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An Altruistic Prediction-Based Congestion Control
for Strict Beaconing Requirements in Urban

VANETs
Sofiane Zemouri, Member, IEEE, Soufiene Djahel, Senior Member, IEEE,

and John Murphy, Senior Member, IEEE

Abstract—Periodic Beacon Messages are one of the building
blocks that enable the operation of VANET applications. In vehic-
ular networks environments, congestion and awareness control
mechanisms are key for a reliable and efficient functioning of
vehicular applications. In order to control the channel load, a re-
liable mechanism allowing real time measurements of parameters
like the local density of vehicles is a must. These measurements
can then serve as an input to perform a fast adaptation of
the transmit parameters. In this context, considerable efforts
have been directed in the recent years towards designing flexible
yet robust protocols solving this problem; yet, very few have
considered a proactive adaptation of the transmit parameters
as a preventive measure from channel load peaks. To this end,
we take the opportunity to introduce P&A-A, a new congestion
control protocol that performs a joint adaptation of the transmit
rate and power, relying on an altruistic short-term prediction
algorithm that estimates the vehicular density around a given
vehicle within the next short while. Additionally, P&A-A adapts
the transmit parameters in a way that guarantees the strict
beaconing requirements and satisfies the level of awareness
required for the operation of most critical VANET applications.
The results of the simulations performed in a realistic scenario
justify our theoretical considerations and confirm the efficiency
and the effectiveness of our protocol by showing significant
improvements in terms of network performance (up to 8% and
14% improvement in collision rate; and up to 10% and 20%
increase in busy ratio compared to our previous scheme and
the ETSI schemes respectively) as well as the achieved level of
awareness (higher coverage with higher transmission rate and
power in dense scenarios, and up to 8% and 55% improvement
in density perception accuracy compared to our previous scheme
and the ETSI schemes respectively).

Index Terms—Adaptive Beaconing, Transmission Rate Con-
trol, Transmission Power Control, Density prediction, Density
forecasting, VANETs, ITS.

I. INTRODUCTION

IN the near future, Vehicular Ad Hoc Networks will be es-
tablished by enabling wireless communication between ve-

hicles (Vehicle-to-Vehicle) and to the infrastructure (Vehicle-
to-Infrastructure). Using cooperative traffic applications, ve-
hicular networks promise to solve many of today’s road
traffic problems such as improving the safety of road users
(like intersection collision warning applications, approaching
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emergency vehicle, post crash warning...), shortening their trip
times (trip planning based on real time feedback from the road
infrastructure to avoid congested areas) and enhancing their
driving experience (infotainment services like local targeted
advertisement or internet access for the passengers). In such
networks, characterised by their ad hoc nature, these traffic ap-
plications are only made possible thanks to some short single-
hop messages compensating the absence of a central entity that
monitors the state of the network and keeps track of its struc-
ture. These messages, often referred to as beacons (also called
BSM Basic Safety Messages in the US or CAM Cooperative
Awareness Messages in Europe), are periodically broadcasted
by each vehicle in order to provide other participants of the
network with information about their surroundings (density,
positions, speeds, headings, etc). It is widely accepted in the
vehicular networking community that these short messages are
crucial for the operation of any kind of application whether
a safety or a non-safety one. However, the high dynamicity
of this network characterised in the constant movement of
vehicles continuously altering its structure, leads to a fast
expiration of beacons content. Therefore, the more up-to-date
the beacon is, the more accurate the information contained
in it is. According to the National Highway Traffic Safety
Administration and the Crash Avoidance Metrics Partnership
[1], most safety applications cannot guarantee accurate results
with a beaconing frequency lower than 10 Hz, while some of
them require a frequency up to 50 Hz to run smoothly and
efficiently [2].

These beacons are transmitted on the so-called Control
Channel (CCH), which is the central amongst the six other
Service Channels (SCH), as defined in the IEEE 802.11p
WAVE Standard [3] in the US; and the fifth channel amongst
the six SCHs according to ETSI [4] in Europe. These channels
are located around the frequency band of 5.9 GHz in both
standards, and have a bandwidth of 10 MHz each. This limited
channel width translates in a limited transmit capacity. In
simple words, within a fixed period of time, only a limited
number of vehicles can successfully transmit their beacons.
However, this capacity may be reached quickly in high-
density scenarios like urban areas. Moreover, the possible
CCH/SCH alternation defined in IEEE 1609.4 [5] adds on
to the complexity of this problem since it dictates that only
half the time is allocated to the CCH channel in short 50
Milliseconds intervals called CCHI.

These are the main reasons that often lead to conges-
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tion in the channel. Such congestion might have devastating
consequences on network performance. In the absence of
a proper packet loss recovery mechanism, VANETs cannot
afford losing beacons at the risk of compromising the proper
operation of safety and critical applications and might even
endanger the safety of road users. This problem is known in
VANETs as the congestion control problem.

In the recent years, many efforts have been directed towards
designing efficient mechanisms to control the load generated
by beacons. These solutions mainly focus on one of the two
aspects: regulating the periodicity of beacons by adapting
their transmit rate, or adjusting their transmit power. The first
approach aims to reduce the number of messages inserted in
the network, while the second is intended to limit their extent
and benefit from the spatial reusability of the channel.

The above approaches can be classified as reactive conges-
tion and awareness control solutions. In other words, when-
ever congestion occurs in the network, an adaptation of the
relevant transmission parameters follows to counterbalance it.
The main issue with these approaches is the fact that the
transmission parameters adaptation is only triggered after the
congestion occurs, but the loss of information inflicted in
the time period needed for the system to react cannot be
undone. In a highly mobile, unstable network like VANETs,
channel load fluctuates and peaks are frequent especially in
urban areas where the density of vehicles is relatively high.
Despite this, very few have considered a proactive solution to
take preventive measures to congestion. Using this approach,
the near future channel state is approximated by vehicles and
congestion is dealt with before it even occurs.

This paper introduces P&A-A (Prediction & Adaptation
Algorithms), a proactive congestion control solution for strict
beaconing requirements. This protocol relies on real-time
density information available to individual vehicles to perform
Tx parameters adaptation; but it also relies on a proper
prediction of this density to allow for proactive adaptation.
The contributions of this paper can be summarised in these
two aspects:

• A fast transmit rate and power adaptation algorithm that
guarantees marginal collision rate while satisfying the
level of awareness required for the operation of most
VANET applications,

• A new short-term local density prediction algorithm that
enables the estimation of near future channel load in order
to prevent utilisation peaks and control congestion on the
channel,

The adaptation algorithm proposed in this paper is a sub-
stantial enhancement of our previous work published in [6].
The novelty consists in the iterative way of converging towards
the optimal Tx parameters that deliver optimal local density.
These latter density values were validated both analytically
and with simulations, and were found to lead to a low
beacons collision rate. In addition, the short-term local density
prediction algorithm is another layer that further enhances the
congestion and awareness control.

The remainder of this paper is organized as follows: in
section II we will introduce the standards related to this
subject as well as the most significant related works, sections

III, IV and V will provide a detailed description of the
solution, including a comprehensive analysis of the mechanics
that govern the channel conditions, and our inspirations and
motivations for this work. The performance evaluation, the
simulation scenario and results are presented in section VI,
and finally we conclude in section VII.

II. RELATED WORKS

As stated earlier in the previous section, numerous works
have been proposed to deal with the network overload gener-
ated by the periodic transmissions of beacons. These works fall
under one of the two categories: rate adaptation approaches
and power adaptation approaches. As an example for the
first category, ATB [7] proposes to reduce the beaconing
rate based on two key metrics: message utility and channel
quality. Another example is DynB [8], which follows a similar
approach but introduces the effects of shadowing caused by
both buildings and cars on the wireless channel load.

The main shortcoming of transmit rate control based so-
lutions is that they do not guarantee the strict messaging
requirements specified in standards like IEEE WAVE or ETSI
ITS. Due to the limited channel capacity, only a limited
number of messages can be carried within one CCHI. In
other words, if the density of vehicles in the vicinity exceeds
a certain number, it will be no longer possible to grant all
vehicles a regular access to the channel without a considerable
increase in collision rate. This number has been proved to be
less than 30 vehicles according to the works in [6] and [8].

As an example for the second category (i.e. transmit power
adaptation approach), [9] selects the transmit power according
to the utility of the beacon to be transmitted. The authors in
[10] follow a completely different criterion and propose to
randomly select the transmit power of vehicles following a
given probability distribution. In both works, the authors have
shown the potential improvement of this approach in terms
of channel load control and the achieved vehicle awareness
level, especially in closer ranges. The main issue with this
class of solutions, however, is the poor awareness level in
further ranges. In fact, the reaction time of drivers proves to
be too high for situations where vehicles are speeding up. For
example, in a straight unobstructed road where vehicles are
moving at their maximum allowed speeds, distances travelled
by drivers before reacting to a road hazard or to any other
obstacle on the road can be quite high and therefore, the
awareness of these vehicles should be extended to further
ranges.

Some researchers have proposed hybrid solutions like [11]–
[13] where the transmit rate and power are adapted jointly.
Building on these approaches and others, ETSI ITS G5
has released a technical specification introducing DCC [14]
(Decentralised Congestion Control). The idea is to combine
transmit rate and power adaptations with other kinds of
adaptations like the Carrier Sense Threshold. Many efforts
have followed like [15] and [16], which mainly focus on
analysing the performance of DCC, but the results show many
flaws in this early version of the standard. The authors in
[17] and [18] proposed an inter-flow coding-based protocol
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to reduce the number of generated packets by 25% using a
backbone of vehicles. They use a Fuzzy Logic approach to
combine the various parameters involved in the selection of the
backbone. The results show significant improvement in terms
of packet delivery ratio, end-to-end delay with a remarkably
low protocol overhead.

The works in [19] and [20] propose to take advantage of
the temporal as well as the spatial reusability of the channel in
vehicular multi-hop communications. The authors in [21] pro-
pose to give equal consideration to the congestion control and
the awareness control integrating two state of the art protocols
namely LIMERIC [22] and PULSAR [23]. The authors in [24]
proposed a beacon rate adaptation based on Fuzzy Logic. The
work in [25] introduces a distributed rate and power adaptation
protocol that relies on context and environment awareness.
A more recent work presented in [26] proposes a joint rate
and power control using online synchronous control to strike
a balance between the overall performance and fairness. In
[27], the authors have proposed a joint rate/power adaptation
to cope with the wireless channel load problem, by analysing
a wide range of Tx parameters and came to the interesting
conclusion that the transmit rate adaptation should depend on
the desired channel load while the transmit power adaptation
should depend on the target region. However, it is unclear how
this target region is defined; besides, there is no guarantee that
the strict beaconing frequency requirement will be respected.
In our previous work, we proposed a congestion control
protocol dubbed SuRPA [6] that achieves an acceptable level
of awareness and a low collision rate.

In a different viewpoint, we can classify all the above
protocols as reactive protocols. In other words, vehicles using
this class of protocols react to an increase in beacon collision
rate by adapting their transmit parameters accordingly. In
this work, we introduce a new family of protocols in which,
the adaptation of the transmit rate and power is performed
proactively in a way to significantly prevent increases in
the channel load (which leads to beacon collisions). Such
an approach can considerably improve network performance
in terms of maximizing channel utilisation and minimizing
collision rates. In order to achieve this, a prediction of the
state of the channel – which can be approximated given the
local density of vehicles in the near future – is performed.
Vehicle density prediction has attracted considerable attention
in the recent years, mainly as a way to design and improve the
performance of routing protocols like the work in [28]. Other
works used the density prediction as a mean of regulating
the vehicular traffic and avoiding traffic jams like the work
in [29]. However, very few works have used this density
prediction in the context of congestion control. A simple
prediction algorithm, which forecasts an increase or decrease
in the density based on the proximity to intersections, was
proposed in [30]. The evaluation of this work has shown the
potential of using such an approach. The results of a similar
work presented in [31] also show the potential of such an
approach.

Our protocol, named P&A-A introduces a short-term local
density prediction algorithm in order to take preventive actions
prior to increases in beacons collisions. This prediction is

done in a thorough manner and its output is used as a
basis for the joint transmit rate and power adaptation. Our
method guarantees minimum collision rate, and a good level
of local awareness by securing the strict beaconing frequency
requirements. In addition, this work provides a comprehensive
study of some network performance metrics like the channel
busy ratio and the collision rate, and their correlation. It
also discusses how these metrics can be translated into Tx
parameters (Transmission Rate and Power) that guarantee
good performance of the network.

III. OVERVIEW OF THE PROBLEM

A. Assumptions

The first aim of this work is to prevent beacons collisions
by providing a better control of their transmission parameters.
We focus on urban vehicular scenarios, which are more prone
to traffic collisions, leading in a chain of events to beacons
collisions. The maximum speed in this context is limited to
50 km/h; the relative speed between two vehicles moving in
opposite directions can reach up to 100 km/h (approximately
28 m/s).

We also assume that each vehicle is equipped with a naviga-
tion system that enables positioning and time synchronisation
as well as IEEE 802.11p [32] communication technology, a
single radio transceiver and computational capabilities. A sin-
gle transceiver means CCH/SCH channel switching is enabled
in all vehicles.

Upon the expiration of one CCHI, each vehicle is expected
to have received 256 Bytes beacon messages from its neigh-
bours. Four additional pieces of information coded in 4 Bytes
are appended to the beacon and are used for the local density
prediction. The content of these four new fields is explained
further in this paper. The addition to the beacon is possible
without increasing its size, since the standard specified in [33]
defines the structure of the beacon with fields reserved for
application specific uses.

B. Theoretical channel capacity calculation

As stated earlier in Section I, the limited capacity of the
CCH channel considerably limits the amount of data that can
successfully be carried within one CCHI. In this brief ana-
lytical study, we give a good approximation of the theoretical
capacity of the channel. Since all beacons are fixed in size, we
can translate this capacity from data units to an approximate
number of accesses to the channel over one CCHI. This latter
number is then mapped to the optimal number of vehicles
competing for an access to the channel within once CCHI,
without causing a channel congestion. This optimal number
of vehicles, which we will refer to in the remainder of this
paper as “optimal local density”, guarantees an access to all
vehicles within a certain radio range (i.e. vehicles competing
with each other for access to the channel) with a marginal
collision rate.

The minimum beacons frequency of 10 Hz means that each
vehicle needs to broadcast one beacon in each CCHI. If we
consider a CCHI of 48 Milliseconds (excluding the guard
intervals), and given that the maximum channel usage should
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Figure 1: Variation of collision rate, busy ratio and useful busy
ratio vs. the local density

not exceed 60% of the CCHI according to [8], the useful time
in one interval can be obtained as follows:

48 Milliseconds× 60% ≈ 28.8 Milliseconds (1)

If a 256 Bytes beacon transmission takes approximately 1
Millisecond according to [34], the number of vehicles that
are allowed to broadcast their beacons within one CCHI is
obtained from the following:

28.8 Milliseconds / 1 Millisecond per V ehicle ≈ 28 V ehicles
(2)

This theoretical optimal local density of 28 vehicles is
calculated without considering the effect of contention on
the channel. In order to consider this effect, we simulated,
using NS-3 1, a scenario respecting all the above mentioned
parameters (10 MHz channels, 48 Milliseconds CCHIs, 10 Hz
beaconing frequency and 256 Bytes beacons). By varying the
local density of vehicles from 1 to 100 vehicles, we observed
three network metrics, which are the collision rate, the busy
ratio and the useful busy ratio. The collision rate was obtained
from the following formula:

Collision rate =
Number of collisions

Number of transmissions
(3)

The busy ratio is obtained as follows:

Busy ratio =

∑
Transmission times

Total CCHI time
(4)

And finally, the useful busy ratio is obtained using the
following formula:

(5)
Useful busy ratio

=
(
∑

Transmission times−
∑

Collision times)

Total CCHI time

We obtained the graph in Figure 1 depicting where the
optimal local density is located with regard to the busy ratio
and collision rate levels.

If we consider that the collision rate should not exceed
5% of total transmissions, we can deduce from the graph
an optimal local density in the interval between 22 and 28
vehicles (the area where the busy ratio and the useful busy
ratio start going apart), which matches the numbers obtained
in the above analytical study.

Starting from this, Tx parameters (transmit rate and power)
can be tweaked to adapt the coverage of each individual

1www.nsnam.org/

Figure 2: Variation of the local density observed by a vehicle
moving towards and crossing through an intersection

vehicle and quickly converge towards the optimal local density
(for vehicles within each other’s transmission range). Note
that this theoretical optimal local density does not depend
on external factors like channel conditions or shadowing,
achieving the optimal local density does depend on these
factors.

C. Motivations for density prediction
The main metric that controls whether the Tx parameters

should be adjusted upwards or downwards is the local density
(observed by each individual vehicle). This metric is read out
during fixed 100 Milliseconds intervals called Synchronization
Intervals (SI). These readings are then used as a basis for each
vehicle individually, to decide how often and how far should
its own beacon be broadcasted in the next SI. However, these
readings might be outdated by the time they are processed. In
fact, a vehicle can only approximate its current local density
based on the readings collected in the previous SI. Yet, the high
dynamicity that characterises vehicular networks meant that
vehicles could observe high variation in their local densities
in as little as one SI.

The graph in Figure 2 was obtained by simulating an
intersection scenario with traffic lights using NS-3. It shows
the high variability in local density observed by a single
vehicle crossing through an intersection at a speed of 50 km/h.
Between the moments the vehicle is approximately 6 meters
away from the intersection and that when it is in the middle of
the intersection, a variation of 13 extra vehicles is observed,
which corresponds to more than 50% increase in its local
density. At a speed of 50 km/h (approx. 14 m/s), this vehicle
travels the last 6 meters before reaching the intersection in
approximately 400 Milliseconds. By interpolation, this vehicle
observes 3 extra vehicles or 12.5% increase in its local density
every new CCHI, as it gets closer to the intersection.

This is why it is very important that the information used to
regulate the flow of beacons (i.e. density of vehicles) reflects
the state of the network in the current SI, as opposed to the
previously observed state in the last SI. Failing to do this
would result in an adaptation of Tx parameters on the basis of
biased (outdated) information. According to the specifications
introduced in [1], information contained in beacons is outdated
after 100 Milliseconds. Under the current assumptions of
literature solutions and as shown in Figure 3, this delay can
range between 50 and 150 Milliseconds according to the
WAVE standard [3]
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Figure 3: CCH/SCH alternation in IEEE802.11p showing the
time interval when the data about the density of the network
is gathered, and the time interval when it is used (50 to 150
Ms later)

In this context, a short-term prediction of the local density
can help improve the transmit parameters adaptation, since it
allows it to be performed relying on information that reflects
the state of the network at that exact time. As a matter of
fact, knowing the current speed and direction of a vehicle,
it is pretty straightforward to predict its position within a
few Milliseconds or even seconds. Therefore, a short-term
prediction of network state (local density of vehicles) is pos-
sible in a thorough manner. In addition, this prediction opens
up the possibility to take preventive actions by proactively
adapting the transmit parameters to the near-future changes in
channel conditions. In other words, instead of waiting for the
congestion to occur in the channel, the prediction can help
avoid it (or at least limiting its severity).

IV. LOCAL DENSITY PREDICTION MECHANISM

A. Key principle

For the sake of clarity, the number of the subject vehicle’s
one hop neighbours will be referred to as “the local density”.
The area that covers these neighbours is referred to as the
subject vehicle’s “radio visibility field” or simply “field of
view”.

An easy approximation of the local density in the near
future can be obtained or reported by vehicles that are better
positioned to foresee the changes that are going to occur in
network topology. As an illustration of this concept, we can
think of a vehicle moving towards a congested area. As it
gets closer, new vehicles will come into its field of view. This
vehicle cannot foresee the increase in density nor can it predict
the moment it is going to happen. However, a neighbour
vehicle moving ahead can very well report this information as
it has a better radio visibility ahead. This very basic principle
has been introduced in [30]. However, it can only provide a
rough approximation of the short-term local density. In fact,
the only information that can be provided by vehicles closer to
the congested area using this method is an expected increase
or decrease in the local density within the next time interval,
but this variation cannot be measured in advance.

This work introduces a more thorough prediction algorithm
that enhances the precision of the local density estimation in
the near future. The novelty of this work is the use of the
local density prediction to improve the network adaptability
and performance.

The prediction mechanism is depicted in Figure 4. At time
t1 the red car can perceive the grey cars only while the yellow
car has a further field of view (up to the blue car). The yellow

Current	vehicles	
Vehicle	at	the	edge	of	the	range	
Closest	vehicle	ahead	of	the	current	
Vehicle	leaving	the	transmission	range		
in	the	next	100	Milliseconds	

Visibility	of	the	red	vehicle		
(Transmission	range)	

Visibility	of	the	yellow	vehicle		
(Transmission	range)	

Figure 4: Prediction mechanism illustration with the yellow
vehicle making a local density prediction on behalf of the red
vehicle

car has then the task of reporting the local density at t2 to the
red car. However at time t1, even the yellow car cannot see
the green vehicles that are moving in the opposite direction.
In order to make the yellow car aware of these incoming
vehicles at t1, additional information must be reported to it.
This information consists in the number of cars that will be
overtaken in the opposite direction by the vehicle at the edge
of the yellow vehicle’s field of view at t2. Since the blue car
is expected to leave this field of view in t2, the green vehicle
right behind it is the best vehicle to relay this last piece of
information to the yellow one. This latter vehicle will now
have all the necessary pieces to reconstruct the local density
ahead for the red car at t1.

The number of vehicles ahead of the subject vehicle (red
car) is equal to the current number of vehicles ahead of the
closest neighbour ahead (the grey, the two green and the blue
vehicles in the same direction) minus the number of vehicles
that are going to leave its field of view (blue vehicle); add to it
the number of vehicles that are going to overtake the furthest
vehicle in the opposite direction (the three green vehicles in
the opposite direction). This process is performed to determine
the new vehicles ahead as well as the new vehicles behind with
regard to the current vehicle’s direction. This local density is
then included in the yellow vehicle’s beacon and broadcasted
to be used in time t2 by the red car.

This mechanism requires the addition of four small pieces
of information to beacons, encoded in 4 Bytes. They consist in
the following: the first two are the number of vehicles moving
in the opposite direction that will be overtaken by the subject
vehicle within the next two SIs, as well as the number of
vehicles moving in the same direction that will overtake this
subject vehicle within the same time interval. The last two are
the predicted number of vehicles ahead of the subject vehicle’s
position and behind it (i.e. as if this current vehicle will not
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move from its current position) within the next SI. Note that
each vehicle performs this density prediction on behalf of one
of its neighbours, hence the altruistic designation.

B. The proposed prediction algorithm

In this subsection, we will explain the operation mode of the
altruistic short-term density prediction algorithm. Algorithm 1
shows how the prediction is performed, and Table I lists the
variables used in it and their designations. This algorithm is
node-centric i.e. it is carried out in each individual vehicle
and based on the data it has observed and received. Note here
that the algorithm is node centric, not to confuse with the
prediction mechanism, which is performed collectively among
vehicles in a distributed manner.

Table I: Algorithm 1 variable list

Variable Designation
CV the Current Vehicle

VDA Vehicle Density Ahead
VDB Vehicle Density Behind
CNA the Closest Neighbour Ahead of the current position
CNB the Closest Neighbour Behind of the current position

CNVA the Current Number of Vehicles Ahead of current
position

CNVB the Current Number of Vehicles Behind of current
position

NVA the Number of Vehicles Ahead of current position
in the next 100Ms

NVB the Number of Vehicles Behind of current position
in the next 100Ms

FNA the Furthest Neighbour Ahead from the current
position in the next 100Ms

FNB the Furthest Neighbour Behind from the current
position in the next 100Ms

VOOD the number of Vehicles to be Overtaken in the
Opposite Direction in the next 200Ms

VOSD the number of Vehicles that will Overtake the
current vehicle in the Same Direction in the next
200Ms

VLTA the number of Vehicles that will have Left the
Transmission range Ahead in the next 100Ms

VLTB the number of Vehicles that will have Left the
Transmission range Behind in the next 100Ms

MaxD The Maximum Distance a vehicle can travel in one
SI

At the end of every CCHI, each vehicle computes the
number of vehicles that would cross its current offset (distance
w.r.t the beginning of the road segment) in both directions
(V OOD and V OSD), within the next two SI (200 Millisec-
onds). These two pieces of information are then included
in the beacon. Next, from the beacons previously received
from the neighbours, each vehicle will select the beacons
received from the furthest neighbour ahead (FNA) and the
furthest neighbour behind (FNB) in the next SI with regard
to the current position, and retrieve from these beacons the
number of vehicles that will have crossed the two respective
edges of its field of view in both directions (V OODFNA

and V OSDFNB). Bear in mind that these two pieces of
information will be approximately 100 Milliseconds old by the
time they are processed, and therefore at this stage, the new

Algorithm 1 Short-term local density prediction

1: At the end of every CCHI do:
2: Compute V OOD(next pos, 200Ms);
3: Beacon = IncludeV OOD( );
4: Compute V OSD(next pos, 200Ms);
5: Beacon = IncludeV OSD( );
6: Compute FNA(current pos, 100Ms);
7: Retrieve V OOD(FNA);
8: Compute CNV A(current pos);
9: Compute V LTA(current pos, 100Ms);

10: NV A = CNV A + V OODFNA - V LTA;
11: Compute FNB(current pos, 100Ms);
12: Retrieve V OSD(FNB);
13: Compute CNV B(current pos);
14: Compute V LTB(current pos, 100Ms);
15: NV B = CNV B + V OSDFNB - V LTB;
16: Beacon = IncludeNV A( );
17: Beacon = IncludeNV B( );
18: Beacon = IncludeOther( ); {usual beacon info}
19: At the beginning of every new CCHI do:
20: Compute CNA(current pos, 100Ms);
21: if (CV .Get Distance From(CNA) < MaxD) then
22: V DA = Retrieve NV A(CNA) +1;
23: end if
24: Compute CNB(current pos, 100Ms);
25: if (CV .Get Distance From(CNB) < MaxD) then
26: V DB = Retrieve NV B(CNB) +1;
27: end if
28: AdaptBcnTxParam(V DA+V DB); {Alg2: adapt}
29: Broadcast Beacon(Beacon);

vehicles are expected to cross the edge of the subject vehicle’s
field of view in another 100 Milliseconds. Each vehicle will
now compute the number of vehicles that are expected to leave
the field of view ahead and behind (V LTA and V LTB). The
predicted local density ahead and behind (NV A and NV B),
for that specific offset within the next SI can then be obtained
with the formulas from lines 10 and 15 respectively (see
Algorithm 1). These densities are then appended to the beacon
and this latter is scheduled to be broadcasted within the next
50 to 100 Milliseconds.

At the beginning of every CCHI and before broadcasting
their own beacons, vehicles locate the closest neighbours
ahead and behind (CNA and CNB respectively) and check if
they are close enough so that the prediction they provide will
be valid. The prediction is valid only if the current vehicle
is 100 Milliseconds away from its neighbour. The sum of
these two densities (ahead and behind) will constitute the
local density prediction for the current vehicle. 1 is always
added to the retrieved local density to account for the vehicle
performing the prediction.

This prediction scheme is of greater use when enabled close
to intersections, where the variation in local densities is greater
within a very short time (as shown in 2). However, according
to [35], in most major cities, more than 95% of road segments
are shorter than 300 meters with the average road length being
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around 100 meters. Therefore, we chose to enable our density
prediction scheme at all times since transmission ranges in
VANETs can go even beyond that.

As mentioned earlier, after the local density prediction has
been performed and made available to the targeted vehicles,
the next step is the adaptation of Tx parameters. The predicted
local density serves as the basis for Tx parameters adaptation
since, in practice, this latter density is strongly positively
correlated with the channel load in that region. The Tx
parameters adaptation part is the subject of the next section.

V. RATE AND POWER ADAPTATION MECHANISM

A. Key principle

The problem investigated herein can be summarised in
“quickly finding and constantly updating beacons Tx param-
eters (Transmit Rate TR and Transmit Power TP) that would
maximise channel utilisation and minimize the probability of
packet collisions”. Unlike the authors in [27], We showed that
Tx rate adaptation is not the only parameter influencing the
channel load, but the power adaptation also has an impact on
this load through the spatial dimension of the channel and
its reusability. By reducing the target region, fewer vehicles
are competing over the channel at every transmission. This
not only allows keeping the channel load at reasonable levels
in the smaller target region while respecting the strict bea-
coning frequency requirements in VANETs, but also leaves
the channel free for other vehicles to transmit in the further
areas. In our previous work [6], we proposed a congestion
control solution based on the binary search algorithm. The
main idea is to locate “optimal” Tx parameters in the interval
of Tx min and Tx max using the binary search technique.
With a complexity of O(log(n)), this algorithm in theory finds
an optimal solution in a sufficiently short time. However, with
the value of n being too large (Tx power values for example
which are in a continuous interval), this solution might not be
fast enough and the vehicle might have moved away from the
congested area by the time the optimal solution (optimal Tx
parameters) could be found.

In this work, we optimised the process of finding a sub-
optimal solution by considerably narrowing down the search
interval [Tx˙min, Tx˙max]. In simple words, the selection of
Tx parameters defines a vehicle’s reachable neighbours. The
number of these neighbours represents its local density. We
have shown in the analytical study presented in Section III-B
above, that a local density in the range of [22, 28] vehicles
will maximise channel utilisation and minimise the collision
rate to a marginal value (5%).

Our new adaptation algorithm converges much faster to
suboptimal Tx parameters values (in one iteration). In case
the local density is located outside the above-mentioned range
([22, 28] vehicles), the algorithm adapts Tx parameters in a
way to bring this local density to the desired range; then a
binary search is performed within the same range to further
locate the optimal solution. A single iteration in our algorithm
corresponds to one SI, since one new TR/TP value is selected
at the beginning of every new CCHI. Note that in a single
iteration, our algorithm selects suboptimal Tx parameters

Figure 5: Illustration of the adaptation’s key principle: binary
search technique applied to VANETs

(that are close enough to the optimal solution), considerably
improving channel utilisation and reducing collision rate.

Beyond the faster convergence to the optimal solution and
the introduction of the optimal local density concept; the
novelty of our protocol lies in its reliance on local density
values that reflect the current situation of the vehicular network
thanks to the introduction of the new local density prediction
algorithm. This way, Tx parameters are proactively adapted to
avoid any peaks in channel load and beacons collisions.

Figure 5 demonstrates the binary search concept within the
desired range ([22, 28] vehicles) where LD stands for local
density. First, LD1 is picked and the corresponding TR/TP
are set. At the end of CCHI 1 the collision rate and the busy
ratio are measured and processed. In this case, the collision
rate is too high, so a lower local density LD2 is picked and
the corresponding TR/TP are set. At the end of CCHI 2
the measured collision rate is below the maximum allowed
however the channel is under-utilised with a busy ratio of
25%. In this case, a higher local density LD3 is chosen, which
satisfies the collision rate constraint while keeping the channel
at a good level of utilisation. The methods used in order to
select Tx parameters that correspond to a certain local density
are explained further in this section.

This algorithm can be optimised using a weighted interpola-
tion. In our case, there is a strong positive correlation between
the collision rate and the busy ratio; and between the latter and
the picked local density. We leverage this correlation to pick
the next local density values. In fact, instead of always picking
the middle value in the interval of LDmin and LDmax as the
next value; we pick a value that is more likely to narrow down
the scope of our search. This value is picked by selecting a
weighted factor, which in turn is set based on the Euclidian
distance between the current busy/collision ratios and their
desired/acceptable values. This weight and the adaptation are
also further detailed in the following subsection.

B. The proposed adaptation algorithm

In order to identify how and when the transmit parameters
(rate and power) should be adapted, we asked ourselves these
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three questions: What are each of the above approaches advan-
tages and limitations? what are the most suitable scenarios for
their respective usage? and what is the best way to leverage
their strengths while overcoming their respective limitations?
Without a perfect understanding of each of the approaches
limitations’, it is very difficult to meet the correct channel
load that guarantees a decent packet delivery rate while
satisfying the strict awareness level requirement of VANET
safety applications.

Our solution combines the rate and power adaptations in
a smart way that allows respecting the strict beacons gen-
eration frequency requirements of safety applications, while
compromising on the transmission power when possible. If
the communication overhead increases and, consequently, the
collision rate, we first adapt the beacons generation rate in
a way to reduce the busy ratio and, therefore, the collision
rate. Then, if the 10 Hz threshold is reached (strict beaconing
requirement constraint) and the collision rate is still high, we
switch to the transmit power adaptation mode in a way to
keep reducing the busy ratio and consequently the collision
rate. We refer the reader to our previous paper [6] for the
rationale behind this combination.

The main three parameters on which relies the beacons Tx
parameters adaptation in our scheme are the local density, the
channel busy ratio and the collision rate as all four (including
Tx parameters) strongly depend on each other. The local
density is obtained by means of a prediction in our scheme
(see Section IV); then, the expected busy ratio is inferred from
the predicted local density. The rationale for this is simple:
considering that each vehicle is expected to broadcast one
or more beacons every CCHI, an increase or decrease in the
density of vehicles will be accompanied with a proportional
variation in terms of the channel busy ratio. In case no
prediction is available to a vehicle, the latest available local
density is used, which corresponds to the number of beacons
received by unique vehicles within the last time interval. In
this case, the busy ratio that corresponds to this local density
can be retrieved by sensing the channel and adding up the time
periods each vehicle spent in the state receive (see equation
4).

The collision rate is retrieved relying solely on the restricted
knowledge of the network vehicles have. In fact, collisions are
difficult to detect from a vehicle’s perspective. One possible
solution is the use of the information contained in the sequence
control field of the 802.11 MAC header. While it is not
possible for a vehicle to detect if its own beacon collided
with another beacon from another node, this method allows
vehicles to estimate the number of lost beacons sent to them
over a period of time. Practically speaking, collisions are read
out by checking the beacons sequence numbers on the MAC
header, if the sequence {3, 4, 8, 9} is received by a vehicle,
it will conclude that beacons {5, 6, 7} were lost. This method
allows our protocol to have a good estimate of the local
channel conditions in order to take the necessary actions. It
has previously been used in many works including [36].

Since our adaptation is made based on the three above-
mentioned parameters (namely the collision rate, the busy
ratio and the local density), we set an order of priority

Start	

End	

LD	<	min		
Or		

LD	>	max	

No	

Adjust	TR	and	TP	
accordingly	(lines	7	-	31)	

Yes	

Collision	>		
acceptable	

No	

Yes	

Adjust	TR	and	TP	
accordingly	(lines	33	-	46)	

Busy	RaLo	<			
desirable	

Adjust	TR	and	TP	
accordingly	(lines	47	-	60)	

Yes	

No	

Figure 6: The three main components of Algorithm 2 and their
execution sequence

between these three parameters. In other words, which of the
acceptable/desirable ratios/values we try to achieve first. The
local density has the highest priority for the simple reason
that achieving a reasonably low local density prevents from
packet collisions (which was demonstrated in subsection III-B)
since the two are directly correlated. Collision rate has the
second highest priority in our algorithm on account of the
devastating effect of packets loss on the performance of any
safety or non-safety application in vehicular networks. And
finally, maximising the channel utilisation is the least critical
and therefore we only attempt to achieve a reasonable busy
ratio if the local density is included in the desirable interval
and the collision rate is under a certain threshold.

Algorithm 2 shows how our adaptation is performed. This
algorithm is executed at the end of each CCHI and is node-
centric i.e. the adaptation is carried out in each vehicle and
based on the channel conditions observed at a vehicle level.
Figure 6 shows the sequence of execution with respect to each
of the parameters (Local Density, Collision Rate, and Busy
Ratio). Tx parameters are adapted according to the observation
of these three parameters in the order presented.

First, we check if the predicted local density falls into the
interval between the minimum and the maximum desired local
densities. If it is outside this range, the required adaptation of
TR/TP is performed according to the predicted local density.
If the local density is already in the range, the collision rate
is the next parameter the algorithm checks. If the current
collision rate indicates that it is higher than the acceptable
collision rate, we should decrease either the transmit rate
or the transmit power according to what is available to be
adapted. On the other hand, if the collision rate is below the
acceptable collision rate, we can look at the busy ratio and in
this case increase our selected Tx parameter to increase the
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Algorithm 2 Joint rate and power adaptation
Input:

GI: gradual increase rate
CL: confidence level
Cac: acceptable collision rate
Cc: current collision rate
Bop: optimal busy ratio
Bob: observed busy ratio
Bprd: predicted busy ratio
LDop: optimal local density
LDprd: predicted local density

1: At the end of each CCHI do:
2: if (|Cc - Cac| < CL) then
3: Reinitialise TRmax and TPmax

4: Reinitialise TRmin and TPmin

5: Continue
6: end if
7: if (LDprd < LDmin) then
8: if (TR == TRmin && TP ≤ TPmax) then
9: TP = Min (TP * [Min (1 + (Bop - Bob), GI)],

TPmax)
10: if (TP < TPmax) then
11: Continue
12: end if
13: end if
14: if (TP == TPmax && TR ≤ TRmax) then
15: TR = Min ([LDop * TR] / LDprd, TRmax)
16: Continue
17: end if
18: end if
19: if (LDprd > LDmax) then
20: if (TP == TPmax && TR > TRmin) then
21: TR = Max ([LDop * TR] / LDprd, TRmin)
22: if ( TR > TRmin) then
23: Continue
24: end if
25: end if
26: if (TR == TRmin && TP > TPmin) then
27: Dist = getDistanceFromNthV ehicle (LDop)
28: TP = getTP (Dist)
29: Continue
30: end if
31: end if
32: if (LDprd ≥ LDmin && LDprd ≤ LDmax) then
33: if (Cc > Cac) then
34: if (TP == TPmax && TR > TRmin) then
35: TRmax = TR
36: TR = Max (TR * [1 - (Cc - Cac)], TRmin)
37: if (TR > TRmin) then
38: Continue
39: end if
40: end if
41: if (TR == TRmin && TP > TPmin) then
42: TPmax = TP
43: TP = Max (TP * [1 - (Cc - Cac)], TPmin)
44: Continue
45: end if
46: end if
47: if ( Bob < Bop && Cc < Cac) then
48: if (TR == TRmin && TP < TPmax) then
49: TPmin = TP
50: TP = Min (TP * [Min (1 + (Bop - Bprd), GI)],

TPmax)
51: if (TP < TPmax) then
52: Continue
53: end if
54: end if
55: if (TP == TPmax && TR < TRmax) then

56: TRmin = TR
57: TR = Min (TR * [Min (1 + (Bop - Bprd),

GI)], TRmax)
58: Continue
59: end if
60: end if
61: end if

busy ratio if it is lower than the optimal rate. Once the decision
about increasing or decreasing Tx parameters has been made,
we look at TR and TP values to pick which one of them
should be adapted. For example when adapting Tx parameters
downwards, if TR can still be adapted, we reduce it first. On
the other hand, if TR has already reached its minimum allowed
value, TP is adapted.

The third step consists in adapting Tx parameters according
to the above conditions. If the predicted local density is in the
desired range, the adaptation is made by increasing or decreas-
ing the selected Tx parameter by a certain amount at each step
(CCH Interval). This amount is determined using the Euclidian
distance between the current channel conditions (i.e. collision
rate and channel busy ratio) and the acceptable/desired values.
Equations in Algorithm 2 show the adaptation made on TR by
decreasing and increasing it in lines 35 and 56 respectively;
and TP as well by reducing and expanding it in lines 42 and
49. On the other hand if the predicted local density is outside
of the desired range, the adaptation is made by increasing or
decreasing Tx parameters based on different methods. In the
case of a TR adaptation, this latter is determined using a simple
rule of three as specified in lines 14 and 20. For example, if
the predicted local density value is 12 vehicles broadcasting
at a TR of one beacon every time interval; in order to increase
the local density to the equivalent of 24 vehicles we simply
have to multiply the current TR by (24/12).
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Figure 7: The effect of transmission power on the transmission
range in IEEE 802.11p standard

If TP was to be adapted upwards, the Euclidian distance
method between the optimal busy ratio and the predicted one
is used since there is no direct way to increase the transmission
power and reach an exact number of vehicles in the absence
of information about the topology of the network beyond the
vehicle’s own field of view. If this adaptation had to be done
downwards, the network topology is known to the vehicle in
which case it is possible to reach a subset of vehicles within
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a vehicle’s own field of view. In fact, for a given transmission
power, vehicles are reached within an easily approximated
distance. Figure 7 was obtained by means of simulations
using the CORNER2 propagation model [37] and shows the
distances reached with regard to the TP value in a Line Of
Sight (LOS) scenario. Since the goal here is to decrease TP
and restrict the geographic area that will be covered by the
beacon, only the maximum distance is taken into account. This
is why the Non-Line Of Sight scenario is not considered for
this matter. The downward adaptation of TP performed in lines
26 - 27 relies on this concept and the data presented in the
graph.

The upper and lower bounds (TRmax /TRmin,
TPmax/TPmin) correspond to a given temporal local
density and are updated at the end of each CCHI right
before the adaptation is performed, by setting the previous
corresponding Tx parameters as a new bound. These bounds
are reinitialised with the maximum/minimum TR/TP values
(corresponding to the bounds of the desired local density
range) if the difference between the current and the acceptable
collision rate is smaller than an amount CL (Confidence
Level) that we set beforehand. This means that the near-
optimal Tx parameters have been found and the adaptation is
skipped in that step. Note that TR and TP increase is always
capped by a gradual increase rate (GI) at each step. This is
done to provide a slow increase of the channel busy rate and
avoid overloading the channel after an excessive increase of
Tx parameters that would compromise the collision rate.

VI. PERFORMANCE EVALUATION

In this section, we aim to demonstrate the efficiency of each
of the components forming P&A-A, namely, the altruistic local
density prediction mechanism and the joint rate and power
adaptation algorithm. To do so, we compared our protocol with
four other schemes namely P-SuRPA (a combination of the
prediction mechanism introduced in [30] and the adaptation
mechanism presented in [6]), and three variants of DCC
(Decentralised Congestion Control), which are ETSI-TRC
(Transmit Rate Control only), ETSI-TPC (Transmit Power
Control only) and ETSI-DCC (combined TRC and TPC). We
refer the reader to [14] for more information about DCC. The
metrics we picked in order to evaluate the efficiency of our
protocol are the collision rate and the busy ratio. A collision
is retrieved from the simulation environment if two or more
vehicles within each other’s range, broadcast their beacons
at the exact same timestamp. This information can be easily
retrieved from the simulation for each vehicle and the collision
rate for any vehicle is calculated as the ratio of the number of
collided beacons over the number of all broadcasted beacons
within a specified period of time. The overall collision rate is
then obtained from aggregating collision rates from all vehicles
in the simulation. Similarly, the busy ratio is calculated as the
fraction of time the channel is busy from a single vehicle’s
perspective, within a specified period of time. The overall
busy ratio is obtained from the aggregated busy ratios of

2The choice of this propagation loss model is motivated further in the
next section

all vehicles in the simulation. The performance evaluation is
carried out in three steps: the accuracy of the local density
prediction is demonstrated alone by showing how close is
this prediction from the real local density compared to the
four other schemes; then the benefit from applying the new
joint rate and power adaptation is proven by measuring, com-
paring and interpreting Tx parameters for the same schemes;
and finally, the two mechanisms (prediction and adaptation)
are tested together against the above mentioned schemes to
show the substantial gain obtained after applying P&A-A.
Two scenarios with two different road patterns (road maps
imported from OpenStreetMap3) were selected to carry out the
simulations, consisting in a 2 km2 road portion of Manhattan
(Figure 8(a)), and a 12 km2 portion of the city of Kirchberg,
Luxembourg (Figure 8(b)).

(a) Manhattan map (b) Kirchberg map

Figure 8: A road map portion of (a) Manhattan and (b) the
city of Kirchberg, Luxembourg, converted to SUMO format
and used in the simulations

One important thing to bear in mind throughout this section
is the difference between the “density” and the “local density”
as the former represents the density of all vehicles in the
simulation at a given time t while the latter stands for the
density of vehicles around a given vehicle and as perceived
by this vehicle at any given time t.

A. Simulation setting

We took a special care to conduct our test study in a
realistic simulation environment. For a realistic vehicular
mobility model, we used HINTS, a platform that couples the
microscopic road traffic simulator SUMO4 with the network
simulator NS-3, and allows them to exchange information
about vehicle movements at runtime. We refer the reader to
[38] for detailed description of the HINTS platform operation
mode. All vehicles in the simulations move according to the
standard SUMO Krauss driver model. We varied the density
of vehicles in the simulations from low densities to high
densities. The traffic was generated using a SUMO tool called
DUAROUTER. This tool allows generating realistic vehicular
mobility traces by assigning Origin-Destination pairs based
on some statistical data about different areas of the road map
(like the population, the age groups, as well as the working
population and others), then and computing trips for individual
vehicles. The total number of vehicles over the duration of

3www.openstreetmap.org
4www.sumo.dlr.de
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the simulation in our experiments is 3200 and 4000 for the
Manhattan scenario and the Kirchberg scenario respectively.
Note that all densities in this section colorredrepresent the
density at a given fraction of time and are expressed in vehicle
per kilometre (veh/km). A kilometre colorredhere is a linear
kilometre comprising a two lanes road. We also used a version
of the CORNER propagation loss model described in [37],
which takes the multi path fading into account, and selectively
applies the Rician fading for LOS and Rayleigh fading for
NLOS scenarios to capture the shadowing effects caused by
buildings. Regarding the shadowing caused by vehicles, it has
been shown in [8] that this shadowing is marginal in urban
scenarios, and no significant difference is observed between
the scenarios where the shadowing caused by buildings only is
considered and the scenario where both vehicles and buildings
are taken into account. Hence our choice of the CORNER
model.

We implemented P&A-A on each NS-3 node. These nodes
have only access to the environmental information the OBU
of an actual vehicle has access to (like their own real time
position, direction and speed in our case). This information
is retrieved by each NS-3 node in real time from SUMO
and included in beacon messages. Each vehicle runs P&A-A
algorithm using the restricted knowledge it acquired from the
beacons received from its neighbours at each Synchronisation
Interval (SI), and only bases its adaptation decisions on this
information. Using this simulation model, we made sure to
mimic and stay true to the integrity of a real world VANET
scenario.

Table II: Simulation parameters

Frequency band 5.9 GHz
Bandwidth 10 MHz

PHY Transmission range 260m
Max/Min Tx Power 20/5 dBm
Receiver sensitivity -95 dBm

Noise -105 dBm
Bit rate 6 Mbits/s

LLC CW [15, 1023]
AIFSN 2

Relaxed/Active/restrictive 20/15/-10 dBm
ETSI Relaxed/Active/restrictive 25Hz/2Hz/1Hz

Max /Min Channel load 0.4/0.15
Optimal local density 25 Vehicles

Data message size 256 Bytes
Max/Min beacons freq 50Hz/10Hz

P&A-A Acceptable collision rate 0.05
Desired channel load 0.35
Gradual increase rate 1.2

MaxD 2 m

For our simulations, we used the IEEE 802.11p Medium
Access Control model (MAC) with 10 MHz wide channels
according to the WAVE standard [3] and implemented the al-
ternation mechanism between the CCH and the SCH channels
according to the IEEE 1609.4 specifications [5]. Furthermore,
we only used one access category (AC) AC BE since all
beacons use the same AC [4], [33]. We chose a data rate of
6 Mbit/s [39] and starting values of 20 dBm for the transmit
power and -95 dBm for the receiver sensitivity value to reach
approximately 260 meters in LOS [37], and 10 Hz to 50 Hz for
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Figure 9: The percentage of deviation from the effective
(real) case under different vehicle densities: P&A-A vs. plain
prediction and ETSI schemes

the beaconing frequency [1], [2]. Note that the transmit rate
and transmit power values are the maximum values and are
adapted dynamically in our scheme based on the predicted
local density and the channel conditions. We set the same
starting transmit power values for the ETSI schemes [4] as
well to achieve the maximum desired transmission range that
is representative of vehicular networks [40] . In addition, DCC
schemes were implemented with CCH/SCH alternation for fair
comparison between these latter schemes and our schemes.
P&A-A specific parameters such as MaxD and the gradual
increase rate are tuned after performing some experimental
runs and obtaining the optimal values for our scenario. The
full list of simulation parameters for P&A-A as well as for
DCC is given in Table II.

Building on this simulation configuration, we implemented
our protocol P&A-A as well as the four above-mentioned
schemes and performed several runs of 1800 seconds to obtain
more accurate results.

B. Short-term local density prediction evaluation

In order to showcase the efficiency of our new local
density prediction scheme, we compared it with the three
ETSI schemes mentioned earlier in this section as well as
with the simple prediction scheme presented in [30] that we
refer to as plain prediction. The first metric is the deviation
of the observed/predicted local density from the real local
density (Figure 9). Each vehicle in the simulation observes
(and predicts in our scheme) its local density, which is then
compared with the effective (real) local density to show the
amount of deflection from this real case. A deviation of 0% is
the best case scenario and the higher the deviation the worse
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the results are. This deviation is calculated using the following
formula:

Deviation = 100− 100×
(∑

observed local density∑
real local density

)
(6)

Where the observed local density is the one observed
(predicted in our case) by each individual vehicle, and the
real local density is the effective local density retrieved from
our simulation, which considers a collision free medium. The
results shown in figure 9 are obtained using the mean value of
all vehicles’ local densities in the simulation, and retrieved for
different vehicular densities (the total density of vehicles in the
simulation as opposed to the local density). The simulations
were conducted using the two road maps of Manhattan (Figure
9(a)) and Kirchberg (Figure 9(b)).

This first set of results show a clear advantage for our
prediction scheme compared to the other schemes with a
deviation at a density of 25 veh/km of 5% in the Manhattan
scenario and 6% for Kirchberg map; slightly better than the
plain prediction with almost 10% against 30% and more for
the ETSI schemes (with a peak of to approximately 45% for
ETSI-TPC in both scenarios). The same pattern is observed
as the density of vehicles increases in the simulation, the
gap gets bigger as we recorded 10% and 12% deviation for
our scheme at a density of 100 veh/km for Manhattan and
Kirchberg respectively against 17% and 22% for the plain
prediction and up to 98% for ETSI-TPC. The degradation in
the deviation with the increase of the total density of vehicles
in the simulation observed in all the schemes (with different
amplitudes) is due to the increase in beacons error rates, as
the lost beacons would affect the accuracy of the local density
measurement (prediction in our case). Our scheme scales up
much better since it also reduces the collision rate, which we
will discuss later in this section.

Figure 10 shows the benefit we obtained using our scheme
in terms of the observed local density (predicted in our case)
from a single vehicle’s perspective. We retrieved this ob-
served/predicted local densities from vehicles moving towards
an intersection and crossing through it; and compared our
results with the four other schemes as well as the real local
density that we retrieved from the simulation. Here again, our
density prediction scheme performs much better than the four

other schemes, as it is the closest to the real density, especially
in the area closer to the intersection where the variation of
the density is faster and more important. Also, we notice that
the plots representing the non-density-based schemes are all
slightly skewed to the right compared to the prediction-based
schemes. This reflects the up-to-dateness of the data since a
slight skewing to the left means in this case that vehicles are
perceiving a local density representing an older state.

This metric, like the first one, is meant to show the accuracy
of our short-term vehicular density prediction scheme in both
a macroscopic point of view in the first (a measure of the
overall preciseness of the prediction) as well as a microscopic
one in the second (a measure of the preciseness at a vehicle
level). The results show a substantial improvement in terms of
preciseness and up-to-dateness of the local density with regard
to the effective case compared to the other schemes. It is worth
to call to mind the importance of an accurate vision of the
network. An outdated or biased density observed by vehicles
would result in an erroneous adaptation of the transmission
parameters, which will in turn cause poor network perfor-
mance like high packet losses and misuse or under-utilisation
of the available bandwidth. This leads us to our next point:
the evaluation of the joint rate and power adaptation.

C. Evaluation of the joint beacon rate and power adaptation

In this subsection, we show the variation of Tx parame-
ters (Transmission Rate and Transmission Power) versus the
density of vehicles using P&A-A against SuRPA (without the
prediction [6]) and the ETSI schemes. Figure 11 shows the
variation of beacons’ transmit rate and power for Manhattan
and Kirchberg road maps. The graphs in 11(a) and 11(b) show
a gradual decrease in the beacons transmit frequency for our
scheme as opposed to the ETSI schemes. In addition, our
scheme does not go below the limit of 10 Hz, performs slightly
better than SuRPA and stabilises at density values around 55
veh/km in the first scenario and 65 veh/km in the second
against 45 veh/km and 55 veh/km respectively for SuRPA. The
two other schemes (ETSI) go down to 1 Hz as the density
of vehicles increases and the communication overhead with
it. In Figures 11(c) and 11(d), the transmit power for our
scheme is stable and at the maximum value since, up to a
density of 55 veh/km for Manhattan scenario and 65 veh/km
for Kirchberg, only the rate adaptation is activated. Beyond
these two respective densities, the transmit power starts to
decrease gradually to reach the values of -3dBm and 5dBm
in the two scenarios respectively. Our scheme performs better
than SuRPA for which, the transmit power drops to -6 dBm
and 0 dBm respectively at a density of over 100 veh/km. The
ETSI schemes on the other hand drop sharply and reach the
bottom value of -10 dBm.

This set of results reveals two important things: first, the
gradual evolution of Tx parameters in our scheme means a
better adaptation and adjustment to the channel conditions.
Second, the higher values of our Tx parameters means a more
up-to-date context information for vehicles, shown in 11(a)
and 11(b) as beacons are exchanged more frequently; and
a higher level of awareness shown in 11(c) and 11(d) since
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Figure 11: Impact of vehicles density on beacons Transmit Rate and Power parameter: P&A-A vs. SuRPA and ETSI schemes

the transmission range is higher and the awareness region is
larger. Although in some cases Tx parameters are higher in the
ETSI schemes than it is in our scheme, this does not come
without a cost and it turns out to be very expensive since this
compromises the delivery of beacons, as we will show in the
next subsection.

D. P&A-A: Coupled prediction and adaptation evaluation

In this subsection, we intend to show the advantage from us-
ing our scheme P&A-A (coupled local density prediction and
rate and power adaptation) against the four above-mentioned
schemes namely P-SuRPA (including the plain prediction) and
the three variants of the ETSI scheme.

Figure 12 reveals the impact of vehicle density on the
collision rate and the channel busy ratio in our scheme as well
as in all other four schemes. In Figures 12(a) and 12(b), our
solution shows the lowest collision rate among all five schemes
and is the most stable as this collision rate remains below 8%
in both scenarios during the whole simulation regardless of the
density. In contrast, P-SuRPA fluctuates around the threshold
of 10% reaching up to 15% in higher densities and peaking
to 17% in Manhattan at a density of 100 veh/km. the ETSI
schemes reach limits that are not tolerated for VANETs and
safety applications in particular with more than 20% for ETSI-
TRC and ETSI-DCC, and up to 60% for ETSI-TPC. We also
notice a lot of fluctuation for the DCC schemes; this is due to
the sharp change in Tx parameters when switching between the
DCC states. We refer the reader to [15] for a thorough analysis
of the DCC schemes. Similarly, the graphs in Figures 12(c)
and 12(d) show the variation of the busy ratio with the increase
of density. As these plotted results show, our scheme allows
a non-negligible improvement in terms of channel usage as it

fluctuates around 35% in mid and high densities surpassing
P-SuRPA and the three other ETSI schemes. We notice that
ETSI-TPC reaches approximately the same busy ratio at a
density of 100 veh/km in Manhattan scenario, but this can be
discarded since this same scheme has a collision rate higher
than 55% at this density level.

It is crucial here to point out the importance of a low
collision rate to achieve a higher level of awareness in vehic-
ular environment. In fact, DCC having higher Tx parameters
(Figure 11) for a short period does not mean it achieves a
higher awareness level since more beacons are lost (more than
twice the value of collision rate than our scheme). That being
said, the under utilisation of the channel is not desired either
as this channel needs to remain at a good level of utilisation
in order to meet the requirements in terms of awareness
level. According to our findings presented in Section III, the
theoretical maximum channel busy ratio in vehicular networks,
that satisfies a marginal collision rate, is around 40%, a value
really close to what our protocol achieved.

The next set of results depicted in Figure 13 show the
reaction time of each of the considered schemes to the detected
changes in channel conditions. Figures 13(a) and 13(b) show
the variation of the collision rate after two clusters of vehicles
meet (in an intersection for example) for Manhattan and
Kirchberg scenarios respectively. We observe a considerable
increase in the collision rate of all schemes, then slowly
returning to normal rates after a few seconds. While this
increase remains very small for our new scheme, it fluctuates
to high values: up to 20% for P-SuRPA and more than 40% in
some of the ETSI schemes. Also, our scheme gets back to its
normal rate after approximately 1 second while the four other
schemes take a few seconds longer to achieve that. Figures
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Figure 12: Impact of vehicles density on the achieved collision rate and channel busy ratio: P&A-A vs. P-SuRPA and ETSI
schemes

13(c) and 13(d) on the other hand show the variation of the
busy ratio with time and demonstrates the stability of our new
scheme compared to the other schemes as it shows the least
variation among all five, while remaining close to the 35%
threshold. The instability of the ETSI schemes is apparent as
their respective values rise during second 1 after the vehicles’
encounter and drop significantly in the third second due to the
sharp adaptation of Tx parameters (see Figure 11).

The previous set of results (Figures 12 and 13) highlight
the benefit we obtained after applying our scheme P&A-A, in
terms of network performance. These results are a further val-
idation of our theoretical study conducted in subsection III-B,
and prove the effectiveness of the study. It is needless to say
how critical it is to achieve good overall network performance,
due to the critical nature of applications developed to ensure
the safety of drivers on the road. However, we would like
to stress on the importance of such good performances in
specific times and in a microscopic perspective. In fact, an
aggressive reaction to the changes in the network is crucial
in VANETs, but this will never be complete without a proper
density prediction mechanism to ensure more accurate data
about the local density and network state. This is what we
have showcased in this section first, by demonstrating the
preciseness of our short-term vehicular density prediction; then
by displaying the repercussion of this on the performance of
the network.

VII. CONCLUSION

In this paper, we presented P&A-A, a new solution for
channel congestion where beacons’ transmit rate and power
are adapted successively in order to control the channel load
and ensure a better level of awareness among vehicles. This

adaptation is performed based on a short-term vehicular local
density prediction scheme that aims at providing more accurate
and up-to-date information about the network state. This
prediction then helps to perform an improved adaptation to
the transmission parameters in order to achieve better overall
network performance. This modular design allows for easy fu-
ture improvements of the solution by means of simple software
updates. Additionally, we achieved a higher level of awareness
by combining rate and power adaptations in a smart way that
allows respecting the strict beaconing frequency requirement.
Simulations were conducted using a realistic simulation en-
vironment in terms of both channel conditions and vehicle
mobility, and are fully compliant with the specifications of
the IEEE 802.11p hardware and software. The obtained results
have proven the efficiency and the effectiveness of our scheme
that enabled a significant enhancement in terms of channel
busy ratio and successful packet delivery. The findings of
this work will help the research community moving one step
forward and gaining deeper understanding of the rate and
power adaptation mechanics; and paves the way for more
innovative ways to control the channel load in VANETs. It
also helps the vehicular networks research community to gain
deeper understanding as to why a local density prediction
is needed in such a network, and will open new research
prospects by bringing up new challenges to VANETs research
field.
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