampling,
importance sampling clearly enhances the efficiency in
retrieving the top entry of the true gradient.

All these differences make our randomized algorithm not only
clearly distinguishable from stochastic gradient approaches,
but also harder to analyze. We thus defer for further work
the theorical analyses of such a stochastic adaptive-size mini-
batch gradient coupled with an importance sampling approach.

D. Theoretical considerations

Although a complete theoretical analysis of the algorithm is
out of the scope of this paper, an interesting property deserves
to be mentioned here. Note that, unlike stochastic gradient
approaches, our algorithm is built upon inexact gradients that
hopefully have the same minimum component as the true
gradient. If this latter fact occurs along the iterations of the

FW or OMP algorithms, then all the properties (e.g linear
convergence, exact recovery property. . . ) of these algorithms
apply. Based on the probability of recovering an exact min-
imum component of the gradient at each iteration, we show
below a bound on the probability of our algorithm to recover
at a given iteration K of OMP or FW, the same sequence of
minimum components as the one obtained with exact gradient.

Suppose that at each iteration t of OMP or FW, our
algorithm for estimating the minimum component correctly
identifies this component with a probability at least 1−Pt and
there exists P̄ so that Pt > P̄ , ∀t ≤ K, then the probability of
identifying the correct sequence of minimum component is at
least 1−KP̄ . We get this thanks to the following reasoning.
Denote B(t) = {I1 = i1e, I

2 = i2e, . . . , I
t = ite} the event

that our algorithm outputs the exact sequence of minimum
components up to iteration t, It and ite being the coordinates
retrieved with the inexact and exact gradient. Similarly, we
note A(t) = {It = ite} the event of retrieving, at iteration
t, the correct component of the gradient. We assume that
P(B(0)) = 1. Formally, we are interested in lower-bounding
the probability of B(K). By definition, we have

P(B(K)) = P(A(K)|B(K − 1))P(B(K − 1))

= P(B(0))

K∏
t=1

P(A(t)|B(t− 1)).

Note that this equation captures all the time dependencies
that occur during the FW or the OMP algorithm. Since
P(A(t)|B(t− 1)) ≥ 1− Pt, we have

P(B(K)) ≥
K∏
t=1

(1− Pt) ≥ (1− P̄ )K ≥ (1−KP̄ )

where in the last inequality, we used the fact that (1−u)K ≥
(1−Ku) for 0 ≤ u ≤ 1.

For instance, in the successive halving algorithm, we have
Pt = 3 log2 d·exp

(
− T

8H2(t)log2d

)
, where H2(t) is a iteration-

dependent constant [24] and T the number of pulls. Thus, if
we define H̄ so that ∀t, H̄ ≥ H2(t), we have P̄ = 3 log2 d ·
exp

(
− T

8H̄log2d

)
and

P (B(K)) ≥ 1− 3K log2 d · exp
(
− T

8H̄log2d

)
.

We can see that the probability of our OMP or FW having
the same behaviour as their exact counterpart decreases with
the number K of iterations and the number d of dimensions
of the problems and increases with the number of pulls.
By rephrasing this last equation, we also get the following
property. For δ ∈ [0, 1], if the number T of pulls is set so that
at each iteration t,

T ≥
(

log log2

d

δ
+ log

K

δ
+ log

3

δ

)
8H̄ log2 d

then, when using the successive halving algorithm for retriev-
ing the extremum gradient component, an inexact OMP or FW
algorithm behaves like the exact OMP or FW with probability
1−δ. This last property is another emphasis on the strength of
our inexact gradient method compared to stochastic gradient



9

descent approaches as it shows that with high probability, all
the theoretical properties of OMP or FW (e.g convergence,
exact recovery of sparse signal) apply.

V. NUMERICAL EXPERIMENTS

In this section, we describe the experimental studies we have
carried out for illustrating the computational benefits of using
inexact gradient for sparsity-constraint optimization problems.

A. Experimental setting

In order to illustrate the benefit of using inexact gradient
for sparse learning or sparse approximation, we have set up
a simple sparse approximation problem which focuses on the
computational gain, and for which a sparse signal has to be
recovered by the Frank-Wolfe, OMP or CoSaMP algorithm.

Note that sparse approximations are mostly used for ap-
proximation problems on overcomplete dictionary. This is
the case in our experiments, where the dimension d of the
learning problem is in most cases larger than the number
n of samples. We believe that if the signal or the image
at hand to be approximated can be fairly approximated by
representations for which fast transforms are available, then it
is better (and faster) to indeed used this representation and the
fast transform. Sparse approximation problems as considered
in the sequel, mostly occur in overcomplete dictionary learning
problems. In such a situation, as the dictionary is data-driven,
we believe that the approach we propose is relevant.

The target sparse signals are built as follows. For a given
value of the dictionary size d and a number k of active
elements in the dictionary, the true coefficient vector w? is
obtained as follows. The k non-zero positions are chosen
randomly, and their values are drawn from a zero-mean
unit variance Gaussian distribution, to which we added ±0.1
according to the sign of the values. The columns of the
regression design matrix X ∈ Rn×d are drawn uniformly
from the surface of a unit hypersphere of dimension n. Finally,
the target vector is obtained as y = Xw? + e, where e is a
random noise vector drawn from a Gaussian distribution with
zero-mean and variance σ2

e determined from a given signal-
to-noise as σ2

e = 1
n‖Xw?‖2 · 10−SNR/10. Unless specified,

the SNR ratio has been set to 3. For each setting, the results
are averaged over 20 trials, and X, w? and e are resampled
at each trial.

The criteria used for evaluating and comparing the proposed
approaches are the running time of the algorithms and their
ability to recover the true non-zero elements of w?. The latter
is computed through the F-measure between the support of the
true coefficient vector w? and the estimated one ŵ:

F-meas = 2
|suppγ(w?) ∪ suppγ(ŵ)|
|suppγ(w?)|+ |suppγ(ŵ)|

where, suppγ(w) = {j : |wj | > γ} is the support of vector w
and γ is a threshold used to neglect some non-zero coefficients
that may be obliterated by the noise. In all our experiments, we
have set γ = 0.001 which is small compared to the minimal
absolute value of a non-zero coefficient (0.1).

All the algorithms (Frank-Wolfe, OMP and CoSaMP) and
exact and inexact gradient codes have been written in Matlab
except for the successive reject bandit which as been written in
C and transformed in a mex file. All computations have been
run on each single core of an Intel Xeon E5-2630 processor
clocked at 2.4 GHz in a Linux machine with 144 Gb of
memory.

B. Sparse learning using a Frank-Wolfe algorithm

For this experiment, the constraint set C is the `1 unit-ball
and the loss function is L(w) = 1

2‖y−Xw‖22. Our objectives
are two-folded:

1) analyze the capability of inexact gradient approaches to
recover the true support and compare them to the FW
algorithm,

2) compare the two stopping criteria for computing the
inexact gradient : the stability condition and the error
bound condition.

In the latter, while this error bound condition provides an
adaptive condition for stopping — recall that the parameter ε
in Equation (17) is determined automatically through the data
and the related curvature of the loss function —, the stability
condition needs a user-defined parameter Ns for stopping
the accumulation of the partial gradient. In the same spirit,
we use a fixed pre-defined budget of pulls in the best-arm
identification problem. This budget is given as a ratio of
n×d. The exact gradient is computed using the accumulation
strategy as given in Equation (7) so as to make all running
times comparable. The maximum number of iterations for FW
is set to 5000.

Figure 1 presents the results obtained for n = 2000 samples,
d = 4000 dictionary elements and k = 50 active atoms. We
depict the running time and recovery abilities of the Frank-
Wolfe algorithm with an exact gradient (exact), a greedy
deterministic gradient sampling computation with a stability
stopping criterion (deterministic) and an error bound stopping
criterion (grad upb), the randomized approach with an uni-
form sampling (uniform), and with a best probability sampling
as given in Equation (14) (best), the successive reject bandit
(succ), the non-iid successive halving approach with losses
computed as given in Equation (15) (SuccHalvSame) with a
random uniform sampling and the non-stochastic successive
halving approach with losses computed as given in Equation
(16) (SuccHalvNonStoch) using a permutation τ that defines
a decreasing ordering of the ‖xi‖|ri|.

The figures depict the performances with respect to the
stopping condition parameter Ns of the stability criterion (the
first value in the bracket) and the sampling budget of the bandit
approach (n×d10 z where z is the second value in the bracket).
First, we can note that the deterministic approach used with
any stopping criterion and the non-stochastic successive halv-
ing approaches are able to perfectly recover the exact support
of the true vector w?, regardless of the considered stopping
criterion’s value. Randomized approaches with uniform and
best probability sampling nearly achieve perfect recovery with
an average F-measure of 0.975 with the stability criterion Ns
equal to 5 for the uniform approach. When Ns increases, the



10

{0,0}  {5,1}  {10,2} {15,3} {20,4} {25,5} {30,6} 
0.95

0.96

0.97

0.98

0.99

1

1.01

Stopping condition parameter

R
e
c
o
v
e
ry

 F
−

M
e
a
s
u
re

dim = 2000  #Dic = 4000  

 

 

Exact
Deterministic
Uniform
Best
Grad Upd
Succ
SuccHalv Same
SuccHalv NonStoch

{0,0} {5,1} {10,2} {15,3} {20,4} {25,5} {30,6}

10
1

10
2

10
3

10
4

Stopping condition parameter

T
im

e
 (

s
)

dim = 2000  #Dic = 4000  

 

 

Exact

Deterministic

Uniform

Best

Grad Upd

Succ

SuccHalv Same

SuccHalv NonStoch

Fig. 1. Comparing vanilla Frank-Wolfe and inexact FW algorithms with different ways for computing the inexact gradient with n = 2000, d = 4000 and
k = 50. Performances are compared with increasing precision on the inexact computations. We report the exact recovery performance and the running time
of algorithms.

performances of these two approaches also increase but still
fail to achieve perfect recovery.

From a running time point of view, the proposed approaches
based on greedy deterministic and randomized sampling
strategies with stability criterion and the successive halving
strategies are faster than the exact FW approach, the plain
successive reject method acting on single entry of {xj,irj}
and the deterministic method with the error bound condition.
For instance, the greedy deterministic approach (green curve)
achieves a gain in running time of a factor 2 with respect to
the exact Frank-Wolfe algorithm. Interestingly for the greedy
deterministic approach and the successive halving approaches,
this gain is achieved without compromise on the recovery
performance. For the randomized strategies, increasing the
stability parameter Ns leads to a very slight increase of run-
ning time, hence for these methods, a trade-off can eventually
be found. When comparing bandit approaches, one can note
the substantial gain in performances that can be obtained by
the halving strategy, the non-iid and non-stochastic strategies
compared to successive reject. We conjecture that this higher
computational running time of the successive reject algorithm
is essentially due to computational overhead needed for ac-
cessing each single matrix entry Xi,j in memory while all
other methods use slices of this matrix (through the samples
xi) and thus they can leverage on the chunk of memory access.
Best performances jointly in recovery and running times are
achieved by the greedy deterministic and the non-stochastic
successive halving approaches.

When comparing the stability and the error bound stopping
criteria, the latter one is rather inefficient. While grounded on
theoretical analysis, this bound is loose enough to be non-
informative. Indeed, a careful inspection shows that the error
bound criterion accumulates about 5 times more elements
rixi than the stability one before triggering. In addition, other
computational overheads necessary for the bound estimation,
make the approach just as efficient as the exact Frank-Wolfe
algorithm.

In summary, from this experiment, we can conclude that the
non-stochastic bandit approach is the most efficient one. It can

achieve a gain in computation of about an order of magnitude
(the left most point in the Figure 1’s right panel) without
compromising accuracy. The greedy deterministic approach
with stability criterion performs also very well but it is slightly
less efficient. We can remark that these two best methods
both use the same strategy of gradient accumulation based
on decreasing ordering of ‖xi‖|ri|.

C. Sparse Approximation with OMP
Here, we evaluate the usefulness of using inexact gradient

in a greedy framework like OMP. The toy problem is similar
to the one used above except that we analyze the performance
of the algorithm for an increasing number k of active atoms
and two sizes of dictionary matrix X have been considered.

The same ways for computing the inexact gradient are
evaluated and compared in terms of efficiency and correctness
to the true gradient in an OMP algorithm. For all sampling
approaches, the stopping criterion for gradient accumulation
is based on the stability criterion with the parameter Ns
adaptively set at 2% of the number n of samples. For the
successive reject bandit approach, the sampling budget has
been limited to 20% of the number of entries (which is n · d
in the matrix X. In all cases, the stopping criterion for the
OMP algorithm is based on a fixed number of iterations and
this number is the desired sparsity k.

Results are reported in Figure 2. They globally follow
the same trend as those obtained for the Frank-Wolfe algo-
rithm. First, note that in terms of support recovery, when
the number of active atoms is small, the greedy determin-
istic approach performs better than the randomized sampling
strategies. Bandit approaches perform similar to the greedy
deterministic method. As the number of active atoms increases,
the bandit approaches succeed better in recovering the extreme
component of the gradient while the deterministic approach
is slightly less accurate. Note that for any value of k, the
randomized strategies suffer more than the other strategies for
recovering the true vector w? support. From a running time
point of view, again, we note that the deterministic and non-
iid successive halving bandit approaches seem to be the most



11

10
0

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of active atoms

R
e

c
o

v
e

ry
 F

−
M

e
a

s
u

re

dim = 2000  #Dic = 4000  

 

 

Exact

Deterministic

Uniform

Best

Succ

SuccHalv Same

SuccHalv NonStoch

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

Number of active atoms

T
im

e
 (

s
)

dim = 2000  #Dic = 4000  

 

 

Exact

Deterministic

Uniform

Best

Succ

SuccHalv Same

SuccHalv NonStoch

10
0

10
1

10
2

10
3

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of active atoms

R
e

c
o

v
e

ry
 F

−
M

e
a

s
u

re

dim = 5000  #Dic = 10000  

 

 

Exact

Deterministic

Uniform

Best

Succ

SuccHalv Same

SuccHalv NonStoch

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

Number of active atoms

T
im

e
 (

s
)

dim = 5000  #Dic = 10000  

 

 

Exact

Deterministic

Uniform

Best

Succ

SuccHalv Same

SuccHalv NonStoch

Fig. 2. Comparing OMP algorithm with different ways for computing the inexact gradient. The comparison holds for dictionary size with (top) n = 2000,
d = 4000. (bottom) n = 5000, d = 10000 and for an exact recovery criterion (left) and running time (right).

efficient methods. The gain in running time compared to the
exact gradient OMP is slight but significant while it is larger
when comparing with the successive reject algorithm.

D. Sparse Approximation with CoSaMP

To the best of our knowledge, there are very few greedy
algorithms that are able to leverage from stochastic gradient.
One of these algorithms has been introduced in [13]. In this
experiment, we want to evaluate the efficiency gain achieved
by our inexact gradient approach compared to this stochastic
greedy algorithm. Our objective is to show that the approach
we propose is empirically significantly faster than a pure
stochastic gradient approach. For the different versions of
the CoSaMP algorithm, we have set the stopping criterion as
follows. For the CoSaMP with exact gradient approach, which
serves only as a baseline for computing the exact solution, the
number of iteration is set to the level of sparsity k of the
target signal. A tolerance of the residual norm is also used
as a stopping criterion which should be below 10−3. Next,
for the stochastic and the inexact gradient CoSaMP versions,
the algorithms were stopped when the norm of the residual
(y−Xw) became smaller than 1.001 times the one obtained
by the exact CoSaMP or when a maximal number of iterations.
Regarding gradient accumulation, the stopping criterion we
choose is based on the stability condition with the parameter
NS set dynamically at 2% of the number of samples. For
the bandit approaches, we have fixed the budget of pulls at

0.2n× d.

Note that for the CoSaMP algorithm, we do not look for
the top entry of the gradient vector but for the top 2k entries
as such, we have thus straightforwardly adapted the successive
halving algorithm to handle such a situation.

Figure 3 presents the observed results. Regarding support
recovery, we remark that all approaches achieve performances
similar to the exact CoSaMP. When few active atoms are in
play, we can note that sometimes, the stochastic approach of
[13] fails to recover the support of w?. This occurs seldom
but it happens regardless of the dictionary size we have
experimented with.

From a running time perspective, the results show that the
proposed approaches are highly more efficient than the exact
gradient approach and interestingly, they are faster than a pure
gradient stochastic approach. One or two orders of magnitude
can be gained depending on the level of sparsity of the signal
to be recovered. This observation clearly depicts the trade-off
that occurs in sparsity-constrained optimization problems in
which the gradient computation and an approximation problem
on a limited number of atoms are the major computational bur-
dens (Lines 3 and 5 of Algo 1). Indeed in a stochastic gradient
approach, inexact gradient computations are very cheap but
more approximation problems to be solved may be needed for
achieving a desired accuracy. In the approaches we propose,
the inexact gradient computation is slightly more expensive but
we somehow “ensure” that it provides the correct information



12

10
0

10
1

10
2

10
3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of active atoms

R
e

c
o

v
e

ry
 F

−
M

e
a

s
u

re

dim = 2000  #Dic = 4000  

 

 

Exact

Deterministic

Uniform

Best

Stoch

SuccHalv same

SuccHalv NonStoch

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of active atoms

T
im

e
 (

s
)

dim = 2000  #Dic = 4000  

 

 

Exact

Deterministic

Uniform

Best

Stoch

SuccHalv Same

SuccHalv NonStoch

10
0

10
1

10
2

10
3

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Number of active atoms

R
e

c
o

v
e

ry
 F

−
M

e
a

s
u

re

dim = 5000  #Dic = 10000  

 

 

Exact
Deterministic
Uniform
Best
Stoch
SuccHalv same
SuccHalv NonStoch

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

Number of active atoms

T
im

e
 (

s
)

dim = 5000  #Dic = 10000  

 

 

Exact

Deterministic

Uniform

Best

Stoch

SuccHalv Same

SuccHalv NonStoch

Fig. 3. Comparing CosAMP and CosAMP algorithms with different ways for computing the inexact gradient. The comparison holds for different dictionary
size n = 2000, d = 4000 and n = 5000, d = 10000. We report exact recovery performance and running time.

needed by the CoSaMP algorithm. Hence, our approaches need
less approximation problems to be solved, making them more
efficient than a stochastic gradient approach.

When comparing the efficiency of the proposed algorithms,
the approach based on non-stochastic successive halving
and the greedy deterministic approach are the most efficient
especially as the number of active atoms grows.

In the second experiment, for the successive halving al-
gorithms, we analyze the effect of the pull budget on the
running time and on the recovery performance. We consider
the following setting of the problem: n = 5000, d = 10000
and k = 50. Results are given in Figure 4. We note that
a budget ratio varying from 0.05 and 0.7 allows a good
compromise between ability of recovering the true vector
and gain in computational time, particularly for the non-
stochastic successive halving method. As the budget of pulls
decreases, both algorithms fail more frequently in recovery
and in addition, the computational gain substantially reduces.
This experiment suggests that one should not be too greedy
and should allow sufficient amount of pulls. A budget ratio of
0.2 or 0.3 for the bandit algorithms seems to be a good rule
of thumb according to our experience.

Our last experiment with CoSaMP demonstrates how the

running time and the support recovery performance behave
with an increasing number n of samples and afterwards
with an increasing number of dictionary elements d. We
have restricted our comparison to the exact and stochastic
CoSaMP, and the CoSaMP variants based on the successive
halving bandit algorithms and the greedy deterministic one
(which are the most efficient among those we propose). The
experimental setup, the stopping criterion for the CoSaMP
algorithm as well as the stopping criterion for the gradient
accumulation and pull budget are the same as above. Results
are depicted in Figure 5. As a sanity check, we note that
recovery performances are almost similar for all algorithms
with slightly worse performances for the stochastic CoSaMP
and the non-iid bandit algorithm based CoSaMP.

The computational time results show that all algorithms
globally follow the same trend as the number of dictionary
atoms or the number of samples increase. Recall that the
computational complexity for the gradient computation is
O(nd). For the bandit approaches, we use a fixed budget
of pulls dependent on nd to compute the inexact gradient.
Similarly, for the greedy deterministic approach, the number
of accumulation (and the stability criterion) is proportional to
the number n of samples and thus the gradient computation
is a constant factor of nd. Hence, our findings, illustrated on



13

10
−3

10
−2

10
−1

10
0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Budget ratio

R
e

c
o

v
e

ry
 F

−
M

e
a

s
u

re

dim = 5000  #Dic = 10000  

 

 

Exact

Stoch

SuccHalv same

SuccHalv NonStoch

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

Budget Ratio

T
im

e
 (

s
) 

dim = 5000  #Dic = 10000  

 

 

Exact

Stoch

SuccHalv same

SuccHalv NonStoch

Fig. 4. Analyzing the effect of the pull budget on the successive halving algorithm (left) recovery F-measure and (right) computational running time. The
pull budget is defined as the budget ratio times n · d. Here n = 5000, d = 10000 and k = 50.

Figure 5, are somewhat natural since the main differences of
running time essentially come from a constant factor. This
factor is highly dependent on the problem but according to our
numerical experiments, a ten-fold factor computational gain
can be expected in many cases.

E. Application to audio data

We have compared the efficiency of the approaches we
propose on a real signal processing application. The audio
dataset we use is the one considered by Yaghoobi et al. [34].
This dataset is composed of an audio sample recorded from
a BBC radio session which plays classical music. From that
audio sample, 8192 pieces of signal have been extracted,
each being composed of 1024 time samples. Details about
the dataset can be found in [34]. From this dataset, we have
learned 2048 dictionary atoms using the approach described in
[35]. Our objective is to perform sparse approximation of each
of the 8192 audio pieces over the 2048 dictionary atoms using
CoSaMP and we want to evaluate the running time and the
approximation quality of a CoSaMP algorithm using an exact
gradient computation (Exact), a stochastic gradient CoSaMP
algorithm (Stoch k) and the CoSaMP variants with inexact
gradient computations as we propose. The approximation error
is measured as ‖y−ŷ‖2‖y‖2 where y and ŷ are respectively the
true audio piece and its CoSaMP-based approximation. We
thus want to validate that our approaches achieve similar
approximation performance than CoSaMP while being faster.
For all algorithms, the number of CoSaMP iterations is fixed
to the sparsity pattern, here fixed to k = 10. Note that for
the stochastic gradient approach, we have also considered a
version with more iterations (Stoch 3k) . Results are gathered
in Table I and they are obtained as the averaged performance
when approximating all the 8192 pieces of audio signal in the
dataset. We can see that the inexact approaches we introduce
lead to the best compromise between approximation error and
running time. For instance, our successive halving algorithms
achieve similar approximation errors than the exact CoSaMP
but they are 3 times faster. At the contrary, the stochastic

TABLE I
APPROXIMATION PERFORMANCE RESULTS AND RUNNING TIME FOR

COSAMP AND VARIANTS. y AND ŷ RESPECTIVELY DEPICTS THE SIGNAL
AND ITS RESULTING APPROXIMATION. RESULTS ARE AVERAGED OVER

THE APPROXIMATION OF 4500 SIGNALS. Stoch 3k DENOTES THE
STOCHASTIC GRADIENT ALGORITHM THAT USED 3k ITERATIONS.

Approaches ‖y−ŷ‖
‖y‖ Time (s)

exact 0.376 ± 0.22 0.164 ± 0.01
stoch k 0.670 ± 0.13 0.026 ± 0.00
stoch 3k 0.570 ± 0.17 0.076 ± 0.01
uniform 0.351 ± 0.21 0.133 ± 0.02
deterministic 0.361 ± 0.22 0.187 ± 0.02
SuccHalvSame 0.371 ± 0.22 0.059 ± 0.01
SuccHalvNonStoch 0.374 ± 0.22 0.064 ± 0.01

gradient CoSaMP approaches are efficient but lack in properly
approximating target audio pieces.

F. Benchmark classification problems

We have also benchmarked our algorithms on real-world
high-dimensional learning classification problems. These
datasets are frequently used for evaluating sparse learning
problems [36], [4] and more details about them can be
found in these papers. Here, we considered CoSaMP as a
learning algorithm and our objective is to validate the fact
that the approaches we propose for computing approximate
gradient are able to speed up computation time while achieving
the same level of accuracy as the exact gradient. For the
approximate gradient computations, we have considered the
stability criterion with NS = ntrain

20 (ntrain being the number
of training examples) for the deterministic and randomized
approaches, and we have set the budget as 0.2ntrain × d for
the bandit approaches.

The protocol we have set up is the following. Training
and test sets are obtained by randomly splitting the dataset
in a 80% − 20% fold. For model selection, the training set
is further split in two sets of equal size. The parameter we
have cross-validated is the number of non-zero elements k
in w. It has been selected among 10, 50, 100, 250 so as to
maximize the accuracy on the validation set. This value of k



14

10
4

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Dictionary size

R
e

c
o

v
e

ry
 F

−
M

e
a

s
u

re

dim = 2000  k = 100  

 

 

Exact

Stoch

Deterministic

SuccHalv same

SuccHalv NonStoch

10
4

10
0

10
1

10
2

Dictionary size

T
im

e
 (

s
) 

dim = 2000  k = 100  

 

 

Exact

Stoch

Deterministic

SuccHalv same

SuccHalv NonStoch

10
3

10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples n

R
e
c
o
v
e
ry

 F
−

M
e
a
s
u
re

#Dic = 10000  k = 400  

 

 

Exact

Stoch

Deterministic

SuccHalv same

SuccHalv NonStoch

10
3

10
4

10
0

10
1

10
2

10
3

Number of samples n

T
im

e
 (

s
) 

#Dic = 10000  k = 400  

 

 

Exact

Stoch

Deterministic

SuccHalv same

SuccHalv NonStoch

Fig. 5. (top left and top right) Evaluating how the recovery capability behaves and how the computation time scales with the number of dictionary elements
(with n = 2000 and k = 100). (bottom left and bottom right) Evaluation of the same criteria with respect to the number of samples (with d = 10000 and
k = 400).

has also been used as the maximal number of iterations for all
the algorithms except for the stochastic ones. For these, we
have reported accuracies and running times for a number of
maximal iterations of k and 3k.

Results averaged over 20 replicas of the training and test sets
are reported in Table II. Stochastic approaches fail in learning
a relevant decision function. We can note that our deterministic
and randomized approaches are more efficient than the exact
CoSaMP but are less accurate. On the other hand, our bandit
approaches achieve nearly similar accuracy to CoSaMP while
being at least 30 times faster.

VI. CONCLUSIONS

The methodologies proposed in this paper aim at accelerat-
ing sparsity-constrained optimization algorithms. This is made
possible thanks to the key observation that, at each iteration,
only the component of the gradient with smallest or largest
entry is needed, instead of the full gradient. By exploiting
this insight, we proposed greedy algorithms, randomized ap-
proaches and bandit-based best arm identification methods for
estimating efficiently this top entry. Our experimental results
show that the bandit and the greedy approaches seem to be
the most efficient methods for this estimation. Interestingly, the

bandit approaches come with guarantees that, given a sufficient
number of draws, this top entry can be retrieved with high-
probability.

Future works will be geared towards gaining further theo-
retical understandings on the good behaviour of the greedy
approach, linking the number of iterations needed for the
Frank-Wolfe algorithm to converge, with the quality of the
gradient approximation in the greedy and randomized ap-
proaches, analyzing the role of the importance sampling in
the randomized methods. In addition, we plan to explore how
this work can be extended to an online and/or distributed
computation setting.

REFERENCES

[1] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society, vol. 58, no. 1, pp. 267–288,
1996.

[2] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression (with discussion),” Annals of statistics, vol. 32, no. 2, pp.
407–499, 2004.

[3] M. Jaggi, “Revisiting frank-wolfe : Projection free sparse convex
optimization,” in Proceedings og the International Conference on
Machine Learning, 2013.

[4] Alain Rakotomamonjy, Remi Flamary, and Gilles Gasso, “Dc proximal
newton for nonconvex optimization problems,” IEEE Trans. on Neural
Networks and Learning Systems, vol. 1, no. 1, pp. 1–13, 2015.



15

TABLE II
COMPARING PERFORMANCES OF COSAMP AND ITS VARIANTS WITH APPROXIMATE GRADIENTS ON REAL-WORLD HIGH-DIMENSIONAL CLASSIFICATION
PROBLEMS. (TOP) STATISTIC SUMMARY OF DATASETS. (MIDDLE) ACCURACY OF THE DECISION FUNCTION. (BOTTOM) RUNNING TIME (IN SECONDS) OF

THE LEARNING ALGORITHMS.

Datasets
Information ohscal classic la2 hitech sports

n 11162 7094 3075 2301 8580
d 11465 41681 31472 10080 14866

Datasets
Algorithms ohscal classic la2 hitech sports

CoSAMP 82.93 ± 1.9 83.46 ± 1.8 81.20 ± 2.5 76.29 ± 3.7 93.07 ± 1.3
Stoch 56.16 ± 19.3 63.90 ± 22.6 70.24 ± 5.1 11.63 ± 11.1 40.74 ± 22.8

Stoch 3k 36.92 ± 26.2 52.58 ± 26.8 69.76 ± 5.5 8.42 ± 3.1 32.54 ± 20.4
Determ. 83.20 ± 1.6 82.35 ± 1.3 77.29 ± 2.3 75.98 ± 2.9 92.30 ± 1.4
Uniform 77.50 ± 1.7 77.17 ± 1.2 78.98 ± 2.9 68.88 ± 3.6 92.33 ± 1.4

HalvingSame 81.39 ± 1.5 82.57 ± 1.5 81.54 ± 2.6 75.16 ± 2.1 93.23 ± 1.2
HalvingNonStoch 81.90 ± 1.5 82.97 ± 1.7 79.91 ± 2.6 76.49 ± 3.8 93.21 ± 1.0

Datasets
Algorithms ohscal classic la2 hitech sports

CoSAMP 1257.89 ± 306.3 563.51 ± 208.5 401.36 ± 222.1 56.42 ± 19.4 998.63 ± 385.3
Stoch 3.12 ± 0.8 1.05 ± 0.7 2.98 ± 2.0 0.69 ± 0.3 4.13 ± 1.8

Stoch 3k 7.93 ± 1.8 2.73 ± 1.6 8.50 ± 5.4 1.90 ± 0.8 12.08 ± 4.8
Determ. 323.65 ± 76.6 142.06 ± 62.3 209.70 ± 130.5 41.24 ± 16.3 353.04 ± 129.9
Uniform 416.74 ± 102.2 189.14 ± 74.4 150.28 ± 89.2 21.00 ± 7.7 348.30 ± 117.0

HalvingSame 17.50 ± 5.2 13.20 ± 12.5 14.68 ± 15.2 1.48 ± 0.6 11.94 ± 6.3
HalvingNonStoch 17.61 ± 5.4 11.74 ± 11.9 13.54 ± 15.9 1.37 ± 0.5 10.57 ± 6.5

[5] L. Laporte, R. Flamary, S. Canu, S. Dejean, and J. Mothe, “Nonconvex
regularizations for feature selection in ranking with sparse svm,” Neural
Networks and Learning Systems, IEEE Transactions on, vol. 25, no. 6,
pp. 1118–1130, 2014.

[6] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency
dictionaries,” IEEE Trans Signal Processing, vol. 41, no. 12, pp. 3397–
3415, 1993.

[7] Y.C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit : Recursive function approximation with applications to wavelet
decomposition,” in Proc. of the 27th Annual Asilomar Conference on
Signals, Systems and Computers, 1993.

[8] D. Merhej, C. Diab, M. Khalil, and R. Prost, “Embedding prior
knowledge within compressed sensing by neural networks,” Neural
Networks, IEEE Transactions on, vol. 22, no. 10, pp. 1638–1649, Oct
2011.

[9] Tong Zhang, “Solving large scale linear prediction problems using
stochastic gradient descent algorithms,” in Proceedings of the twenty-
first international conference on Machine learning. ACM, 2004, pp.
116–123.

[10] S. Shalev-Shwartz, Y. Singer, and N. Srebro, “Pegasos : Primal estimated
subgradient solver for svm,” in Proceedings of the International
Conference on Machine Learning, 2007, pp. 807–814.

[11] Shai Shalev-Shwartz and Ambuj Tewari, “Stochastic methods for l
1-regularized loss minimization,” The Journal of Machine Learning
Research, vol. 12, pp. 1865–1892, 2011.

[12] Rie Johnson and Tong Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Advances in Neural Information
Processing Systems, 2013, pp. 315–323.

[13] N Nguyen, Deanna Needell, and T. Woolf, “Linear convergence
of stochastic iterative greedy algorithms with sparse constraints,”
http://arxiv.org/abs/1407.0088, 2014.

[14] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz, “Pure exploration
in multi-armed bandits problems,” in Algorithmic Learning Theory.
Springer, 2009, pp. 23–37.

[15] Alain Rakotomamonjy, Sokol Koço, and Liva Ralaivola, “More effi-
cient sparsity-inducing algorithms using inexact gradient,” in Signal
Processing Conference (EUSIPCO), 2015 23rd European. IEEE, 2015,
pp. 709–713.

[16] Thomas Blumensath and Michael E Davies, “Gradient pursuits,” Signal
Processing, IEEE Transactions on, vol. 56, no. 6, pp. 2370–2382, 2008.

[17] Aleksandr Aravkin, Aurelie Lozano, Ronny Luss, and Prabhajan Kam-
badur, “Orthogonal matching pursuit for sparse quantile regression,” in

Data Mining (ICDM), 2014 IEEE International Conference on. IEEE,
2014, pp. 11–19.

[18] Aurélie C Lozano, Grzegorz Swirszcz, and Naoki Abe, “Group orthogo-
nal matching pursuit for logistic regression,” in International Conference
on Artificial Intelligence and Statistics, 2011, pp. 452–460.

[19] D. Needell and J. Tropp, “Cosamp: Iterative signal recovery from incom-
plete and inaccurate samples,” Applied and Computational Harmonic
Analysis, vol. 26, no. 3, pp. 301–321, 2009.

[20] Sohail Bahmani, Bhiksha Raj, and Petros T Boufounos, “Greedy
sparsity-constrained optimization,” The Journal of Machine Learning
Research, vol. 14, no. 1, pp. 807–841, 2013.

[21] J. Guélat and P. Marcotte, “Some comments on wolfe’s away step,”
Mathematical Programming, vol. 35, no. 1, 1986.

[22] P. Drineas, R. Kannan, and M. Mahoney, “Fast monte carlo algorithms
for matrices i: Approximating matrix multiplication,” SIAM Journal on
Computing, vol. 36, no. 1, pp. 132–157, 2006.

[23] Jean-Yves Audibert and Sébastien Bubeck, “Best arm identification in
multi-armed bandits,” in COLT-23th Conference on Learning Theory-
2010, 2010, pp. 13–20.

[24] Zohar Karnin, Tomer Koren, and Oren Somekh, “Almost optimal explo-
ration in multi-armed bandits,” in Proceedings of the 30th International
Conference on Machine Learning (ICML-13), 2013, pp. 1238–1246.

[25] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identification
and hyperparameter optimization,” in Proceedings of the 19th Interna-
tional Workshop on Artificial Intelligence and Statistic, 2016.

[26] J. Tropp and A. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Trans. Information Theory, vol.
53, no. 12, pp. 4655–4666, 2007.

[27] J. Tropp, A. Gilbert, and M. Strauss, “Algorithms for simultaneous
sparse approximation. part I: Greedy pursuit,” Signal Processing, vol.
86, pp. 572–588, 2006.

[28] S. Shalev-Shwartz, N. Srebro, and T. Zhang, “Trading accuracy for
sparsity in optimization problems with sparsity constraints,” Siam
Journal on Optimization, vol. 20, 2010.

[29] R.-B. Chen, C.-H. Chu, T.-Y. Lai, and Y. Wu, “Stochastic matching
pursuit for bayesian variable selection,” Statistics and Computing, vol.
21, no. 2, pp. 247–259, 2011.

[30] Thomas Peel, Valentin Emiya, Liva Ralaivola, and Sandrine Anthoine,
“Matching pursuit with stochastic selection,” in Signal Processing
Conference (EUSIPCO), 2012 Proceedings of the 20th European. IEEE,
2012, pp. 879–883.

[31] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher, “Block-



16

coordinate frank-wolfe optimization for structural svms,” in Proceedings
of the International Conference on Machine Learning, 2013.

[32] Hua Ouyang and Alexander G Gray, “Fast stochastic frank-wolfe
algorithms for nonlinear svms.,” in SDM. SIAM, 2010, pp. 245–256.

[33] Zhao P and Zhang T, “Stochastic optimization with importance sam-
pling,” http://arxiv.org/abs/1401.2753, 2014.

[34] M. Yaghoobi, T. Blumensath, and M. Davies, “Dictionary learning for
sparse approximations with the majorization method,” IEEE Transaction
on Signal Processing, vol. 57, no. 6, pp. 2178–2191, 2009.

[35] A. Rakotomamonjy, “Direct optimization of the dictionary learning
problem,” IEEE Trans. on Signal Processing, vol. 61, no. 12, pp. 5495–
5506, 2013.

[36] P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye, “A general iterative
shrinkage and thresholding algorithm for non-convex regularized opti-
mization problems,” in Proceedings of the 30th International Conference
on Machine Learning, Atlanta, Georgia, Jun. 2013, pp. 37–45.


	I Introduction
	II Sparse Learning Algorithm with Extreme Gradient Component
	II-A Framework
	II-B Algorithms
	II-B1 Gradient Pursuit
	II-B2  Frank-Wolfe algorithm

	II-C Leveraging from the extreme gradient component estimation

	III Looking for the extreme gradient component
	III-A The problem
	III-B Greedy deterministic approach
	III-C Matrix-Vector Product as Expectations
	III-D Best arm identification and multi-armed bandits
	III-E Stopping criteria
	III-E1 Stability condition
	III-E2 Error bound criterion
	III-E3 Pull budget for the bandit


	IV Discussion
	IV-A Relation and gains compared to OMP and variants
	IV-B Relation with other stochastic MP/FW approaches
	IV-C About stochasticity
	IV-D Theoretical considerations

	V Numerical experiments
	V-A Experimental setting
	V-B Sparse learning using a Frank-Wolfe algorithm
	V-C Sparse Approximation with OMP
	V-D Sparse Approximation with CoSaMP
	V-E Application to audio data
	V-F Benchmark classification problems

	VI Conclusions
	References

