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Abstract

Previous models of touch have linked skin mechanics to neural firing rate, neural dynamics to 

action potential elicitation, and mechanoreceptor populations to psychophysical discrimination. 

However, no one model spans all levels. The objective of work herein is to build a multi-level, 

computational model of tactile neurons embedded in cutaneous skin, and then validate its 

predictions of skin surface deflection, single-afferent firing to indenter shift, and population 

response for sphere discrimination. The model includes a 3D finite element representation of the 

distal phalange with hyper- and visco-elastic mechanics. Distributed over its surface, a population 

of receptor models is comprised of bi-phasic functions to represent Merkel cells’ transformation of 

stress/strain to membrane current and a leaky integrate-and-fire neuronal models to generate the 

timing of action potentials. After including neuronal noise, the predictions of two population 

encoding strategies (Gradient Sum and Euclidean Distance) are compared to psychophysical 

discrimination of spheres. Results indicate that predicted skin surface deflection matches 

Srinivasan's observations for 50 micron and 3.17 mm diameter cylinders and single-afferent 

responses achieve R2=0.81 when compared to Johnson’s recordings. Discrimination results 

correlate with Goodwin’s experiments, whereby 287 and 365 m−1 spheres are more discriminable 

than 287 and 296 m−1.
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1 INTRODUCTION

OUR sense of touch is essential for performing everyday tasks such as eating and dressing. To 

those living with upper limb loss, performing such tasks can present serious challenges. To 

enable the next generation of tactile and proprioceptive prosthetics, in addition to furthering 
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our scientific understanding, a significant body of work has sought to understand how 

biological receptors work, alone and in populations.

Tactile sensation is typically studied at either of two levels: electrophysiological recordings 

or psychophysical responses [1]. Single-afferent, electrophysiological recordings are 

performed by connecting a microelectrode to an afferent fiber and timing the spikes as the 

end organ in the skin is stimulated mechanically [2]. Psychophysical experiments, on the 

other hand, relate distal stimuli to human behavioral response [3] by measuring absolute 

thresholds and difference discrimination. Psychophysical experiments assume that 

perception is based upon information from a population of receptors, something presently 

unobservable due the difficulty in simultaneously recording from hundreds of afferents. 

Therefore, these two experimental approaches have been augmented by the use of models, at 

various levels of detail.

At the level of the skin, elasticity models have sought to link mechanics to the neural 

response elicited by the indentation of rigid stimuli. Continuum mechanics [4], [5] and finite 

element [6] techniques can calculate distributions of stress and/or strain, which are 

converted into firing rates via scaling functions. While skin models enable the prediction of 

firing rates, most do not predict the timing of individual action potentials.

At the level of single afferents, neural dynamics models have sought to approximate the 

elicitation of individual action potentials. In addition to two-dimensional reductions of the 

classic Hodgkin-Huxley equations, leaky integrate-and-fire (LIF) models [7], [8] have been 

specialized to produce spike times when membrane potential is driven to threshold, typically 

as a function of vibration frequency and magnitude. Predicting the timing of individual 

spikes, as opposed to gross firing rate, is important for matching behaviorally relevant neural 

codes, such as first spike latency [9]. Although tied together in vivo, neural dynamics and 

skin mechanics models have largely been used in isolation.

In contrast to the physics-based models, data-driven approaches tie stimulus characteristics 

to empirically observed neural firing behaviors, usually via regression and fitted functions. 

For example, Johnson identified that rapidly adapting (RA) afferents exhibit a piecewise 

relationship between firing rate and peak amplitude of vibration [10]. Similarly, Wheat and 

Goodwin used regression to tie firing rate for slowly adapting type I (SAI) afferents to the 

curvature of annular stimuli and the distance between the stimulus and receptive field center 

[11]. Significant work by Johansson, et al. has used the recruitment sequence of a population 

of afferents to predict the direction and orientation of indentation, given just the timing of 

first spikes [9], [12] or just the afferents near the fingernail [13]. The drawback is that data-

driven approaches abstract underlying physiological and neural mechanisms, and their input-

output relations are linked tightly to the stimulus utilized.

No one effort has sought to align model predictions at multiple levels, linking skin 

mechanics to firing rates, neural dynamics to single spike elicitation, and mechanoreceptor 

populations to psychophysical discrimination. Therefore, the work herein seeks to bridge a 

gap between empirical models which abstract the physics of the skin and receptor and 

physics-based models that either link skin mechanics to firing rate but cannot generate spike 
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timing, or link receptor dynamics to spike timing but leave out the attenuation of the skin. 

Perhaps most significantly, this work explores means to predict a psychophysical response, 

using two population encoding approaches. Because of its prominent role in spatial 

perception [14], studied herein, the SAI afferent of the glabrous skin is the focus of this 

work.

2 OVERVIEW OF METHODOLOGY

Herein, a computational model of the cutaneous skin and tactile neuron is assembled, its free 

parameters fit, and its input-output relationships validated against existing data at three 

levels. The model combines a 3D finite element representation of the fingertip to mimic skin 

mechanics, a bi-phasic transduction function to convert stresses and strains in the simulated 

skin into transmembrane current at the SAI receptive end-organ, and a leaky-integrate-and-

fire model to generate the timing of spikes. To form a population that responds over the 

fingertip’s surface, the base model is duplicated by the number of desired afferents. Then 

two population encoding strategies are utilized, Euclidean Distance and Gradient Sum, to 

predict the psychophysical response. Model fitting identifies values for six free parameters 

to best mimic recorded SAI firing rates. Model validation compares: a) predicted skin 

surface deflection to that observed for a human fingertip when indented with cylinders of 

different curvature, b) predicted firing rates for single receptors to those recorded from SAIs 

in the primate fingertip in response to a 3.0 mm block indented at 0.2 mm increments, and c) 

predicted population responses to discrimination thresholds obtained in human 

psychophysical experiments for a set of spheres.

2.1 Computational Model

The subparts of the computational model represent skin elasticity mechanics, receptor 

membrane transduction at the site of the SAI end organ, and neural dynamics. This single-

unit receptor model is then extended to create a population of SAI afferents with a density of 

100 mm2.

2.1.1 Skin mechanics sub-model—A 3D finite element model (FEM) of the human 

distal phalange simulates the propagation of stress and strain through skin layers upon 

deformation of the finger surface. The FEM approximates the thickness and material 

properties of the skin’s microstructures, including the epidermis, dermis, subcutaneous 

tissue, and distal phalange (Figure 1). Skin thickness was informed by human tissue 

measurements [15], [16], and hyper- and visco-elastic material properties through previous 

testing [17], [18]. The anisotropic nature of the skin was not included. Material property 

selection is discussed in depth in Section 2.2.1.

A mesh of approximately 232,000 nodes and 276,000 elements was created using TrueGrid 

(XYZ Scientific Applications Inc., Livermore, CA), and Patran (MSC Software, Santa Ana, 

CA) software. The mesh uses 8-node linear brick hybrid with constant pressure elements 

(C3D8H) with 0.1 mm edge lengths at the epidermal-dermal border and exterior surface.

This edge length affords a volume that approximates that of the end-organ for a SAI, the 

Merkel cell-neurite cluster. It also allows for smoother deflection of the skin surface in 
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response to highly curved stimuli as compared to other models built by the authors 

previously [19]. The inner dermis, subcutaneous tissue and bone geometry employ reduced 

mesh resolution as they are further from the exterior surface and receptor sites. The larger 

and fewer internal elements vastly improve runtime during analysis. The interior of the mesh 

utilized 6-node wedge elements (C3D6H) in combination with larger 8-node brick elements. 

Nodes along the nail and bone were constrained in x, y, and z dimensions to replicate 

experiments in which the nail is glued to a surface [20], [2].

To inform neural predictions, strain energy density (SED) is sampled at the epidermal-

dermal border, 0.471 mm from the skin surface [21] and serves as input into the transduction 

sub-model. SED is one possible measure of stress and strain extracted by the SAI end organ 

[6], [22], [17], [18], [23], though it may alternatively respond to maximum compressive 

stress, maximum compressive strain, von Mises stress, or another quantity [5], [24], [25]. 

While the exact measure is unresolved and quite difficult to decipher, SED well correlates to 

static firing rate. All finite element analysis was performed using ABAQUS Standard, 

version 6.6.

2.1.2 Receptor membrane transduction sub-model—SED sampled at a given 

element in the FEM is transformed into current, which parallels how SED in the vicinity of 

the Merkel cells is transformed into current across the SAI membrane. While sigmoidal 

functions have been used to transform SED into current [26], this work employs two linear 

functions to differentially respond to the dynamic ramp (i.e., high spike firing during 

stimulus movement) and static hold phases (i.e., slower firing during sustained indentation) 

with fewer model parameters. The transduction function (Eqn. 1 and 2 converts SED, Uo(t) 

Pa, and change in SED, Uo'(t) Pa/ms, into current, I(t) mA, using three coefficient terms: an 

intercept constant, β mA, a dynamic gain, kd mA · s/Pa, and a static gain, ks mA/Pa. Variable 

h in Equation 2 represents the 0.001 ms time increment used in calculating change in SED 

over time. The dynamic term, kd · Uo'(t), responds to first-order change in SED, and thus 

dominates during the early period when the indenter is moving, while the static term 

contributes mainly thereafter.

(1)

(2)

Parameters β, kd, and ks were determined through model fitting (Section 2.2.2).

2.1.3 Neural dynamics sub-model—A leaky-integrate-and-fire model of neural 

dynamics transforms membrane current into spike times. The SAI membrane is abstracted as 

a resistive-capacitive circuit (Eqn. 3) with time constant τ ms. As current, I(t) mA, passes 

through the SAI membrane (with resistance R ohms and capacitance C mF), membrane 

potential, u(t) mV, accumulates (Eqn. 4). Once this potential reaches a predetermined 

threshold,  mV, the time is noted as a spike time, membrane potential is reset to resting 
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potential, and a 1.0 ms refractory period is entered [27]. When the refractory period 

terminates, the process repeats until the stimulus is removed.

(3)

(4)

Equations 3 and 4 can be rewritten as a single differential equation which defines change in 

membrane potential as a function of membrane potential, current, and time. Equation 5 is 

solved using a fourth-order Runge-Kutta numerical method to determine membrane 

potential one timestep in the future, Uti+1. Initial membrane potential, Ut0, is set to 0.

(5)

Parameters τ, C, and  are determined through model fitting (Section 2.2.2).

2.1.4 Model extension to populations of receptors—To form the response of a 

population of receptors, we sample SED at multiple locations at the epidermal-dermal 

border of the FEM (0.471 mm depth). Individual SED samples are then input to transduction 

and neural dynamics sub-models, as described above. With this setup, the model is 

configured into a population density of 100 receptors per cm2, which seeks to match that 

observed for SAI populations of the human fingertip [28]. The population layouts used in 

this work are rectangular, though random and Gaussian layouts have been investigated by 

the authors previously [29]. More detail on the two population encoding strategies is 

provided in Section 2.2.3.

2.2 Numerical Experiments for Model Validation

Model validation is performed by comparing model output to observed data at three points: 

skin mechanics, single-unit response, and population response (Figure 2).

2.2.1 Skin mechanics validation—The test of skin surface deflection provides insight 

into the bulk mechanical response of the combined tissue layers. The displacement at the 

surface of the skin (dependent variable) is measured in response to 50 micron line load and 

3.17 mm cylinder indenters displaced 1.0 mm perpendicular to the long axis of the finger 

(independent variables). Predicted skin surface deflection is compared to Srinivasan’s 

observations, taken approximately every 0.05 mm of the imaged skin surface in response to 

actual indentation [30], [31]. Nodal displacement measurements along the center line of the 

fingertip surface are taken at the final deformation depth near the indentation site.

To determine the material properties of modeled tissue layers that best approximate the 

observed behavior, three trials were conducted. Trial 1 models all skin layers as linear 

elastic [18] and used a viscoelastic Prony series with parameters listed in Table 1 [17]. Trial 

2 uses linear elastic properties (Table 2) for the epidermis and bone, but models the dermis 
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and subcutaneous fat as hyperelastic using a polynomial N=2 model [17]. Trial 3 combines 

the softer epidermis and bone from Trial 1 and the hyper-elastic dermis and subcutaneous 

tissue from Trial 2.

2.2.2 Single-unit fitting using cross-validation—Single-unit predictions are fit to 

published SAI electrophysiological firing rates [2] using a cross-validation framework. 

Within this framework model parameters β, kd, ks, τ, C, and  are fit using response surface 

methodology (RSM) [32].

In brief review of Phillips and Johnson’s experimental procedure, in vivo 

electrophysiological recordings were performed with primate SAI afferents [4]. The 

procedure sought to determine rates of spike elicitation as a 3.0 mm bar was indented in the 

finger pad to a depth 1.0 mm. The bar was then laterally shifted in discrete 0.2 mm intervals 

across the SAI’s receptive field to determine the firing rate (dependent variable) as the 

distance between indenter and the center of the SAI receptive field increased (independent 

variable). For each indentation, spikes were recorded for 1.0 s and converted to firing rates. 

Each indentation was a ramp-and-hold stimulus, where the ramp-up occurred from 0 to 50 

ms and the hold occurred from 51 to 1,000 ms. An example of the idealized recordings, 

which exhibits features typical of SAI afferents, is displayed in Results (Figure 5).

As in Phillips and Johnson’s mechanical stimulation procedure, the independent variable is 

the lateral location of the 3.0 mm bar relative to the receptive field center, and the base 

dependent variable is spike times. Two derived dependent variables, firing rate during the 

dynamic ramp-up and static hold phases, are calculated from spikes elicited in either phase. 

These time windows are 30 – 50 ms and 600 – 950 ms, respectively. The dynamic window 

was set because it includes the highest frequency firing, and the static window was chosen to 

match the recording window set by Phillips and Johnson. Firing rates for the dynamic ramp 

and static hold phases are calculated by averaging the reciprocal interspike intervals (ISI) for 

spikes in the respective time window (Equations 6, 7, 8, 9, 10), where m-l= number of ISIs 

in dynamic window, p-n =number of ISIs in static window, fd=firing rate in the dynamic 

ramp phase, fs=firing rate in the static hold phase.

(6)

(7)

8

(9)
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(10)

A third derived dependent variable is the modulation index, which compares the firing rate 

when the edge of the stimulus (Rmax) compared to the flat part of the stimulus (Rmin) is 

directly above the receptive field center.

(11)

Employing a cross-validation framework to estimate the out-of-sample performance of the 

model, 36 indenter shift locations are partitioned into six subsets of equal size prior to 

fitting. Table 3 shows training and testing partitions for the six folds. For each subset j, the 

model is fit using the shift locations in the five subsets excluding j (training set), and then 

evaluated against subset j (testing set). The estimate of out-of-sample performance is 

obtained by averaging the performance measure for each j. Evaluating the model in this way 

allows each data point to efficiently contribute to estimates of both model parameters and 

performance while mitigating the risk of model over-fitting associated with in-sample 

performance estimates.

The six free model parameters, β, kd, ks, τ, C, and  are fit within the cross validation 

framework using response surface methodology. The goal is to find a combination of values 

which maximize a weighted goodness of fit measure, fractional sum of squares (FSS), 

between model predictions and the in vivo firing rates for like stimuli. In Equations 12, 13, 

and 14, a total FSS is calculated by adding weighted contributions from static hold 

(weighing factor ωs) and dynamic ramp (weighing factor ωd) phases. The weight of the 

static hold is set to three times greater than dynamic ramp because its duration is greater. 

The variable (obs_fd)i refers to the in vivo firing rate for the dynamic ramp phase for 

location-grating shift i, and (pred_fd)i corresponds to dynamic phase model predictions for 

shift i. Likewise, (obs_fs)i and (pred_fs)i refer to in vivo and predicted firing rates for the 

static hold phase.

(12)

(13)

(14)

Within each fold, RSM fitting is performed twice, with two sets of starting parameters. 

Multiple sets of starting parameter values help guard against finding a local optimum when 

following the path of steepest ascent. The set of parameters for the first start point is β = 0 
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mA, kd = 8e-09 mA · Pa/ms, ks = 7e-07 mA/Pa, τ = 68 ms, C = 1e-06 mF, and  = 50 mV. 

The set of parameters for the second start point involved changes only to kd (8.2e-09 mA · 

Pa/ms) and ks (3.0e-07 mA/Pa).

The iterative RSM procedure follows 5 steps. First, base model parameters β, kd, ks, τ, C, 

and  are set and a coding increment (Δk) is chosen for each parameter through trial and 

error. Increments are chosen such that they caused small deviations in model output, and are 

typically two orders of magnitude smaller than the base parameters. Once the base 

parameters and coding increments are set, the base parameters are systematically 

incremented and decremented by one coding increment and FSS is calculated for each of the 

26 combination of parameters as well as the unmodified base parameters, for a total of 65 

runs. A linear regression approximates the relationship between model parameters and FSS. 

The regression coefficients are then used to determine the magnitudes and direction in which 

to vary all six model parameters to obtain a larger value of FSS. The model is run using 

parameters found by taking successive steps following this path of steepest ascent until no 

further gains are achieved. At this point, the process is repeated using the parameters 

obtained by following the path of steepest ascent. The procedure iterates until FSS between 

observed and predicted firing rates no longer increases.

2.2.3 Population validation at psychophysical level—A psychophysical task of 

sphere discrimination is used to validate the prediction of the population of receptors. In 

specific, we investigate the ability of the model, configured in a population density of 100 

receptors per cm2, to discriminate indenters with radii of curvature (RC) between 296 and 

365 m−1 from a standard indenter with RC 287 m−1. This procedure aligns with Goodwin’s 

previous work to characterize human discrimination [20], which indicated that participants 

could distinguish a curvature of 365 m−1 from a standard of 287 m−1 in 95% of trials and an 

RC of 296 m−1 from the standard in 58% of trials, i.e., a value slightly above chance 

performance.

As in Goodwin’s procedure, the FEM is indented with spherical indenters with RCs from 

287 to 365 m−1 to a depth of 1.0 mm with a ramp-up period of 50 ms and a hold period of 

950 ms. The psychophysical prediction is made by following the steps in Figure 3. First, (a) 

noise is introduced by multiplying firing rates and first spike latencies of all elements in one 

indentation, e.g. RC 287 m−1, by a set of normal random variables with mean µ1=1 and 

standard deviation σ1. The value for σ1 was varied between 0.015 and 0.085. Then, either 

the Gradient Sum or Euclidean Distance method was employed to link modeled population 

responses to the discrimination task. Two methods were used as the exact nature of the 

biological process is unclear (see Discussion).

Gradient Sum Method: With this approach, basically, each indenter is represented by a 

single number, which can be compared to other spheres. The method traverses the 

population receptor by receptor and calculates, for each, a gradient from its neighbors’ firing 

rates or first spike latencies. In specific, in step (b), an element-to-neighbors gradient is 

calculated by summing absolute values of differences between the element and its 

neighboring elements; (c) gradient sum is then obtained by summing gradients of all 

elements in a population. In (d), 100 gradient sums are obtained for one sphere by repeating 
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(a), (b) and (c) 100 times, each time with a new set of normal random variables with the 

same mean value and standard deviation. In (e), by repeating (a), (b), (c) and (d) for all 7 

RCs, 700 gradient sums, 100 per RC, are generated and µ2, σ2 are calculated for each RC. 

The process hereto is repeated in (f) to obtain 100 µ2, σ2 values per indenter. A signal 

detection theory approach was used to compare the standard, RC 287, with the other 

spheres. For example, in (g, h) one set of µ2, σ2 predictions for RC 287 m−1 and one from 

RC 296 m−1 are randomly picked as inputs for the signal detection theory method. A β 

criterion of 0.5 was used as default in the signal detection theory method outputting 1 hit 

rate (HR 1) for the indentation of RC 296 m−1; (i) by repeating (g), (h) 100 times, 100 hit 

rates are generated for RC 296 m−1; (j) by repeating (g), (h), (i) for all RCs, 600 hit rates are 

obtained, 100 for each sphere, excluding the standard, RC 287 m−1; (k) psychophysical 

predictions are generated using hit rates obtained, and the mean µ3 and standard deviation 

σ3 error bar of those hit rates are obtained.

A derivative of the Gradient Sum method (not shown in its entirety in Figure 3) was also 

used whereby the β criterion was varied as a normal random variable. In this case, all 

procedures (a-d) remained the same except at step (e) 5000 sums per RC were generated 

instead of 100. Steps (f and g) were skipped. At (i and j), we generated 100 hit rates per 

indenter based on shifts of beta as a normal random variable (1, 0.01) and (1, 0.02). That is, 

we completed 100 hit rates of different betas for a fixed mean, standard deviation for 287 

m−1 compared to that for 296 m−1. By changing from 0.01 to 0.02 we were able to increase 

the error bars, while keeping the mean probability of detection unchanged.

Euclidean Distance Method: With this approach, basically, firing rates and first spike 

latencies can be compared, receptor by receptor, for populations indented with different 

spheres. Therefore, the capability to discriminate is based upon the difference in predicted 

firing rates, or first spike latencies, compared receptor by receptor between the indentations 

of two spheres, and then summed. In specific, in step (b*), all 18 noisy firing rates and first 

spike latencies form a set, e.g. set 1, where the 18 noisy firing rates represent the 18 

elements in a population of 100 receptors/cm2; (c*) 100 sets are obtained for each sphere by 

repeating (a) and (b*) 100 times, each time with a new set of normal random variables with 

the same mean value and standard deviation. In (d*), 700 sets, 100 for each RC, are 

generated by repeating (a), (b*) and (c*) for all 7 RCs. In (e*), one set from RC 287 m−1 and 

one from another indenter, e.g. RC 296 m−1, are randomly selected, and by subtracting 

corresponding values element by element and summing the 18 absolute values of 

differences, 1 sum is obtained; (f*) by repeating (e*) 100 times, 100 sums for each RC are 

generated; (g*) by repeating (e*), (f*) for all 7 RCs, 700 sums, 100 for each RC, are 

generated. A decision rule (h*) was used to classify a sum as a hit or miss, where sums per 

RC (296 to 365 m−1) were compared against the midpoint of the prediction of that RC’s 

mean and that of the standard. This decision rule was repeated 100 times per indenter to 

generate 100 hit rates, with µ3, σ3 used to attain psychophysical predictions.

Note that in all cases where the β criterion was fixed, we were able to control the mean 

probability of detection by changing the normal random variable in Figure 3, step (a). When 

we change, in step (a), the 100 generated matrices to 10 we increase the standard deviation 

on the probability of detection. Similarly, when we calculate 10 hit rates, instead of 100, the 
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mean probability of detection is not stable, i.e., if 10 hit rates are generated and then 10 hit 

rates again, the predictions change.

In this way, psychophysical predictions for spheres indented in two shift positions (0.0 and 

0.2 mm along proximal-distal axis) ensure that performance is consistent regardless of a 

slight variation in the indentation.

3 RESULTS

3.1 Skin Mechanics Validation

Material properties for the FEM were varied and the resulting models were indented with 

cylinders of radii 50 microns and 3.17 mm. Figure 4 shows the skin surface deflection 

results. Two regions of the plot can be inspected: that closest to the site of indentation 

(approximately 0.5 mm and closer) and that further away (0.5 to 5 mm). In the case of the 50 

µm indenter, material properties for Trial 1 produce deflection results that overshoot 

observed data in both regions and material properties in Trial 2 produce results that 

undershoot observed data. Trial 3, which used a combination of material properties from the 

first two trials, produced surface deflection similar to the observed data in both regions.

3.2 Single-unit Fitting using Cross-Validation

Table 4 provides intermediate and final values for the six model parameters and in-sample 

FSS for each set of parameters in one RSM session (fold 3, start point 2). In this session, six 

iterations of RSM were completed before FSS no longer increased and FSS rose from 0.77 

to 0.82. Final model parameters are in bold at the bottom of the table.

Predicted firing rates during the dynamic ramp and static hold phases overlay observed 

firing rates for a 3.0 mm bar (Figure 5). Modulation indices are shown in Table 5. In the 

dynamic ramp phase, minimum and maximum firing rates average 54 and 212 spikes/s, 

respectively. Given the calculation for modulation index in Equation 11, the proximity to an 

edge increased firing rate by up to 157 spikes/s. The edge effect is less drastic for the static 

hold phase, with a modulation index of 52 spikes/s.

3.3 Population Validation at Psychophysical Level

Figure 6 shows example 3D plots of firing rate response produced for dynamic ramp and 

static hold phases of the indentation, as well as first spike latency.

Figures 7 and 8 show the results of the probabilistic population encoding compared to 

Goodwin’s psychophysical results. In Figure 7, plots (a)-(c) show the results for firing rate 

and first spike latency prediction using the Gradient Sum method. The predicted firing rate 

in the static hold led to the best fit to the experimental data and was robust to the 0.2 mm 

lateral shift. In contrast, while both firing rate in the dynamic hold and first spike latency 

increase monotonically, the two predictions (dotted lines in each plot) diverge given the 0.2 

mm lateral offset. Figure 7, plot (d) shows the results in the static hold phase using the 

Euclidian Distance method.
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Figure 7, plots (e, f) can be compared to plot (a) and indicate that the means can be 

increased or decreased by reducing or increasing afferent to afferent noise, respectively, per 

parameter σ1. Figure 7, plot (g) indicates that the error bars on the psychophysical 

predictions can be increased by changing the procedure (a) in Figure 3, whereby only 10 

normal random noise matrices are used instead of 100. Another means of controlling the 

error bars is via the β criterion in the signal detection theory step, Figure 8. In this case, we 

varied the β criterion by a small amount from trial to trial by drawing from a distribution 

with a tighter variance (0.01, Figure 8 (a)) and were able to achieve a greater or lesser 

change to the error bars, for example, as compared to when the variance was modified to 

0.02 in Figure 8 (b).

4 DISCUSSION

This work develops and validates a multi-level, physics-based model for the SAI afferent 

that combines skin mechanics and neural dynamics to enable a psychophysical prediction of 

a range of spatial stimuli. The model’s validation is done at three levels and indicates, in 

particular, that 1) the FE model’s surface deflection closely matches that observed in 

Srinivasan’s human experiments [30], 2) the single-unit results achieve an FSS of 0.81 

which compares favorably to Johnson’s neural recordings and modeling efforts [4] [26] 

while incorporating an ability to respond to the rate of indentation, and 3) the results of the 

simulated psychophysical sphere discrimination correlate with Goodwin’s experiment [20] 

and indicate the model can differentiate between spheres of RC 287 and 365 m−1, two 

indenters that are distinguishable with p ≅ 1.

Perhaps most significantly, the work explores means to predict a psychophysical response 

using two approaches, Euclidean Distance and Gradient Sum. Two significant extensions 

with this type of multi-unit, physics based model are that different single unit metrics can be 

tied to population coding, and other sources of information could be accounted, such as 

rapidly adapting afferents and only those afferents near the edge of the nail.

4.1 Simulating a Psychophysical Response

We introduced two strategies for simulating a population of afferents and making 

probabilistic psychophysical prediction. With the Euclidean Distance method, the capability 

to discriminate two indenters is based upon the difference in predicted static firing rates, 

compared receptor by receptor and then summed, between the standard and comparison 

stimuli. In contrast, the Gradient Sum method traverses receptor by receptor through the 

population and calculates per receptor a gradient from its neighbors’ firing rates or first 

spike latencies. In essence, therefore, with the Gradient Sum method, a single number is 

arrived at, per sphere, for comparison to that of a second sphere. By comparison in the case 

of the Euclidean Distance method, one makes receptor to receptor comparisons of 

population responses elicited by two stimuli. Therefore, the Euclidean Distance method 

might require the idea of a type of very rapidly decaying “visual store” iconic memory on a 

per receptor basis. This makes it difficult to see how first spike latencies, in particular, of 

two indenters would be comparable by a person using this sort of approach. For this reason, 

only static firing rate was calculated using this method, as opposed to first spike latency, 
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where the Gradient Sum method’s means of creating a single estimate might be more readily 

comparable between time varying stimuli without the per receptor memory requirement. The 

Gradient Sum method also more readily affords the use of signal detection theory where the 

β criterion can be varied to effect larger trial to trial variance. Therefore instead of 

controlling model variance only by neural noise, which most others have done in the past, 

we can also model variance due to inconsistent classification.

The study of the population codes used by the brain to discriminate tactile stimuli remains 

an area of exploration. A number of investigators have sought to align the indentation of the 

skin’s surface with a human psychophysical response. Wheat and Goodwin, for example, 

extrapolated their single-unit model to a population, whereby factors included receptor 

density, receptor sensitivity and covariance, and noise [11]. Their simulated population is a 

regression using a template matching approach, from which an estimate of indenter 

curvature was attained. In some ways, this approach is similar to the Gradient Sum 

approach, in that a prediction with some probability is arrived at per indenter for comparison 

to that of the standard. However, we calculate a per receptor gradient whereas Goodwin and 

Wheat match a regressed receptor prediction to a recorded firing rate for a known stimulus 

position on the skin surface. Related is the use of regression models tied to the geometric 

features of a particular indenter, in contrast to the physics-based model described herein, 

which was built with a finite element model to enable the predictions of novel stimuli. For 

example, the single-unit models were fitted to bar and gap stimuli and then used in a 

population to predict spherical stimuli. The single-unit models also afford an evaluation of 

population response under dynamic or static firing rate or first spike latency. Another 

difference is that herein is used a signal detection theory approach that involves the 

employment of different β criterion values, as noted in the paragraph above, in addition to 

more standard means to judge discrimination if the distance of the comparison indenter from 

the standard is half that between the means of these distributions.

In another distinct effort to model population encoding, Guclu and Bolanowski created 

simulated populations with dependent measures both quantitative (e.g., number of active 

fibers, summated firing rate, average firing rate) and qualitative (i.e., visual comparisons in 

plots) to investigate the population response given changes to innervation geometry and 

receptor density [33]. They then introduced the idea of a “higher order neuron” to make 

semi-global perceptual judgments based on the firing properties of afferents covering a 

small area.

4.2 Metrics of Single-Unit Coding

Linked to the means of generating a population response, our model affords the 

consideration of a variety of single-unit coding metrics. We considered the firing rate in the 

static hold phase of the indentation, the firing rate in the dynamic ramp, and as well first 

spike latency. Similarly, given just the timing of first spikes, work by Johansson, et al. have 

considered the recruitment order of a population of afferents to predict the direction and 

orientation of indentation, with an empirical model [9].

Among the three measures, our finding was that the firing rate in the static hold was the best 

predictor, observed in Figure 7 for both the Gradient Sum and Euclidean Distance methods, 

Gerling et al. Page 12

IEEE Trans Haptics. Author manuscript; available in PMC 2015 January 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



because its prediction was robust to the 0.2 mm lateral shift and fit the psychophysical data 

most closely across the set of indenters. The other measures were reasonable predictors, 

though there was some discrepancy between predictions given the 0.2 mm small shift. This 

might not be expected of a robust metric. Because the measures of first spike latency and 

dynamic firing rate do monotonically increase, however, it could be that such measures give 

initial rough estimations to be refined later with information obtained in the static hold.

4.3 Accounting for Other Sources of Information

Other significant sources of information may improve the model’s psychophysical 

prediction. In particular, the model herein does not account for input given 1) other afferent 

types (e.g., rapidly adapting afferents, which though not as spatially acute as SAIs still 

prominently contribute to form processing and are present at higher densities), 2) near 

simultaneous use of multiple coding strategies (as suggested via “what” [first spike latency] 

and “how much” [static and/or dynamic firing rate] information to fit behavioral timescales 

[9]), and 3) afferent populations located near the nail (SAI afferents along the outline of the 

nail may resolve the direction of indentation and curvature of the indenter [13]). Concerning 

the latter, a preliminary analysis in Figure 9 yields high stress concentrations near the nail, 

indicating that SAIs near the nail may indeed inform a psychophysical prediction, though 

this was not rigorously attempted here. Further efforts might include these additional sources 

of information. We note that the ability to examine these types of questions, such as using 

only those afferents near the edge of the nail, is a benefit of using a multi-level, physics-

based modeling approach.

4.4 Model Limitations

While cylinder, bar and sphere indenters were used at different stages of model validation, 

and tied to existing biological data, work yet remains to differentiate stimuli other than 

spheres at the psychophysical level. This is planned future work. Also, the models replicate 

characteristics of the SAI afferent, including more vigorous response during stimulus 

movement than hold and during greater magnitudes of probe indentation. Its irregular 

interspike intervals [34] were not a focus as their replication would not greatly impact the 

population metrics.
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Figure 1. 
3D FE mesh of human distal phalange. Shown are the (a) overall mesh, (b) cross section of 

the mesh near the interconnect with the middle phalange, (c – d) longitudinal section for 

both the outer surface and inner mesh, and (e) four layers of microstructures. In (e) the 

epidermis is 0.471 mm thick (0.371 mm stratum corneum and 0.1 mm living epidermis) and 

the dermis is 1.153 mm thick.
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Figure 2. 
The model was validated at each of three points; the skin mechanics sub-model, single SAI 

electrophysiological response, and population response. (a) shows the indentation of a 

spherical stimulus into the skin mechanics model, (b) denotes the response in neural spike 

times for a single afferent directly underneath the sphere, and (c) shows the response from a 

population of 3 afferents. The shaded region under “Neural Spike Times” signifies the 50 ms 

timeframe in which the indenter was moving into the skin.
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Figure 3. 
Steps in probabilistic discrimination of 7 indenters (RC = radius of curvature) at the 

simulated psychophysical level. Model inputs are firing rate and first spike latency 

predictions from 18 receptors in a 100 receptor/cm2 density (though only 9 elements are 

shown here in (b*) and (e*) due to symmetry). First, noise is applied, then either the 

Gradient Sum or Euclidean Distance approach, before com-paring the predictions with 

either Signal Detection Theory or a Decision Rule. Additional details in 2.2.3 Population 

validation at psychophysical level.
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Figure 4. 
Skin surface deflection of the FEM in response to a 50 μm line load (upper) and a 3.17 mm 

diameter cylinder (lower) indented to a depth of 1.0 mm.
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Figure 5. 
Plot of predicted and observed firing rates in dynamic ramp (left) and static hold (right) 

phases for a 3.0 mm bar indented at various lateral shift locations relative to the SAI 

receptive field center. Observed firing rates recorded by Phillips and Johnson, 1981.
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Figure 6. 
3D plots of predicted firing rates in the dynamic phase (upper) and in the static hold 

(middle) phase for a population of receptors when indented with a spherical stimulus of 

curvature 287 m−1. Also shown is first spike latency (lower).

Gerling et al. Page 23

IEEE Trans Haptics. Author manuscript; available in PMC 2015 January 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7. 
Psychophysical predictions of firing rate during the (a) static hold phase (b) dynamic ramp 

phase of the indentation, and using (c) first spike latency. Plot (d) shows the prediction using 

the Euclidean Distance method. In plots (e) and (f) the Gradient Sum method was used to 

calculate static firing rate where noise level was varied at 0.025 and 0.085, on either side of 

the 0.055 in (a). The best fit of the mean psychophysical data from Goodwin, 1991 was 

found in (a) at a noise level of 0.055. In plot (g), only 10 random noise matrices were used 

instead of the 100 as in all other simulations. Note that the standard indenter was 287 m−1.
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Figure 8. 
Psychophysical predictions using the Gradient Sum method to control the estimation of the 

error bars by changing the β criterion a small amount from trial to trial using signal detection 

theory. The standard deviation of the distribution from which β was drawn increased from 

0.01 in plot (a) to 0.02 in plot (b) which increased the error bars but left the means 

unchanged.
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Figure 9. 
Finite element model deformed by a sphere stimulus, whereby high stresses are indicated at 

the border of the nail.
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Table 1

FEM material properties from Maeno, et.al. [18].

Skin Layer E (Pa) v

Epidermis, Trial 1 1.36 × 105 0.48

Dermis, Trial 1 8.00 × 104 0.48

Subcutaneous tissue, Trial 1 3.40 × 104 0.48

Bone, Trial 1 1.70 × 107 0.48
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Table 2

Parameters for the material properties in Trial 2, from Wu, et al. [17].

Skin Layer E (Pa) v C10
(Pa)

C01
(Pa)

C20
(Pa)

C11
(Pa)

C02
(Pa)

D1
(Pa−1)

Temp
(°C)

Epidermis, Trial 2 2.00 × 106 0.30 - - - - - - -

Dermis, Trial 2 - - 2430 5420 239000 −262000 74700 13.3 25

Subcutaneous
tissue, Trial 2 - - 300 671 29800 −32700 9330 106.5 25

Bone, Trial 1 1.70 × 107 0.30 - - - - - - -
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Gerling et al. Page 29

Table 3

Testing and training sets for cross validation. Data points represent the lateral shifts of the indenter from the 

center directly above the indenter being location 0.0. Values are in units mm.

Fold 1

Testing Training Training Training Training Training

−3.3, -1.3, −0.3
0.9, 1.5, 2.3

−2.5, −1.9, −0.9,
0.5, 2.5, 3.5

−3.1, −1.5, −0.7,
−0.1, 1.1, 2.1

−2.9, −2.3, −1.1,
0.1, 1.7, 2.7

−3.5, −2.1, −0.5,
1.3, 2.9, 3.3

−2.7, −1.7, 0.3,
0.7, 1.9, 3.1

Fold 6

Training Training Training Training Training Testing

−3.3, −1.3, −0.3
0.9, 1.5, 2.3

−2.5, −1.9, −0.9,
0.5, 2.5, 3.5

−3.1, −1.5, −0.7,
−0.1, 1.1, 2.1

−2.9, −2.3, −1.1,
0.1, 1.7, 2.7

−3.5, −2.1, −0.5,
1.3, 2.9, 3.3

−2.7, −1.7, 0.3,
0.7, 1.9, 3.1
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Table 4

Model parameters and corresponding FSS obtained at each step of the RSM model fitting for the fold 3, start 

point 2. At the final iteration, the out-of-sample FSS was 0.837.

Iteration
Model Parameters in-sample

FSSβ (mA) kd (mA · Pa/ms) ks (mA/Pa) τ (ms) C (mF) v̄ (mV)

0 (Start) 0 3.00E-07 8.20E-09 68.00 1.00E-06 50.00 0.7748

1 −8.13E-09 3.07E-07 7.88E-09 67.49 1.01E-06 50.04 0.8160

2 −8.77E-09 3.08E-07 7.87E-09 67.32 1.01E-06 50.06 0.8175

3 −1.05E-08 3.16E-07 7.85E-09 66.84 1.01E-06 50.10 0.8226

4 −1.06E-08 3.16E-07 7.84E-09 66.80 1.01E-06 50.10 0.8233

5 −1.07E-08 3.16E-07 7.84E-09 66.77 1.01E-06 50.10 0.8234

6 (Final) −1.07E-08 3.16E-07 7.84E-09 66.77 1.01E-06 50.10 0.8234
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Table 5

Predicted modulation indices, compared to those recorded in vivo for Phillips and Johnson, 1981 [4].

dynamic firing rate
(spikes/sec)

static firing rate
(spikes/sec)

min max m min max m

Predicted 54 212 0.59 13 65 0.67

Johnson,
1981 70 210 0.50 7 61 0.79
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