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Abstract

The capabilities of (I) learning transferable knowledge across domains; and (II) fine-tuning the 

pre-learned base knowledge towards tasks with considerably smaller data scale are extremely 

important. Many of the existing transfer learning techniques are supervised approaches, among 

which deep learning has the demonstrated power of learning domain transferrable knowledge with 

large scale network trained on massive amounts of labeled data. However, in many biomedical 

tasks, both the data and the corresponding label can be very limited, where the unsupervised 

transfer learning capability is urgently needed. In this paper, we proposed a novel multi-scale 

convolutional sparse coding (MSCSC) method, that (I) automatically learns filter banks at 

different scales in a joint fashion with enforced scale-specificity of learned patterns; and (II) 

provides an unsupervised solution for learning transferable base knowledge and fine-tuning it 

towards target tasks. Extensive experimental evaluation of MSCSC demonstrates the effectiveness 

of the proposed MSCSC in both regular and transfer learning tasks in various biomedical domains.

Index Terms

Transfer Learning; Sharable Information; Convolutional Sparse Coding; Deep Learning; 
Biomedical Application; Brain Tumors; Low Dose Ionizing Radiation (LDIR); Mouse Model; 
Breast Cancer Subtypes

⋆Correspondence should be addressed to Hang Chang (hchang@lbl.gov). 

All related resources have been released for public consumption at BMIHub - http://bmihub.org

Disclaimer
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to 
contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed 
herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University 
of California.

HHS Public Access
Author manuscript
IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2018 May 01.

Published in final edited form as:
IEEE Trans Pattern Anal Mach Intell. 2018 May ; 40(5): 1182–1194. doi:10.1109/TPAMI.2017.2656884.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bbds.lbl.gov
http://bmihub.org


1 Introduction

Recent neuroscience findings [1], [2] have identified the complex hierarchy in the neocortex 

for the representation of observations. Motivated by these findings, one branch of the 

machine learning community has attempted to build information representations, through 

computational modules, which share similar properties with those in the neocortex. For the 

past decade, deep learning has gained momentum as a result of its demonstrated capability 

of improved performance for various automation tasks and its potential for future research. 

Among different deep learning approaches, Convolutional Neural Networks (CNNs) [3]–[7] 

and Deep Belief Networks (DBNs) [8], [9] are the most well-established techniques.

Along with the development of modern deep neural networks, one curious phenomenon 

exhibits that, regardless of natural image dataset or even training objectives [9]–[11], the 

first layer of the deep neural network always captures standard features that resemble either 

Gabor filters or color blobs. The common appearance of filters learned from the first few 

layers provides the domain adaptive/transferrable base knowledge, which can serve as the 

basis for transfer learning [12]–[14]. During transfer learning with deep neural networks, a 

base deep neural network is first trained on a base dataset and task, and the learned 

knowledge (e.g., features, representation) is then transferred to a target network to be trained 

on a target dataset and task. Typically, the first n layers of the target deep neural network is 

initialized as the first n layers of the base deep neural network; while with the remaining 

layers randomly initialized and trained towards the target dataset and task. Depending on the 

size of the target dataset and the size of the network (i.e., the number of parameters), the first 

n layers of the target deep neural network can either be frozen (i.e., remain unchanged 

during training on the new task), or be fine-tuned based on backpropagation strategy towards 

the new task, which is a balance between specificity and generality of derived knowledge. 

Although deep neural networks have been successfully applied in various biomedical tasks, 

the training of such large scale networks typically requires massive amounts of labeled data, 

which can be very limited in many biomedical tasks.

In this paper, we proposed a novel method, namely Multi-Scale Convolutional Sparse 

Coding (MSCSC), which automatically learns filter banks at different scales in a joint 

fashion with enforced scale-specificity, and therefore not only improves the classification 

performance on many biomedical tasks, but also provides an unsupervised solution for 

transfer learning.

The rest of this paper is organization as follows: Section 2 briefly reviews related studies. 

Section 3 describes the details of proposed MSCSC model. Section 4 and Section 5 

elaborate the experimental design, followed by detailed discussion on the evaluation results. 

Lastly, section 6 concludes the paper.

2 Related Work

In recent years, convolutional sparse coding has received increasing research interest in 

computer vision and machine learning communities [15]–[20], due mainly to its capability 

of learning shift-invariant filters with complex patterns.
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Meanwhile, in the field of transfer learning via deep neural networks, recent studies [21]–

[23] have shown that, given a target dataset which is significantly smaller than the base one, 

transfer learning can be a powerful tool to enable training a large target network to obtain 

state-of-the-art results in various tasks without over-fitting, which suggests that the first few 

layers of a deep neural network, trained on a large scale base dataset, can capture domain 

adaptive/transferable knowledge, which is fairly general at least in the natural image domain. 

Although deep neural networks have been successfully applied in various biomedical tasks, 

the training of such large scale networks typically requires massive amounts of labeled data, 

which can be very limited in many biomedical tasks.

3 Multi-Scale Convolutional Sparse Coding

In this section, we describe the proposed multi-scale convolutional sparse coding model. 

Without the loss of generality, we demonstrate MSCSC with 2D images as input. Let 

X = {xi}i = 1
N  be a training set containing N images with dimension m × n. Let 

D = {ds, k}
s = 1, k = 1
S, K  be the 2D multiscale convolutional filter bank with S different scales, 

and K filters per scale, where each ds,k is an hs × hs convolutional kernel. Define 

Z = {Zi}i = 1
N

 as the set of sparse feature maps, where Zi = {zs, k
i }

s = 1, k = 1
S, K

 consists of S × K 

feature maps for the reconstruction of image xi. MSCSC aims to decompose each training 

image xi as the sum of a series of sparse feature maps zs, k
i ∈ Zi convolved with kernels ds,k 

from the filter bank D, by solving the following objective function:

min
D, Z

ℒ = ∑
i = 1

N
xi − ∑

s = 1

S
∑

k = 1

K
ds, k * zs, k

i

F

2
+ α ∑

s = 1

S
∑

k = 1

K
zs, k

i
1

s.t.‖ds, k‖2
2 = 1, ∀k = 1, …, K; ∀s = 1, …, S

(1)

where the first and the second term represent the reconstruction error and the ℓ1-norm 

penalty, respectively; α is a regularization parameter; * is the 2D discrete convolution 

operator; and the filters are constrained to have unit energy to avoid trivial solutions. The 

construction of D is a balance between the reconstruction error and the ℓ1-norm penalty.

Note that the objective of Eq. (1) is not jointly convex with respect to D and Z, but is convex 

with respect to either one of them with the other fixed [24]. We thus solve Eq. (1) by 

optimizing D and Z in an alternative fashion, i.e., iteratively performing the two steps that 

first compute Z and then updating D. Specifically, we use the Iterative Shrinkage 

Thresholding Algorithm (ISTA) to solve for the sparse feature maps Z; and use the 

stochastic gradient descent [15] for updating the convolutional dictionary D. Alternative 

methods for updating the dictionary can be found in [16], [17], [20], and the proposed 

optimization procedure is sketched in Algorithm 1. It is clear that the proposed optimization 

procedure utilizes the standard ISTA strategy with indices over the different scales.
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Algorithm 1 MSCSC Algorithm

Input: Training set X = {xi}i = 1
N , K, α

Output: Convolutional filter bank D = {ds, k}
s = 1, k = 1
S, K

1: Initialize: D ~  (0, 1), Z ← 0

2: repeat

3:   for i = 1 to N do

4:     Normalize each kernel in D to unit energy

5:
    Fixing D, compute sparse feature maps Zi by solving

    Zi arg min
zs, k
i ∈ Zi

‖xi − ∑
s = 1

S
∑

k = 1

K
ds, k * zs, k

i ‖
F

2
+ α ∑

s = 1

S
∑

k = 1

K
‖zs, k

i ‖1

6:     Fixing Z, update D as
    D ← D − μ ΔDℒ (D,Z)

7:   end for

8: until Convergence (maximum iterations reached or objective function ≤ threshold)

4 Evaluation of MSCSC on Regular Classification Tasks

This section provides experimental evaluation of MSCSC on tissue histology classification 

and the classification of breast cancer subtypes, followed by detailed discussion on the 

experimental results.

4.1 Evaluation of MSCSC on Tissue Histology Classification

In this section, we present detailed experimental design and evaluation of MSCSC on the 

task of tissue histology classification. The corresponding classification pipeline, namely 

Multi-Scale-CSCSPM, was built upon MSCSC and SPM, and applied on two distinct tumor 

datasets, curated from The Cancer Genome Atlas (TCGA), namely (i) Glioblastoma 

Multiforme (GBM) and (ii) Kidney Renal Clear Cell Carcinoma (KIRC), which are publicly 

available from the NIH (National Institute of Health) repository.

4.1.1 Multi-Scale Multi-Spectral Feature Extraction for Tissue Histology 
Classification—As suggested in [25], different spectra of biomedical images usually 

capture distinct targets of interests, and applying CSC to each spectrum separately enables 

learning of biological-component-specific feature detectors, which helps improve the 

classification performance. Therefore, we adopt the same configuration as in [25], and apply 

the proposed MSCSC to two separate spectra produced through color decomposition [26], 

which characterize the nuclear chromatin and the extracellular matrix, respectively.

Without the loss of generality, we assume that the number of filters for each spectrum 

(channel) is K per scale, the number of scales is S, and the number of spectra (channels) is 
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W after decomposition; the 2D feature map ys, k
ω  is then defined as: ys, k

ω = ds, k
ω * xω, for 1 ≤ s 

≤ S, 1 ≤ k ≤ K and 1 ≤ ω ≤ W, where x ̂ω is the ω-th spectrum component of input image x 

and ds, k
ω ∈ Dω is the k-th convolutional kernel at scale s in filter bank Dω learned over 

spectrum with index ω.

The architecture for multi-scale multi-spectral tissue histology feature extraction is 

illustrated in Figure 2, which consists steps as follows,

1. Color decomposition (CoD). An input image is first decomposed and divided 

into two separate spectrum [26], corresponding to the nuclear chromatin and the 

extracellular matrix, respectively.

2. Multi-scale convolution. Each decomposed spectra is convolved with spectrum-

specific multi-scale filters learnt via MSCSC.

3. Element-wise absolute value rectification (Abs). The Abs layer computes 

absolute value element-wisely in each feature map, ys, k
ω , to avoid the cancelation 

effect in sequential operations.

4. Local contrast normalization (LCN). The LCN layer aims to enhance the 

stronger feature responses and suppress weaker ones across feature maps, 

{ys, k
ω }

s = 1, k = 1
S, K

, in each spectrum (ω), by performing local subtractive and 

divisive operations [18], [27].

5. Max-pooling (MP). The MP layer partitions each feature map into non-

overlapping windows and extracts the maximum response from each of the 

pooling window. It allows local invariance to translation [27].

6. Concatenation of features from each spectrum to form the multi-scale multi-

spectral tissue features.

After extraction, the multi-scale multi-spectral tissue features, with dimensionality SKW, are 

fed into SPM frame-work for summarization and classification as described in the following 

section.

4.1.2 Feature Summarization via SPM—We adopt SPM to construct tissue 

morphometric context [25], [28]–[31] as the final representation for tissue classification. Let 

V = [v1, …, vT] ∊ ℝSKW×T be the feature set of T feature vectors with dimension SKW. The 

final representation of the tissue image is constructed as follows,

1. Construct a dictionary B = [b1, …, bP] ∊ ℝSKW×P with P tissue morphometric 

types, by solving:

min
B, C

∑
i = 1

T
‖vi − Bci‖

2s . t . card(ci) = 1, ‖ci‖1 = 1, ci ≥ 0, ∀i (2)
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where C = [c1, …, cT] ∊ ℝP×T is a set of codes for reconstructing V, cardinality 

constraint card(ci) enforces ci to have only one nonzero element, ci ≥ 0 is a non-

negative constraint on all vector elements. Eq. (2) is optimized by alternating 

between the two variables. After training, the query signal set V is encoded via 

Vector Quantization (VQ) based on dictionary Bi.e., assigning each vi to its 

closest tissue morphometric type in B.

2. Construct the spatial histogram for SPM [32]. This is done by dividing an image 

into increasingly finer subregions and computing local histograms of different 

tissue morphometric types falling into each of the subregions. The spatial 

histogram, H, is then formed by concatenating the appropriately weighted 

histograms of tissue morphometric types at all resolutions, i.e.,

H0 = H0
0

Hl = (Hl
1, …, Hl

4l
), 1 ≤ l ≤ L

H = ( 1
2L H0, 1

2L H1, …, 1
2L − l + 1 Hl, …, 1

2HL)

(3)

where (·) is the vector concatenation operator, l ∊ {0, …, L} is the resolution 

level of the image pyramid, and Hl represents the concatenation of histograms for 

all image subregions at pyramid level l. Note, the formulation of spatial 

histogram, H, is derived from the work in [32], and please refer to Equation 1 

and Equation 3 in [32] for details.

For the final classification, the spatial histograms are transformed via homogeneous kernel 

map [33] for improved scalability with the adoption of linear SVM [34].

4.1.3 Experimental Setup—We have compared the proposed approach with six other 

approaches on both GBM and KIRC datasets. Implementation details of all approaches are 

summarized in Table 1. On the implementation of nonlinear kernel SPM , we used the 

standard K-means clustering for constructing the dictionary and set the level of pyramid to 

be 3. During evaluation, We repeated all experiments 10 times with random splits of training 

and test set, and reported the final results as the mean and standard deviation of the 

classification rates on the following two distinct tumor types:

1. GBM Dataset. It contains 3 classes: Tumor, Necrosis, and Transition to Necrosis, 

which were curated from whole slide images (WSI) scanned with a 20X 

objective (0.502 micron/pixel). Examples can be found in Figure 3. The number 

of images per category are 628, 428 and 324, respectively. Most images are 1000 

× 1000 pixels. In this experiment, we trained on 80 and 160 images per category 

and tested on the remaining images, with three different dictionary sizes: 256, 

512 and 1024. Detailed comparisons are shown in Table 2.

2. KIRC Dataset. It contains 3 classes: Tumor, Normal, and Stromal, which were 

curated WSI scanned with a 40X objective (0.252 micron/pixel). Examples can 
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be found in Figure 3. The number of images per category are 568, 796 and 784, 

respectively. Most images are 1000 × 1000 pixels. In this experiment, we trained 

on 140 and 280 images per category and tested on the remaining images, with 

three different dictionary sizes: 256, 512 and 1024. Detailed comparisons are 

shown in Table 3.

4.1.4 Discussion

1. Joint learning (MSCSC) vs. Separate learning (CSC) for the construction of 

multi-scale filters. To better understand the difference between joint learning and 

separate learning in terms of multi-scale filter construction and its impact on 

classification performance, we designed the comparison between Multi-Scale-

CSCSPM and PSEUDO-Multi-Scale-CSCSPM, where the only difference is that 

the multi-scale filters in Multi-Scale- CSCSPM were jointly learnt through 

MSCSC, while the multi-scale filters in PSEUDO-Multi-Scale-CSCSPM were 

separately learnt at each scale via CSC and concatenated afterwards. Figure 1(a) 

shows some examples of multi-scale filters jointly/separately learnt from each 

individual spectrum. It is clear that, through joint learning via MSCSC, the filters 

at smaller scale (i.e., 13 × 13) mainly captures lower-level features (e.g., edges), 

while the filters at larger scale (i.e., 27 × 27) are more responsible for higher-

level features (e.g., complex pattern in extracellular matrix). However, filters 

learnt separately via CSC do not have such scale-specificity, and present a 

mixture of both low-level and high-level features at both scales, which might 

lead to feature redundancy across scales. The difference in scale-specificity 

becomes more distinct for filters learnt from extracellular matrix, since compared 

with nuclear chromatin, extracellular matrix sees much more complex patterns, 

which CSC fails to capture. As a result (shown in Table 2 and Table 3), Multi-

Scale-CSCSPM outperforms PSEUDO-Multi-Scale-CSCSPM on both datasets. 

And we suggest that MSCSC intrinsically allows trainable collaboration of filters 

across different scales, which potentially leads to filters with improved scale-

specificity, and as a result, less feature redundancy across scales.

2. Multi-Scale filters vs. single scale filters. Biological events often express 

themselves at different scales due to the inherent heterogeneity (e.g., cell type, 

cell state and the micro-environment). Therefore, the capability to capture and 

characterize biological events at different scales is very much demanded. For fair 

comparison, in our experiments, Multi-Scale-CSCSPM, PSEUDO-Multi-Scale-

CSCSPM and MCSCSPM were configured to learn the same number of filters, 

which are 300 and 600 filters for GBM and KIRC datasets, respectively. 

Experimental results, as summarized in Table 2 and Table 3, show that, for both 

GBM and KIRC datasets, Multi-Scale-CSCSPM outperforms PSEUDO-Multi-

Scale-CSCSPM and yields the best performance. However, PSEUDO-Multi-

Scale-CSCSPM only outperforms MCSCSPM on GBM; while becomes less 

favorable compared to MCSCSPM on KIRC. These observations suggest that,

a. Classification system built on multi-scale filters learnt via MSCSC is 

more preferable compared to the one built on filters at single scale;
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b. Joint multi-scale filter learning (MSCSC) ensures the scale-specificity 

of filters, and thereafter the consistency of performance for system (i.e., 

Multi-Scale-CSCSPM) built upon features extracted via such filters.

c. The inconsistency of classification system (PSEUDO-Multi-Scale-

CSCSPM), built on PSEUDO-multi-scale filters, attributes to the lack 

of scale-specificity of such filters, which can potentially leads to feature 

redundancy across scales, and as a result, less favorable performance 

even compared with system (i.e., MCSCSPM) built on filters at single 

scale.

3. Multi-Scale filter learning vs. Multi-Stage filter learning. Compared to the most 

recently proposed multi-stage unsupervised feature learning system (PSDnSPM) 

[29], Multi-Scale-CSCSPM consistently achieves better performance over two 

distinct tumor types, with significantly less number of filters (i.e., 300 vs. 1024 

on GBM; and 600 vs. 1024 on KIRC). These advantages, we suggest, are results 

of i) scale specificity enforced by the proposed multi-scale filter learning 

strategy; and ii) convolutional filter learning, which, compared to patch-based 

learning, leads to much more compact filter bank that are translation-invariant.

4. Multi-Scale filter learning v.s. biological meaningful prior knowledge. System 

built upon biological meaningful prior knowledge (i.e., SMLSPM [28]) can be 

very effective for the task of tissue histology classification. However, biological 

meaningful prior knowledge might not always be available straightforwardly 

(i.e., cellular morphometric properties, as used in SMLSPM, might be difficult to 

extract), which, as a result, potentially limits the generalization ability of such 

system to different applications. The results, as shown in Table 2 and Table 3, 

indicate that the proposed system, Multi-Scale-CSCSPM, is superior to the 

system built upon biological meaningful prior knowledge (i.e., SMLSPM [28]), 

without imposing additional requirements (e.g., nuclei are segmentable), which 

is a better alternative for analyzing large cohorts of distinct tumor types with 

substantial technical variations and biological heterogeneities.

4.1.5 Experimental Revisit

1. Color Decomposition: to investigate the benefit of color decomposition in the 

proposed tissue histology classification pipeline, we have further evaluated 

Multi- Scale-CSCSPM with two more variations: Multi-Scale- CSCSPM-RGB 

and Multi-Scale-CSCSPM-Gray. For Multi-Scale-CSCSPM-RGB, convolutional 

filter banks were learned from/applied to R, G, and B channels separately, where 

the number of filters were set to be 50 and 100 per channel per scale for GBM 

and KIRC, respectively. For Multi-Scale-CSCSPM-Gray, convolutional filter 

banks were learned from / applied to the grayscale image, where the number of 

filters were set to be 150 and 300 per scale for GBM and KIRC, respectively. 

The number of filters were set to ensure the comparability among the variations, 

and all other experimental setup remains the same as for Multi-Scale-CSCSPM. 

The best performances on GBM and KIRC datasets with 160 training images and 

280 training images per category, respectively, were illustrated in Figure 4. It is 
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clear that color decomposition is beneficial to tissue histology classification, 

which is due to the capturing of biological-component-specific information and, 

therefore, improve the classification performance [25].

2. Max-pooling: to investigate the benefit of max-pooling in the proposed tissue 

histology classification pipeline, we have further evaluated Multi-Scale-

CSCSPM with two more variations: Multi-Scale-CSCSPM-Mean Pooling and 

Multi-Scale-CSCSPM-NoPooling. All other experimental setup remains the 

same as for Multi-Scale-CSCSPM, and the best performances on GBM and 

KIRC datasets with 160 training images and 280 training images per category, 

respectively, were illustrated in Figure 5. It is clear that max-pooling strategy 

outperforms the other options, probably due to its robustness to local 

translations.

3. Absolute value rectification: to investigate the benefit of absolute value 

rectification in the tissue histology classification pipeline, we have further 

evaluated Multi-Scale-CSCSPM without absolute value rectification: Multi- 

Scale-CSCSPM-noAbs. All other experimental setup remains the same as for 

Multi-Scale-CSCSPM, and the best performances on GBM and KIRC datasets 

with 160 training images and 280 training images per category, respectively, 

were illustrated in Figure 6. It is clear that absolute value rectification is 

desirable for the task of tissue histology classification.

4.1.6 Further Comparison with Other Related Work—Existing multi-scale computer 

vision applications typically concatenate filters from multiple learning layers for multi-scale 

feature extraction, or use hierarchical pooling to construct the multi-scale features based on 

single scale filter responses. For the comparison with the former case, Multi-Scale 

PSD2SPM was implemented with filters concatenated from both the first and the second 

layers; and for the comparison with the later case, Yang’s model [36] was adopted with 

implementation based on multi-spectral single-scale (27×27) filters, for fair comparison, 

followed by 3 max-pooling layers in hierarchy (in our experiments, mean-pooling results in 

~5% performance drop for both datasets).

Furthermore, it is also very interesting to compare with the Convolutional Neural Networks 

(CNN) [3], [4] due to its demonstrated success in many different computer vision 

applications [5]–[7], [37]. Here, we adopted AlexNet [11] and VGGNet [38], which are two 

of the most successful deep convolutional neural network architectures. During evaluation, 

we followed the suggestions in [39] with different level of transfer learning settings on both 

GBM and KIRC datasets using aggressive data augmentation strategies (e.g., flipping, 

rotation and changing of illumination), among which, we found that the direct application of 

the pre-train networks (bvlc_alexnet [40] and VGG_ILSVRC_19_layers [38]) produced the 

best performance. Specifically, for both AlexNet and VGGNet, features were extracted on 

224×224 patches with step-size (45) followed by SPM as used for all other approaches.

The best performances on GBM and KIRC datasets were reported with 160 and 280 training 

images per category, respectively, as shown in Figure 7. It is clear that our proposed method 

outperforms the pre-trained AlextNet on both GBM and KIRC datasets, while produces 
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highly competitive results compared with the pre-trained VGGNet, where, specifically, it 

outperforms the pre-trained VGGNet on GBM dataset and underperforms the pre-trained 

VGGNet on KIRC dataset. The experimental results suggest that the pre-trained deep neural 

networks from natural domain (e.g., from ImageNet [41]) encode sharable information that 

is potentially applicable to biomedical domains. Furthermore, given the significant smaller 

model structure and the unique unsupervised learning capability of the proposed work, 

compared with deep neural networks, our proposed work provides a highly competitive 

solution for the learning and application of sharable information with improved 

computational efficiency and reduced label dependency, which is especially beneficial and 

desirable to biomedical domains.

4.2 Further Evaluation of MSCSC on Classification of Breast Cancer Subtypes

As a further validation, we have also applied the classification pipeline (MultiScale-

CSCSPM) for the classification of subtypes in breast cancer. The dataset for evaluation 

contains 3 classes: DCIS model, ERBB2+, and Triple Negative, which were collected from 

22 breast cancer cell line, and scanned by phase contrast microscope with a 10X objective. 

Examples can be found in Figure 8. The number of images per category are 36, 40 and 40, 

respectively. Most images are 1024 × 768 pixels. In this experiment, we trained 18 images 

per category and tested on the remaining images, with fixed dictionary size: 1024. All 

experimental protocols and parameter settings were identical to those described in Section 

4.1.3, except that no color decomposition was involved (gray-scale image). The final results 

(see Figure 9) show superior performance of our approach, which confirms the effectiveness 

and applicability of the proposed multi-scale convolutional sparse coding model to various 

different tasks.

5 Evaluation of Transfer Learning Capability of MSCSC

The multi-scale joint learning characteristics of MSCSC as well as its capability in capturing 

scale-specific patterns not only help improve the performances of various regular 

classification tasks as demonstrated in Section 3, but also provide an unsupervised solution 

for (I) learning sharable knowledge from a base dataset; and (II) applying/fine-tuning the 

base knowledge towards the target datasets. This section provides perceptual validation of 

the sharable knowledge derived by MSCSC across domains, followed by extensive 

evaluation and discussion on the perceptual insights.

5.1 Perceptual Evaluation

As a perceptual evaluation, we visualized the multi-scale filter banks jointly learned by 

MSCSC from different domains in Figure 10, which indicates that: (I) filter banks with 

smaller scale(s) always capture general features regardless of the training domain; (II) the 

specificity of features captured by filter banks with larger scale(s) trained on various 

domains, is an increasing function with respect to the dissimilarity among domains; and (III) 

interestingly, the generality of knowledge, captured by the filter banks with larger scale(s) of 

MSCSC within different cancer-related domains, still maintains to a large degree, which 

suggests that the adaptive/transferable knowledge in cancer-related domain(s) is derivable 
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through MSCSC in an unsupervised fashion. These insights are further justified 

quantitatively as follows.

5.2 Quantitative Evaluation of Sharable Knowledge Across Tumor Types in Tissue 
Histology from Human Patients

Figure 10 suggests that features learned from histology domain are transferable/sharable 

across tumor types from human patients. As a quantitative evaluation, we directly applied (I) 

the pre-trained model from GBM to the classification task in KIRC dataset; and (II) the pre-

trained model from KIRC dataset to to the classification task in GBM dataset. All the 

experimental protocols were identical to the ones described in Section 4.1, and the best 

performances on GBM and KIRC datasets with 160 training images and 280 training images 

per category, respectively, were shown in Figure 11.

5.3 Quantitative Evaluation of Sharable Knowledge from Human to Mouse in Tissue 
Histology

In this experiment, we were interested to know whether MSCSC trained on human tissue 

histology can capture sharable information which is applicable to animal models. 

Specifically, we directly utilized the MSCSC (pre-trained on GBM dataset) for the 

differentiation of mouse breast tumor morphology between radiation-induced cancer and 

spontaneous cancer. The dataset contains 2 classes: Sham (control) and LDIR (low dose 

ionizing radiation at 10 cGy), which were curated from a cohort that was generated for the 

study of the genetic control of stromal mediation of mammary tumor susceptibility to LDIR 

[42]. Each category contained 200 images, which were scanned by light microscope with a 

40X objective and a fixed size of 2048 × 1536 pixels. During evaluation, we randomly 

selected 100 images per category for training and tested on the remaining images with 10 

iterations and fixed dictionary size: 1024. All experimental protocols and parameter settings 

were identical to those described in Section 4.1.3. The final results, as the mean and standard 

deviation of the classification rates, was illustrated in Figure 12.

5.4 Fine-Tuning Pre-Trained Model from GBM towards Breast Cancer Subtype 
Classification

With the increase of domain difference, an urgent need is to fine tune the pre-trained model 

towards new tasks, which can be easily achieved by fixing the first few filter banks with 

smaller scales and re-training the rest (filter banks with larger scales) due to the multi-scale 

joint learning characteristics of MSCSC. As a further justification, we applied the pre-

trained model from GBM dataset (see Section 4.1) to the task of Breast Cancer Subtype 

Classification (see Section 4.2) with different levels of knowledge transfer and tuning 

settings, and the corresponding performance was illustrated in Figure 13.

5.5 Discussion

Our experimental evaluations above suggest that,

1. The pre-trained multi-scale filter banks by MSCSC may capture sharable 

knowledge/information across domains, and therefore may be directly applicable 

to related domain(s). As demonstrated in Figure 10, filter banks at each 
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individual scale all capture similar patterns across different cancer domains, 

which can serve as the sharable information for tasks across those domains. This 

insight was further confirmed by the quantitative evaluation of (I) the direct 

application of pre-trained model from GBM to the tasks in KIRC, Breast Cancer 

dataset and mouse LDIR dataset, as shown in Figure 11, Figure 13 and Figure 

12, respectively; and (II) the direct application of pre-trained model from KIRC 

to the task in GBM dataset, as shown in Figure 11;

2. The pre-trained multi-scale filter banks by MSCSC can be fine-tuned effectively 

towards the target dataset in an unsupervised fashion, which is performed by 

fixing the pre-trained filter bank(s) at smaller scale(s) while re-training the rest 

(filter bank(s) at larger scale(s)). As shown in Figure 13, the partially-tuned filter 

banks pre-trained from GBM dataset (GBMTransfer-Multiscale-CSCSPM-ft2nd) 

saw a steady increase of performance on the classification of breast cancer 

subtypes along filter learning iterations, and both the entirely-tuned filter banks 

(GBMTransfer-Multiscale-CSCSPM-ft1st2nd) and the filter banks learned 

directly from breast cancer dataset (Multiscale-CSCSPM) experienced the 

decrease of performance along filter learning iterations. All the phenomenons are 

suggested to be tightly related to the scale of target dataset (breast cancer 

dataset), which, in our case, is significantly smaller compared to the based 

dataset (GBM dataset).

6 CONCLUSION

In this paper, we proposed a Multi-Scale Convolutional Sparse Coding model (MSCSC) for 

unsupervised joint learning of filters at multi-scales with trainable collaboration among 

them, which, compared to CSC, leads to filters with improved scale-specificity and, 

subsequently, features with reduced redundancy across scales. Furthermore, such an joint 

learning strategy also provides an unsupervised solution for transfer learning, which is 

extremely helpful when the scale of labeled data is very limited. Experimental results, in 

various biomedical domains, demonstrate the effectiveness of MSCSC on both regular 

classification tasks as well as its capability in learning sharable base knowledge and fine-

tuning it towards new tasks.

Our future work will focus on (I) applying the sharable information learned from GBM/

KIRC dataset to a large cohort of tissue histology sections for tumor grading and the 

association with clinical outcome; and (II) further validating the MSCSC algorithm on 

various tasks on natural image datasets.
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Fig. 1. 
Comparison of multi-scale filters learnt via MSCSC and CSC from (a) GBM dataset, where 

each tissue image is decomposed into two spectra (channels) corresponding to nuclei and 

extracellular matrix (ECM) for filter learning; and (b) A synthetic image, consisting of four 

distinct binarized shapes (★, ■, ●, ▲,) at two different scales (13 × 13 and 27 × 27). It is 

clear that, through joint learning via MSCSC, the filters at smaller scale (i.e., 13 × 13) 

mainly captures lower-level features/small objects (e.g., edges in GBM dataset and small 

shapes in synthetic image), while the filters at larger scale (i.e., 27 × 27) are more 

responsible for higher-level features/large objects (e.g., complex pattern in ECM of GBM 

dataset and large shapes in synthetic image). However, filters learnt separately per scale via 

CSC do not have such scale-specificity, and present a mixture of low-/high-level features at 

both scales, which might lead to feature redundancy across scales. It is also worth to 

mention that, for GBM dataset, the difference in scale-specificity becomes more distinct for 

filters learnt from ECM, since compared with nuclear chromatin, ECM sees much more 

complex patterns, which CSC fails to capture.
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Fig. 2. 
The proposed multi-scale multi-spectral feature extraction framework. CoD: color 

decomposition; Abs: absolute value rectification; LCN : local contrast normalization; MP: 

max-pooling.
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Fig. 3. 
Examples from GBM and KIRC datasets. Note that the phenotypic signatures are highly 

diverse in each column.

Chang et al. Page 19

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Experimental revisit on color decomposition, where, by default, MultiScale-CSCSPM 

operated on decomposed spectra corresponding to the nuclear chromatin and the 

extracellular matrix respectively.
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Fig. 5. 
Experimental revisit on max-pooling, where, by default, MultiScale-CSCSPM utilized the 

max-pooling strategy.
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Fig. 6. 
Experimental revisit on absolute value rectification, where, by default, MultiScale-CSCSPM 

employed absolute value rectification.

Chang et al. Page 22

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Comparison with other related multi-scale/deep learning methods, where the best 

performances of each method/strategy on GBM and KIRC datasets were reported with 160 

and 280 training images per category, respectively.
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Fig. 8. 
Examples: First column: DCIS model; Second column: ERBB2+; Third column: Triple 

Negative.
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Fig. 9. 
Performance of different methods for the classification of subtypes in breast cancer.
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Fig. 10. 
Illustration of generality and specificity of features/knowledge derived by MSCSC across 

domains. It is worth to mention that the filter banks at different scales were jointly learned in 

an unsupervised fashion with clear scale-specificity: the filters at smaller scale mainly 

captures lower-level features, while the filters at larger scale are more responsible for higher-

level features. Such an scale-specificity not only help reduce the feature redundancy 
across scales, but also serves as the basis for transfer learning.
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Fig. 11. 
Evaluation of sharable knowledge derived by MSCSC in the tissue histology domain, where 

KIRCTransfer-MultiScale-CSCSPM is the direct application of pre-trained model from 

KIRC to GBM dataset during feature extraction, and GBMTransfer-MultiScale-CSCSPM is 

the direct application of pre-trained model from GBM to KIRC dataset during feature 

extraction. It is clear that the information derived by MSCSC independently from GBM and 

KIRC datasets are directly transferable to each other, which further confirms the insight 

indicated in Figure 10.
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Fig. 12. 
Evaluation of sharable knowledge derived by MSCSC from human tissue histology for the 

differentiation of mouse breast tumor morphology between radiation-induced cancer and 

spontaneous cancer.
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Fig. 13. 
Experimental evaluation on the transfer learning capability of MSCSC with various transfer/

fine-tuning levels, where the filter banks with two different scales were pre-trained on GBM 

dataset. GBMTransfer-Multiscale-CSCSPM-ft2nd: partial-fine-tuning, where filter bank 

with smaller scale was fixed and filter bank with larger scale was retrained/fine-tuned; 

GBMTransfer-Multiscale-CSCSPM: non-fine-tuning, where pre-trained filter banks at both 

scales were directly applied without tuning; GBMTransfer-Multiscale-CSCSPM-ft1st2nd: 

all-fine-tuning, where pre-trained filter banks at both scales were re-trained/fine-tuned; 

Multiscale-CSCSPM: learning-from-scratch, where filter banks at both scales were directly 

trained on the breast cancer dataset with random initialization.
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TABLE 1

Detailed description of experimental setup with different methods. Note the parameters were set empirically to 

maximize the performance and comparability.

Method Description

MultiScale-CSCSPM Preprocessing 13×13 Gaussian filter

Color Decomposition The input tissue image was decomposed into two spectra 
corresponding to the nuclear chromatin and the extracellular matrix 
respectively [26]

Filter Scale(s) 13×13 and 27×27

Number of filters (K) 75/150 per spectrum per scale for GBM/KIRC

Multi-Scale Joint Learning Yes

Sparse Regulation Parameter(α) 0.1

Max-pooling step-size 27

SPM non-linear kernel SPM

PSEUDO-MultiScale-CSCSPM Preprocessing 13×13 Gaussian filter

Color Decomposition The input tissue image was decomposed into two spectra 
corresponding to the nuclear chromatin and the extracellular matrix 
respectively [26]

Filter Scale(s) 13×13 and 27×27

Number of filters (K) 75/150 per spectrum per scale for GBM/KIRC

Multi-Scale Joint Learning No

Sparse Regulation Parameter(α) 0.1

Max-pooling step-size 27

SPM non-linear kernel SPM

MCSCSPM [25] Preprocessing 13×13 Gaussian filter

Color Decomposition The input tissue image was decomposed into two spectra 
corresponding to the nuclear chromatin and the extracellular matrix 
respectively [26]

Filter Scale(s) 27×27

Number of filters (K) 150/300 per spectrum for GBM/KIRC

Multi-Scale Joint Learning NA

Sparse Regulation Parameter(α) 0.1

Max-pooling step-size 27

SPM non-linear kernel SPM

PSDnSPM [29] Number of Stages (n) 2

Patch Size 20×20

Sparsity 30

SPM non-linear kernel SPM

ScSPM [35] Patch Size for SIFT 16×16

Step Size 8×8

Sparsity Regulation(λ) 0.15

SPM linear SPM
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Method Description

KSPM [32] Patch Size for SIFT 16×16

Step Size 8×8

SPM non-linear kernel SPM

SMLSPM [28] Features cellular morphometric sparse codes

Sparsity Regulation(λ) 0.15

SPM linear SPM
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TABLE 2

Performance of different methods on the GBM dataset.

Method Dictionary Size=256 Dictionary Size=512 Dictionary Size=1024

160 training MultiScale-CSCSPM 93.42 ± 0.61 93.85 ± 0.82 93.96 ± 0.93

PSEUDO-MultiScale-CSCSPM 92.86 ± 0.78 93.11 ± 0.75 93.05 ± 0.71

MCSCSPM [25] 92.71 ± 0.91 93.01 ± 1.10 92.65 ± 0.75

PSD2SPM [29] 91.85 ± 1.03 91.86 ± 0.78 92.07 ± 0.65

SMLSPM [28] 92.35 ± 0.83 92.57 ± 0.91 92.91 ± 0.84

ScSPM [35] 79.58 ± 0.61 81.29 ± 0.86 82.36 ± 1.10

KSPM [32] 85.00 ± 0.79 86.47 ± 0.55 86.81 ± 0.45

80 training MultiScale-CSCSPM 91.50 ± 0.81 92.38 ± 0.87 92.59 ± 1.01

PSEUDO-MultiScale-CSCSPM 91.79 ± 1.18 91.43 ± 1.08 91.26 ± 1.05

MCSCSPM [25] 91.41 ± 1.07 91.19 ± 0.91 91.13 ± 0.93

PSD2SPM [29] 90.51 ± 1.06 90.88 ± 0.66 90.51 ± 1.06

SMLSPM [28] 90.82 ± 1.28 90.29 ± 0.68 91.08 ± 0.69

ScSPM [35] 77.65 ± 1.43 78.31 ± 1.13 81.00 ± 0.98

KSPM [32] 83.81 ± 1.22 84.32 ± 0.67 84.49 ± 0.34
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TABLE 3

Performance of different methods on the KIRC dataset.

Method Dictionary Size=256 Dictionary Size=512 Dictionary Size=1024

280 training MultiScale-CSCSPM 99.13 ± 0.23 99.15 ± 0.28 99.11 ± 0.12

PSEUDO-MultiScale-CSCSPM 97.08 ± 0.42 97.28 ± 0.40 97.21 ± 0.21

MCSCSPM [25] 97.39 ± 0.36 97.51 ± 0.41 97.48 ± 0.40

PSD2SPM [29] 99.03 ± 0.20 98.89 ± 0.19 98.92 ± 0.21

SMLSPM [28] 98.15 ± 0.46 98.50 ± 0.42 98.21 ± 0.44

ScSPM [35] 94.52 ± 0.44 96.37 ± 0.45 96.81 ± 0.50

KSPM [32] 93.55 ± 0.31 93.76 ± 0.27 93.90 ± 0.19

140 training MultiScale-CSCSPM 98.72 ± 0.50 98.66 ± 0.39 98.51 ± 0.68

PSEUDO-MultiScale-CSCSPM 96.49 ± 0.62 96.67 ± 0.50 96.61 ± 0.49

MCSCSPM [25] 96.73 ± 0.84 96.89 ± 0.48 96.84 ± 0.67

PSD2SPM [29] 98.26 ± 0.34 98.07 ± 0.46 97.85 ± 0.56

SMLSPM [28] 97.40 ± 0.50 97.98 ± 0.35 97.35 ± 0.48

ScSPM [35] 93.46 ± 0.55 95.68 ± 0.36 96.76 ± 0.63

KSPM [32] 92.50 ± 1.12 93.06 ± 0.82 93.26 ± 0.68
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