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Abstract

This paper has a twofold goal. The first aim is to provide a deeper understanding of the family

of the Real Elliptically Symmetric (RES) distributions by investigating their intrinsic semiparametric

nature. The second aim is to derive a semiparametric lower bound for the estimation of the parametric

component of the model. The RES distributions represent a semiparametric model where the parametric

part is given by the mean vector and by the scatter matrix while the non-parametric, infinite-dimensional,

part is represented by the density generator. Since, in practical applications, we are often interested only

in the estimation of the parametric component, the density generator can be considered as nuisance.

The first part of the paper is dedicated to conveniently place the RES distributions in the framework

of the semiparametric group models. The second part of the paper, building on the mathematical tools

previously introduced, the Constrained Semiparametric Cramér-Rao Bound (CSCRB) for the estimation

of the mean vector and of the constrained scatter matrix of a RES distributed random vector is introduced.

The CSCRB provides a lower bound on the Mean Squared Error (MSE) of any robust M -estimator

of mean vector and scatter matrix when no a-priori information on the density generator is available.

A closed form expression for the CSCRB is derived. Finally, in simulations, we assess the statistical

efficiency of the Tyler’s and Huber’s scatter matrix M -estimators with respect to the CSCRB.
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F. Gini and M. S. Greco are with Università di Pisa, Dipartimento di Ingegneria dell’Informazione, Pisa, Italy (e-mail:

f.gini,m.greco@iet.unipi.it).

A. M. Zoubir is with Technische Universität Darmstadt, Signal Processing Group, Darmstadt, Germany (e-mail: zoubir@spg.tu-

darmstadt.de).

M. Rangaswamy is with U.S. AFRL, Sensors Directorate, Wright-Patterson AFB, OH, USA (e-mail: muralid-

har.rangaswamy@us.af.mil).

ar
X

iv
:1

80
7.

07
81

1v
2 

 [
ee

ss
.S

P]
  1

5 
O

ct
 2

01
8



2

Index Terms
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Elliptically Symmetric distributions, scatter matrix estimation, robust estimation.

I. INTRODUCTION

A prerequisite for any statistical inference method is the notion of a statistical model, say P ,

i.e. a collection, or a family, of probability density functions (pdfs) that is able to characterize

random phenomena based on their observations. The most widely used models are parametric

models. A parametric model is a family of pdfs parametrized by the elements of a subset Γ of a

finite-dimensional Euclidean space Rq. The popularity of parametric models is due to the ease

of derivation of inference algorithms. On the other hand, a major drawback is their “narrowness”

that can lead to misspecification problems [1], [2]. Their counterpart are nonparametric models,

a wide family of pdfs that can be required to satisfy some functional constraints, e.g. symmetry,

smoothness or moment constraints. While the use of a nonparametric model minimizes the

risk of model misspecification, the amount of data needed for nonparametric inference may

represent an insurmountable obstacle in practical applications. Semiparametric models have been

introduced as a compromise between the “narrowness” of parametric models and the cost of using

nonparametric ones [3]. More formally, let x be a random vector taking values in the sample

space X ⊆ RN . Then, a semiparametric model Pγ,l is a family of pdfs parametrized by a

finite-dimensional parameter vector of interest γ ∈ Γ ⊆ Rq, along with an infinite-dimensional

nuisance parameter l ∈ L, where L is a set of functions:

Pγ,l , {pX |pX(x|γ, l),γ ∈ Γ, l ∈ L} . (1)

There is a rich statistical literature on semiparametric models and their applications. For a

comprehensive and detailed list of the main contributions in this field, we refer the reader to

[3] and [4] and to the seminal book [5]. However, this profound theoretical understanding of

semiparametric models has not been fully exploited in Signal Processing (SP) problems as yet.

Two, among the very few, examples of SP applications of the semiparametric inference are

the references [6] and [7], where the semiparametric theory has been applied to blind source

separation and nonlinear regression, respectively.

This paper aims at improving the understanding of potential applications of semiparametric

models. Specifically, we focus our attention on the joint estimation of the mean vector µ
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and of the (constrained) scatter matrix Σ in the family of Real Elliptically Symmetric (RES)

distributions by providing a closed form expression, up to a (numerically performed) singular

value decomposition, for the Constrained Semiparametric Cramér-Rao Bound (CSCRB) on the

MSE of any robust estimator of µ and Σ. As we will discuss below, a constraint on Sigma is

required to avoid the scale ambiguity that characterizes the definition of scatter matrix in RES

distributions. The RES class represents a wide family of distributions that includes the Gaussian,

the t, the Generalized Gaussian and all the real Compound-Gaussian distributions as special cases

([8]–[14], and [15, Ch. 4]). The elliptical distributions are of fundamental importance in many

practical applications since they can be successfully exploited to statistically characterize the

non-Gaussian behavior of noisy data. Moreover, as we will discuss below, RES distributions

represent an example of a semiparametric model where the parametric part is represented by

the mean vector and by the scatter matrix. They should be estimated in the presence of an

infinite-dimensional nuisance parameter, i.e. the density generator, which is generally unknown.

This paper is the natural follow on of our previous work [16]. In [16], we provided, in a

tutorial and accessible manner, a general introduction to semiparametric inference framework

and to the underling mathematical tools needed for its development. Moreover, the extension of

the classical CRB in the presence of a finite-dimensional nuisance deterministic vector to the

SCRB where the nuisance parameter belongs to a certain, infinite-dimensional, function space

has been reported in Theorem 1 in [16]. As discussed in the statistical literature and summarized

in [16], this generalization can be carried out by means of three key elements:

• the Hilbert space Hq of all the q-dimensional, zero-mean, vector-valued function of the data

vector,

• a notion of tangent space T for a statistical model,

• an orthogonal projection operator on T , i.e. Π(·|T ).

A formal definition of the Hilbert space Hq and of the projection operator Π(·|T ) can be found

in Appendix A, while the tangent space for both parametric and semiparametric models has been

defined, in a tutorial manner, in [16].

This paper aims at investigating the applications of the general concepts introduced in [16]

to the semiparametric model generated by RES distributions. We start by introducing the semi-

parametric group model and then we continue by showing that the RES class actually possesses

this structure. Building on the mathematical framework that characterizes semiparametric group

models and, in particular, their tangent space and projection operator, we then show how to
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derive the CSCRB for the joint estimation of the mean vector µ and the scatter matrix Σ of a

RES distributed random vector.

The problem of establishing a semiparametric lower bound for the joint estimation of µ and Σ

in the RES class has been investigated firstly by Bickel in [17], where a bound on the estimation

error of the inverse of the scatter matrix has been derived. More discussions and analyses have

also been presented in [5] (Sec. 4.2 and Sec. 6.3). More recently, in a series of papers ([18], [19],

[20] and [21]), Hallin and Paindaveine rediscovered the RES class as a semiparametric model

and, by using two approaches based on Le Cam’s theory [22] and on rank-based invariance [23],

they presented the SCRB for the joint estimation of µ and Σ in its most general form. However,

even if valuable and profound, Hallin and Paindavaine’s work requires a deep understanding of

Le Cam’s theory on Local Asymptotic Normality [22]. For this reason, starting from the results

in [5] (Sec. 4.2 and Sec. 6.3), we propose here an alternative derivation of the SCRB by using

a simpler, even if less general, approach.

Along with the derivation of a lower bound on the estimation performance, we always have

to specify the class of estimators to which such bound applies. It can be shown that the SCRB

is a lower bound to the MSE of any regular and asymptotic linear (RAL) estimator (see [5,

Sec. 2.2], [17], [24], [25], [26], [27, Ch. 3] and [28, Ch. 4] for additional details). Even if we

do not address this issue here, it must be highlighted that the class of RAL estimators is a very

wide family that encompasses the Maximum Likelihood estimator and all the R-, S-, and in

particular, M - robust estimators.

The rest of the paper is organized as follows. In Sec. II the semiparametric group model is

presented with a particular focus on the calculation of the tangent space and projection operator.

Sec. III collects the basic notions on RES distributions and their intrinsic semiparametric-group

structure is investigated. The step-by-step derivation of the CSCRB for the estimation of µ and

Σ is provided in Sec. IV. The efficiency of the Sample Covariance Matrix and of two robust

scatter matrix M -estimators, Tyler’s and the Huber’s estimators, is assessed in Sec. V using the

previously derived CSCRB. Finally, some concluding remarks are collected in Sec. VI.

Notation: Throughout this paper, italics indicates scalars or scalar-valued functions (a,A),

lower case and upper case boldface indicate column vectors (a) and matrices (A) respectively.

Note that, since we deal with Hilbert spaces, the word “vector” indicates both Euclidean vectors

and vector-valued functions. For clarity, we indicate sometimes a vector-valued function as a ≡

a(x). Each entry of a matrix A is indicated as ai,j , [A]i,j . The superscript T indicates the
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transpose operator. Finally, for random variables or vectors, the notation =d stands for ”has the

same distribution as”.

II. THE SEMIPARAMETRIC GROUP MODELS

This section introduces a particular semiparametric model, i.e. the semiparametric group

model. As the name suggests, this class of semiparametric models is generated by the action

of a group of invertible transformations on a random vector whose pdf is allowed to vary in

a given set. As we will show in the sequel, this group-based data generating process allows

for an easy calculation of the nuisance tangent space and of the orthogonal projection operator.

Before introducing the definition of this class of semiparametric models, let us first introduce

some related notation.

Let A be a group of invertible transformations from RN into itself. Suppose that each

transformation α ∈ A can be parametrized by means of a real vector γ ∈ Γ ⊆ Rq, i.e.

A = {α|α(·;γ) , αγ(·);γ ∈ Γ}. (2)

We will indicate with α−1
γ the inverse of αγ . The operation αγ2◦αγ1 denotes the composition of

αγ1 and αγ2 that can be explicitly expressed as (αγ2 ◦αγ1)(·) , αγ2(αγ1(·)). Finally, γe indicates

the parameter vector that characterizes the identity transformation αγe , such that αγe(·) = ·.

Definition II.1. (see [5, Sec. 4.2]) Let z ∈ RN be a real-valued random vector with pdf pZ , i.e.

z ∼ pZ(z). The parametric group model Pγ , generated by the action of the group of invertible

parametric transformations A, given in (2), on the random vector z ∼ pZ(z), is the set of

parametric pdfs of the transformed random vector αγ(z) = x ∼ pX(x|γ). Specifically, Pγ can

be explicitly expressed as:

Pγ =
{
pX |pX(x|γ) = |J(α−1

γ )(x)|pZ(α−1
γ (x));γ ∈ Γ

}
, (3)

where [J(α−1
γ )(x)]i,j , ∂[α−1(x;γ)]i/∂γj is the Jacobian matrix of the inverse transformation

α−1
γ and | · | defines the absolute value of the determinant of a matrix. The generalization to

semiparametric models can be obtained by allowing the pdf pZ to vary within a large set of

density functions L. Consequently, a semiparametric group model generated by the parametric

group A in (2) can be expressed as:

Pγ,pZ =
{
pX |pX(x|γ, pZ) = |J(α−1

γ )(x)|pZ(α−1
γ (x));γ ∈ Γ, pZ ∈ L

}
. (4)
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Using the notation introduced in [16], the actual “semiparametric vector” is indicated as

(γT0 , pZ,0)T and, consequently, the true pdf is given by:

p0(x) , pX(x|γ0, pZ,0) = |J(α−1
γ0

)(x)|pZ,0(α−1
γ0

(x)). (5)

Moreover, from now on, we denote by E0{·} the expectation operator with respect to the true

pdf p0(x). Note that the word “true” here indicates the actual pdf, and consequently the actual

semiparametric vector, that characterizes the data.

As mentioned before, the most useful feature of a semiparametric group model is the fact that

its underling group structure allows for a convenient derivation of the nuisance tangent space

and of the relevant projection operator. The following proposition formalizes this concept.

Let Pγ,pZ be a semiparametric group model defined in (4). Let TpZ,0(γ) be the semiparametric

nuisance tangent space of Pγ,pZ evaluated at (γT , pZ,0)T , where γ is a generic element of the

finite-dimensional parameter space Γ. Let us indicate by TpZ,0(γe) the semiparametric nuisance

tangent space of Pγ,pZ evaluated at (γTe , pZ,0)T , where, as defined before, γe is the parameter

vector that characterizes the identity transformation.

Proposition II.1. Let t be a generic q-dimensional vector-valued function belonging to TpZ,0(γe),

then the semiparametric nuisance tangent space TpZ,0(γ) can be obtained from TpZ,0(γe) as

follows:

TpZ,0(γ) =
{
t ◦ α−1

γ |t ∈ TpZ,0(γe)
}
,∀γ ∈ Γ. (6)

Moreover, let l be a generic q-dimensional vector-valued function in Hq, then the projection

operator Π(·|TpZ,0(γ)) on TpZ,0(γ) (see Appendix A) can be obtained form the projection operator

Π(·|TpZ,0(γe)) on TpZ,0(γe) as follows:

Π(l|TpZ,0(γ)) = Π(l ◦ αγ |TpZ,0(γe)) ◦ α−1
γ ,∀γ ∈ Γ. (7)

The proof can be found in [5, Sec. 4.2, Lemma 3].

It is worth noticing that Proposition II.1 can be directly used to derive the nuisance tangent

space at the true semiparametric vector (γT0 , pZ,0)T , i.e. TpZ,0 ≡ TpZ,0(γ0) and the relevant

projection operator Π(·|TpZ,0). This can be done by evaluating the relations (6) and (7) at the

true parameter vector of interest γ0. As discussed below, Proposition II.1 is of fundamental

importance for the derivation of the Semiparametric Cramér-Rao Bound (SCRB) for γ0 in the

class of RES distributions.
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III. THE FAMILY OF RES DISTRIBUTIONS AS A SEMIPARAMETRIC MODEL

In this section, the semiparametric nature of the family of RES distributions is investigated.

In particular, we show that the RES class can be conveniently interpreted as a semiparametric

group model. Here we restrict the discussion to the absolutely continuous case [14, Sec. III.D],

i.e. we always assume that a RES distributed random vector admits a pdf. In what follows, we

exploit the definition of the RES class provided in [29] and [9, Ch. 3], since it is particularly

useful for our aims.

A. Spherically Symmetric (SS) distributions

As a prerequisite for the definition of the RES class, Spherically Symmetric (SS) distributions

need to be introduced first.

Definition III.1. Let z ∈ RN be a real-valued random vector and let O be the set of all the

orthogonal transformations such that:

O 3 O : RN → RN

z 7→ O(z) = Oz,
(8)

for any orthogonal matrix O, i.e for any O ∈ RN×N such that OTO = OOT = I. Then, z is

said to be SS-distributed if its distribution is invariant to any orthogonal transformations O ∈ O,

i.e.

z =d Oz. (9)

We indicate with S the class of all SS-distributions.

As a consequence, the following properties hold true (see, e.g. [29] or [9, Ch. 3] for the proof):

P1) The SS-distributed random vector z ∼ SS(g) has a pdf given by:

pZ(z) = 2−N/2g
(
||z||2

)
, (10)

where G 3 g, is a function, called density generator, that depends on z only through ||z||

and

G =

{
g : R+ → R+

∣∣∣∣∫ ∞
0

tN/2−1g(t)dt <∞
}

(11)

where the integrability condition in (11) is required to guarantee the integrability of pZ(z)

(see [9, eq. 3.25]). Consequently, the set of all SS pdfs can be described as:

S =
{
pZ |pZ(z) = 2−N/2g

(
||z||2

)
,∀g ∈ G

}
. (12)
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P2) Let sN , 2πN/2/Γ(N/2) be the surface area of the unit sphere in RN , then the pdf of the

random variables Q =d ||z||2 and R ,
√
Q, called 2nd-order modular variate and modular

variate respectively [14], are given by:

pQ(q) = sN2−N/2−1qN/2−1g (q) , (13)

pR(r) = sN2−N/2rN−1g
(
r2
)
. (14)

P3) The Stochastic Representation Theorem. Let u ∼ U(RSN) be a random vector uniformly

distributed on the real unit sphere of dimension N , indicated as RSN . If z ∈ RN is SS-

distributed with pdf given by (10), then:

z =d

√
Qu =d Ru, (15)

where Q ∼ pQ(q) in (13), R ∼ pR(r) in (14). Moreover, Q and u (or R and u) are

independent. Note that u in (15) satisfies the following three properties: ||u|| = 1, E{u} = 0

and E{uuT} = N−1I.

P4) Maximal Invariant Statistic. The Stochastic Representation Theorem shows that there exists

a one-to-one relationship between every z ∼ SS(g) and every couple (R,u). Moreover, it

is easy to verify that the modular variate R is a maximal invariant statistic for the set of

the SS-distributed random vectors. 1

We can now introduce the class of RES distributions as a semiparametric group model.

B. The RES class as a semiparametric group model

At first, let us define the parameter space Ω ⊆ Rq of dimension q = N(N + 3)/2 as:

Ω = {φ ∈ Rq|φ = (µT , vecs(Σ)T )T ;µ ∈ RN ,Σ ∈MN}, (16)

where µ ∈ RN is a real-valued N -dimensional vector while Σ is an N ×N matrix belonging to

the set MN of all the symmetric, positive-definite matrices of dimension N ×N . Note that the

vecs operator maps the N × N symmetric matrix Σ in an N(N + 1)/2-dimensional vector of

1For the sake of clarity, let us recall the definition of maximal invariant statistic [30, Ch. 6]. Let D = {d} be a group of

one-to-one transformations on a sample space X and let T be an invariant statistic such that T (x) =d T (d(x)), ∀x ∈ X and

∀d ∈ D. Then, T is a maximal invariant on X w.r.t. D if T (x1) =d T (x2) implies that x1 =d d(x2), ∀x1,x2 ∈ X and ∀d ∈ D.

Clearly, for any couple of SS-distributed random vectors z1 and z2, we have ||z1|| =d ||z2|| ⇒ z1 =d Oz2, ∀O ∈ O,

where O is the group of orthogonal transformations defined in (8). Consequently, R = ||z|| is a maximal invariant statistic for

the set of the SS-distributed random vectors.
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the entries of the lower triangular sub-matrix of Σ [31], [32]. We can now introduce the group

A of all affine transformations, parameterized by the parameter space Ω in (16), such that

A 3 αφ : RN → RN , ∀φ ∈ Ω

z 7→ αφ(z) = µ + Σ1/2z.
(17)

The identity element αφe(·) of the group A is parameterized by the vector φe = (0T , vecs(I)T )T ,

while the inverse transformation is given by:

α−1
φ (·) = Σ−1/2(· − µ). (18)

The class of RES distributions is defined as the class of distributions that is closed under the

action of the group A in (17) on any SS-distributed random vector. The next definition formalizes

this statement.

Definition III.2. A real-valued random vector x ∈ RN is said to be RES-distributed with mean

value µ and scatter matrix Σ, if it can be expressed as:

x = αφ(z) = µ + Σ1/2z =d µ +
√
QΣ1/2u, (19)

where φ ∈ Ω defined in (16), z ∼ SS(g) is an SS-distributed random vector, while u ∼ U(RSN)

and the 2nd-order modular variate Q have been already defined in (15). In particular:

Q =d ||z||2 = ||α−1
φ (x)||2 = (x− µ)TΣ−1(x− µ) , Q. (20)

We refer the reader to [29], [9, Ch. 3] and [14] for the proof.

Definition III.2 provides the link between the RES family and the semiparametric group model

defined in Section II. As a consequence, the explicit expression of the pdf of an RES distributed

random vector can be obtained as shown in the Definition II.1, Equation (4). In particular, the

determinant of the Jacobian matrix of the inverse transformation in (18) is |J(α−1
φ )| = |Σ−1/2| =

|Σ|−1/2. Then, the pdf of any RES-distributed random vector x can be obtained from the relevant

SS-distributed random vector z, i.e. pZ(z) in (10), as 2:

RESN(x;µ,Σ, g) , |Σ|−1/2pZ(α−1
φ (x))

= 2−N/2|Σ|−1/2g
(
(x− µ)TΣ−1(x− µ)

)
,∀g ∈ G.

(21)

2Note that the definition of the pdf of an RES distributed random vectors given here is consistent with the one proposed in

[14] for CES distributed random vectors. The only difference is that, in our definition, the normalizing constant cN,g introduced

in [14], has been included in the density generator g(·).
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Moreover, the general description of a semiparametric group model given in (4) can be

specialized for the RES case as:

Pφ,g =
{
pX |pX(x|φ, g) = 2−N/2|Σ|−1/2g(||α−1

φ (x)||2);φ ∈ Ω, g ∈ G
}
, (22)

where G is the set of density generators given in (11). Clearly, the mean vector of x ∼

RESN(x;µ,Σ, g) is given by E0{x} = µ while, if E{Q} < ∞, its covariance matrix M

is M , E0{(x− µ)(x− µ)T} = N−1E{Q}Σ

As extensively discussed in the literature on elliptically symmetric distributions, the repre-

sentation of an RES distributed vector x is not uniquely determined by (19). In fact, x =d

µ +
√
QΣ−1/2u =d µ +

√
c−2Q(cΣ−1/2)u,∀c > 0. This scale ambiguity can also be seen as a

consequence of the functional form of an RES pdf given in (21) since RESN(x;µ,Σ, g(t)) ≡

RESN(x;µ, c2Σ, g(t/c2)),∀c > 0. To avoid this well-known identifiability problem, we impose

the following constraint on the trace of Σ, i.e.

c(Σ) = tr(Σ)−N = 0. (23)

This constraint limits the parameter vector φ ∈ Ω, where Ω is defined in (16), in a lower

dimensional smooth manifold

Ω̄ = {φ ∈ Ω|tr(Σ) = N}, (24)

whose dimension is q̄ = q− 1. Trace constraint is only an example of all the possible constrains

that can be imposed on the scatter matrix to avoid scale ambiguity. For a deep and insightful

analysis of the impact of the particular constraint on Σ on the estimation performance, we refer

to [20] and [21].

The properties of the semiparametric group model previously discussed can be exploited to

derive the CSCRB for the estimation of the constrained parameter vector φ = (µT , vecs(Σ)T )T ∈

Ω̄, where Ω̄ given in (24).

IV. THE CONSTRAINED SEMIPARAMETRIC CRAMÉR-RAO BOUND FOR THE RES CLASS

This section is devoted to the derivation of a closed form expression of the CSCRB for

the estimation of φ ∈ Ω̄. The theoretical foundation of the generalization of the Cramér-Rao

inequality in the semiparametric framework can be found in [27, Theo. 4.1], [5, Sec. 3.4], [24]

and [33]. Moreover, in [16], it is shown, in a tutorial manner, how the SCRB can be obtained as

a result of a limit process of the classical CRB derived in the presence of a finite-dimensional
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nuisance parameter vector. Here, as mentioned before, we focus on the calculation of the SCRB

for the particular case of the RES distributions.

As explained in the previous section, to avoid the scale ambiguity of the RES class, we need to

put a constraint on the scatter matrix. In order to take this requirement into account, we propose

in the sequel the extension of Theorem 1 in [16] to the case of constrained, finite-dimensional,

parameter vector. In particular, suppose that the finite-dimensional parameter vector of interest

γ0 ∈ Γ ⊆ Rq is required to satisfy k (with k < q) continuously differentiable constraints ([34],

[35], [36]):

c(γ0) = 0. (25)

This set of constraints define a smooth manifold, of dimension q̄ = q−k, in the parameter space

Γ, such that:

Γ̄ = {γ ∈ Γ ⊆ Rq|c(γ) = 0} (26)

Moreover, suppose that the k × q Jacobian matrix of the constraints, defined as [Jc(γ)]i,j ,

∂ci(γ)/∂γj has full row rank for any γ ∈ Γ satisfying (25). Consequently, there exists a matrix

U ∈ Rq×q̄ whose columns form an orthonormal basis for the null space of Jc(γ0), i.e.

Jc(γ0)U = 0k×q̄, UTU = I. (27)

Theorem IV.1. The Constrained Semiparametric Cramér-Rao Bound (CSCRB) for the estimation

of the constrained finite-dimensional vector γ0 ∈ Γ̄ in the presence of the nuisance function

l0 ∈ L is given by:

CSCRB(γ0|l0) = U(UT Ī(γ0|l0)U)−1UT , (28)

where:

Ī(γ0|l0) , E0{s̄0(s̄0)T}, (29)

is the semiparametric Fisher Information Matrix (SFIM) and s̄0 is the semiparametric efficient

score vector defined as:

s̄0 = sγ0 − Π(sγ0|Tl0), (30)

where Π(sγ0 |Tl0) is the orthogonal projection of the score vector of the parameters of interest

sγ0 on the semiparametric nuisance tangent space. Finally, matrix U is defined in (27). Note

that s̄0, sγ0 and Π(sγ0|Tl0) are q-dimensional functions of the observation vector x.
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The proof of the “unconstrained” part of this theorem can be found in [27, Theo. 4.1] and in

[24], while a more abstract and general formulation can be found in [33] and in [5, Sec. 3.4].

The proof of the “constrained” part can be obtained through a straightforward application of the

approach discussed in [35] for the constrained CRB.

The remainder of this section is devoted to the evaluation of the CSCRB in (28) for the

estimation of the mean vector µ and of the constrained scatter matrix Σ, such that tr(Σ) = N ,

of a RES distributed random vector x ∼ RESN(x;µ0,Σ0, g0) in the presence of the nuisance

function g0 ∈ G. To this end, according to Theorem IV.1, we have to evaluate:

A. the score vector of the parameters of interest sφ0 ≡ sφ0(x), where φ0 = (µT
0 , vecs(Σ0)T )T ∈

Ω given in (16),

B. the projection operator Π(sφ0|Tg0), where Tg0 ≡ Tg0(φ0) is the semiparametric nuisance

tangent space for the RES distributions class evaluated at the true semiparametric vector

(φT
0 , g0)T ,

C. the semiparametric efficient score vector s̄0 ≡ s̄0(x) in (30) and the SFIM Ī(φ0|g0) in (29),

D. the matrix U in (27) and then the CSCRB in (28).

In what follows, we will provide this calculation step-by-step.

A. Evaluation of the score vector sφ0(x)

By definition, the score vector of the parameters of interest is given by:

sφ0(x) = ∇φ ln pX(x|φ0, g0) =

 sµ0(x)

svecs(Σ0)(x)

 , (31)

where φ0 ∈ Ω and Ω is the unconstrained parameter space defined in (16) and:

sµ0(x) = ∇µ ln pX(x|µ0,Σ0, g0), (32)

svecs(Σ0)(x) = ∇vecs(Σ) ln pX(x|µ0,Σ0, g0), (33)

and where µ0, Σ0 and g0 represents the true mean vector, the true scatter matrix and the true

density generator, respectively. By substituting in (32) the explicit expression of pX(x|µ0,Σ0, g0)

given in (21) and by exploiting the differentiation rules with respect to vector and matrices

provided e.g. in [37, Ch. 8], we have that:

sµ0(x) = −2ψ0(Q0)Σ−1
0 (x− µ0)

=d −2
√
Qψ0(Q)Σ

−1/2
0 u

(34)
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where, according to (20),

Q0 = ||α−1
φ0

(x)||2 = (x− µ0)TΣ−1
0 (x− µ0) =d Q, (35)

and the last two equalities follow directly from the Stochastic Representation of a RES vector

given in (19) and

ψ0(t) ,
1

g0(t)

dg0(t)

dt
. (36)

Similarly, the term svecs(Σ0)(x) in (33) can be evaluated by applying the rules of the differential

matrix calculus detailed in [37, Ch. 8] and by using standard properties of the Kronecker product

and of the vec operator ([37, Ch. 15], [31,32]) as:

svecs(Σ0)(x) = −DT
N

(
2−1vec(Σ−1

0 ) + ψ0(Q0)Σ−1
0 ⊗Σ−1

0 vec((x− µ0)(x− µ0)T )
)

=d −DT
N

(
2−1vec(Σ−1

0 ) +Qψ0(Q)Σ
−1/2
0 ⊗Σ

−1/2
0 vec(uuT )

) (37)

As before, the second equality follows from the Stochastic Representation (19) while DN is the

N2 × N(N + 1)/2 duplication matrix that is implicitly defined by the equality DNvecs(A) =

vec(A) for any N2 × N2 symmetric matrix A ([31], [32]). See also [38]–[40] for similar

calculation.

B. Evaluation of the projection operator Π(sφ0 |Tg0)

In order to obtain the explicit expression of the projection operator, we will exploit the fact

that the RES class is a semiparametric group model. In particular, Π(sφ0|Tg0) can be obtained

by specializing Proposition II.1 for the RES distributions.

For the sake of clarity, let us recall that, according to the definition of the group A of the

affine tranformations (17), for any φ0 ∈ Ω, we have:

αφ0(z) , µ0 + Σ
1/2
0 z, z ∼ SS(g0), (38)

αφe(z) , 0 + I1/2z = z, z ∼ SS(g0), (39)

α−1
φ0

(x) , Σ
1/2
0 (x− µ0), x ∼ RESN(x;µ0,Σ0, g0). (40)

Let Tg0 ≡ Tg0(φ0) and TS0 ≡ Tg0(φe) be the semiparametric nuisance tangent spaces of

the RES class evaluated at the true semiparametric vector (φT
0 , g0)T and at (φT

e , g0)T , where

φe = (0T , vecs(I)T )T is the vector that characterizes the identity transformation given in (39).

Note that, since it is evaluated at the identity transformation, TS0 can be interpreted as the tangent
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space of the SS distribution class evaluated at the true g0, and this explains the chosen notation.

Now, by directly applying Proposition II.1, we have that the projection of the score vector of

the parameters of interest sφ0(x) on the tangent space Tg0 can be expressed as:

(Π(sφ0(x)|Tg0))(x) = (Π((sφ0 ◦ αφ0)(z)|TS0) ◦ α−1
φ0

)(x), (41)

where x ∼ RESN(x;µ0,Σ0, g0) and z ∼ SS(g0).

In what follows, we show how to obtain an explicit expression of the projection in (41).

1) Calculation of (sφ0 ◦ αφ0)(z): From a visual inspection of the expressions in (34) and

(37), we notice that they can be rewritten as a function of the inverse transformation α−1
φ0

(x),

i.e.:

sµ0(x) = (s̃µ0 ◦ α−1
φ0

)(x) = −2ψ0(Q0)Σ
−1/2
0 α−1

φ0
(x), (42)

and

svecs(Σ0)(x) = (s̃vecs(Σ0) ◦ α−1
φ0

)(x)

= −DT
N

(
2−1vec(Σ−1

0 ) + ψ0(Q0)Σ
−1/2
0 ⊗Σ

−1/2
0 vec(α−1

φ0
(x)α−1

φ0
(x)T )

)
.

(43)

Then, we have that:

(sφ0 ◦ αφ0)(z) =

 (s̃µ0 ◦ α−1
φ0
◦ αφ0)(z)

(s̃vecs(Σ0) ◦ α−1
φ0
◦ αφ0)(z)

 =

 s̃µ0(z)

s̃vecs(Σ0)(z)

 , (44)

and

s̃µ0(z) = −2ψ0(Q0)Σ
−1/2
0 z =d −2

√
Qψ0(Q)Σ

−1/2
0 u (45)

s̃vecs(Σ0)(z) = −DT
N

(
2−1vec(Σ−1

0 ) + ψ0(Q0)Σ
−1/2
0 ⊗Σ

−1/2
0 vec(zzT )

)
=d −DT

N

(
2−1vec(Σ−1

0 ) +Qψ0(Q)Σ
−1/2
0 ⊗Σ

−1/2
0 vec(uuT )

)
.

(46)

2) Derivation of TS0: The next step is the evaluation of TS0 , i.e. the tangent space of S in

(12), evaluated at the true density generator g0. Using the procedure discussed in the Appendix

A.3 of [5], it is possible to verify that TS0 is a q-replicating Hilber space TS0 = T × . . . × T

(see also Appendix A) such that:

TS0 , {la| a is any vector in Rq, l ∈ T }, (47)

where

T =
{
l ∈ H1|l is invariant under O

}
= {l|l(z) ≡ l(||z||), E0{l(||z||} = 0} ,

(48)
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and O is the group of orthogonal transformations defined in (8). Let us now recall that, according

to Property P4 in Sec. III, the modular variate R is a maximal invariant statistic for an SS

distribution. Then, by using the procedure discussed in [5, Sec. 6.3, Example 1] and in accordance

with the discussion provided in Appendix B, we have that the projection operator Π(·|TS0) on

the tangent space TS0 can be obtained as the expectation operator E0|R{·|R} with respect to the

maximal invariant statistic R, i.e.

Π(l|TS0) = E0|R{l|R}, ∀l ∈ Hq. (49)

3) Calculation of the projection Π(sφ0 |Tg0): In order to evaluate Π(·|Tg0), we can use the

property of the semiparametric group models given in (41). Let us start by deriving the expres-

sion for Π((sφ0 ◦ αφ0)|TS0) ≡ Π(s̃φ0 |TS0). By exploiting the results collected in the previous

subsections, Π(s̃φ0|TS0) can be easily obtained by substituting (45) and (46) in (49) and then

evaluating the expectation operator. Specifically:

Π(s̃µ0|TS0) = E0|R{s̃µ0|R} =d −2
√
Qψ0(Q)Σ

−1/2
0 E{u} = 0, (50)

and

Π(s̃vecs(Σ0)|TS0) = E0|R{s̃vecs(Σ0)(z)|R}

=d −DT
N

(
2−1vec(Σ−1

0 ) +Qψ0(Q)Σ
−1/2
0 ⊗Σ

−1/2
0 E{vec(uuT )}

)
= −DT

N

(
1

2
+

1

N
Qψ0(Q)

)
vec(Σ−1

0 ),

(51)

then, consequently:

Π(s̃φ0|TS0) =d

 0

−DT
N

(
1
2

+ 1
N
Qψ0(Q)

)
vec(Σ−1

0 )

 =d Π(sφ0|Tg0), (52)

where the last equality follows from (41) and from the fact that Π(s̃φ0|TS0) does not depend on

z.

Now, a comment is in order. Equation (52) tells us that the score function of the mean value

is orthogonal to the nuisance tangent space Tg0 . This means that not knowing the true density

generator does not have any impact in the (asymptotic) estimation performance of the mean

vector µ0 [17].
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C. Calculation of the semiparametric efficient score vector s̄0(x) and of the SFIM Ī(φ0, g0)

By collecting the previous results, the semiparametric efficient score vector in (30) can be

evaluated as:

s̄0(x) = sφ0(x)− Π(sφ0(x)|Tg0)(x) =

 s̄µ0(x)

s̄vecs(Σ0)(x)


=d

 −2
√
Qψ0(Q)Σ

−1/2
0 u

−DT
NQψ0(Q)

(
Σ
−1/2
0 ⊗Σ

−1/2
0 vec(uuT )− 1

N
vec(Σ−1

0 )
)  .

(53)

Finally, through direct calculation, the SFIM Ī(φ0, g0) can be obtained as:

Ī(φ0|g0) = E0{s̄0(x)s̄0(x)T} =

 C0(s̄µ0) 0

0T C0(s̄vecs(Σ0))

 , (54)

where C0(l) , E0{llT}∀l ∈ Hq. Note that the off-diagonal block matrices in (54) are nil because

all the third-order moments of u vanish [14, Lemma 1]. From the previous results and using

some algebra, we get:

C0(s̄µ0) =
4E{Qψ0(Q)2}

N
Σ−1

0 , (55)

and

C0(s̄vecs(Σ0)) =
2E{Q2ψ0(Q)2}
N(N + 2)

DT
N

(
Σ−1

0 ⊗Σ−1
0 −

1

N
vec(Σ−1

0 )vec(Σ−1
0 )T

)
DN . (56)

Note that we had not imposed the constraint on the scatter matrix Σ0 as yet. In particular, in

all the previous equations, Σ0 can be considered as the unconstrained scatter matrix. The next

subsection is then dedicated to the derivation of the SCRB for the constrained parameter vector.

D. Evaluation of the CSCRB(φ0|g0)

As showed in Theorem IV.1, as a prerequisite of the derivation of the CSCRB on the estimation

of φ0 ∈ Ω̄, we have to calculate the matrix U defined in (27). This can be done by using the

same procedure discussed in [41]. Specifically, let us start by evaluating the gradient of the

constraint in (23) as:

Jc(Σ0) = ∇T
vecs(Σ)c(Σ0) = 1TI , (57)

where 1I is the N(N + 1)/2-dimensional column vector defined as:

[1I ]i =

 1 i ∈ I

0 otherwise
(58)
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where I = {i |i = 1 +N(j − 1)− (j − 1)(j − 2)/2, j = 1, . . . , N }.

Then, U can be obtained by numerically evaluating, using singular value decomposition

(SVD), the q̄ = q − 1 orthonormal eigenvectors associated with the zero eigenvalue of 1I .

Finally, the constrained SCRB (CSCRB) for the estimation of φ0 ∈ Ω̄ in (24) can be expressed

as:

CSCRB(φ0|g0) =

 N
4E{Qψ0(Q)2}Σ0 0

0T U
(
UTC0(s̄vecs(Σ0))U

)−1
UT

 . (59)

Note that the block-diagonal structure of CSCRB(φ0|g0) implies that not knowing the mean

vector µ0 does not have any impact on the asymptotic performance in the estimation of the scatter

matrix Σ0. From a practical point of view, this also means that the unknown µ0 can be substituted

with any consistent estimator without affecting the asymptotically optimal performance of the

scatter matrix estimator.

V. SIMULATION RESULTS FOR RES DISTRIBUTED DATA

In this section, we investigate the efficiency of three well-known scatter matrix estimators

with respect to the CSCRB: the constrained Sample Covariance Matrix (CSCM) estimator, the

constrained Tyler’s (C-Tyler) estimator and the constrained Huber’s (C-Hub) estimator. Note that

none of these estimators relies on the a-priori knowledge of the true density generator g0 ∈ G.

Assume to have a set of M , RES-distributed, observation vectors {xm}Mm=1. Let us define

{x̄m}Mm=1 as the set of M vectors such that:

x̄m = xm − µ̂, m = 1, . . . ,M (60)

and µ̂ is the sample mean estimator, i.e. µ̂ , N−1
∑M

m=1 xm.

The CSCM estimate can then be expressed as [42]:

Σ̂CSCM ,
N

tr(ΣSCM)
ΣSCM , ΣSCM ,

1

M

M∑
m=1

x̄mx̄Tm, (61)

while C-Tyler and C-Hub estimates are the convergence points of the following iterative algo-

rithm: 
S

(k+1)
T =

1

M

M∑
m=1

ϕ(t(k))x̄mx̄Tm

Σ̂
(k+1)
T = NS

(k+1)
T /tr(S

(k+1)
T )

, (62)
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where t(k) = x̄Tm(Σ̂
(k)
T )−1x̄m and the starting point is Σ̂

(0)
T = I. The weight function ϕ(t) for

Tyler’s estimator is defined as (see e.g. [14,43] and [15, Ch. 4] and references therein):

ϕTyler(t) = N/t, (63)

whereas the weight function for Huber’s estimator is given by ([14], [44] and [15, Ch. 4]):

ϕHub(t) =

 1/b t 6 δ2

δ2/(tb) t > δ2
, (64)

and δ = Fχ2
N

(u) where Fχ2
N

(·) indicates the distribution of a chi-squared random variable with

N degrees of freedom and q ∈ (0, 1] is a tuning parameter. Moreover, the parameter b is usually

chosen as b = Fχ2
N+2

(δ2) + δ2(1− Fχ2
N

(δ2))/N [14], [44].

To compare the three scatter matrix estimators with the CSCRB, we define the following

performance index:

εα , ||E{(vecs(Σ̂α)− vecs(Σ0))(vecs(Σ̂α)− vecs(Σ0))T}||F , (65)

where α = {CSCM,C − Tyler, C −Hub(u)} indicates the particular estimator under test and

||A||2F , tr(ATA) is the Frobenius norm of matrix A. Similarly, for the sample mean, we have

the following index:

εµ0 , ||E{(µ̂− µ0)(µ̂− µ0)T}||F . (66)

For the sake of comparison, we show in the following figures also the constrained CRB (CCRB)

for the estimation of φ0 = (µT
0 , vecs(Σ0)T )T ∈ Ω̄. The classical FIM can be obtained from the

score vectors previously derived in Subsection IV-A as a block matrix of the form [39]:

I(φ0) = E0{sφ0s
T
φ0
} =

 C0(sµ0) 0

0T C0(svecs(Σ0))

 . (67)

Through direct calculation, it is easy to verify that:

C0(sµ0) = C0(s̄µ0) =
4E{Qψ0(Q)2}

N
Σ−1

0 , (68)

and

C0(svecs(Σ0)) = DT
N

(
a1vec(Σ−1

0 )vec(Σ−1
0 )T + a2Σ

−1
0 ⊗Σ−1

0

)
DN (69)

where:

a1 ,
1

4
+
E{Qψ0(Q)}

N
+
a2

2
, (70)
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a2 ,
2E{Q2ψ0(Q)2}
N(N + 2)

. (71)

It is worth highlighting here that the difference between the classical FIM in (67) and the SFIM

in (54) is due to the different expressions of the covariance matrix of the efficient score vector

s̄vecs(Σ0) in (56) and of the one of the score vector svecs(Σ0) in (69).

Finally, the CCRB on the estimation of φ0 ∈ Ω̄ can be obtained using exactly the same

procedure discussed for the CSCRB in Subsection IV-D (see also [41]).

As performance bounds, the following indices are plotted:

εCCRB,Σ0 , ||[CCRB(φ0)]Σ0||F , (72)

εCSCRB,µ0 , ||[CSCRB(φ0, g0)]µ0||F , (73)

εCSCRB,Σ0 , ||[CSCRB(φ0, g0)]Σ0||F , (74)

where [·]µ0 and [·]Σ0 indicate the top-left and the bottom-right submatrices of the CCRB(φ0)

and of the CSCRB(φ0, g0), respectively.

We analyze two different cases:

1) The true RES distribution is a t-distribution,

2) The true RES distribution is a Generalized Gaussian (GG) distribution.

The simulation parameters that are common to the two cases are:

• [Σ0]i,j = ρ|i−j|, i, j = 1, . . . , N . Moreover, ρ = 0.8 and N = 8.

• The data power is chosen to be σ2
X = EQ{Q}/N = 4.

• The data mean value is chosen to be [µ0]i = 1, i = 1, . . . , N .

• The number of the available independent and identically distributed (i.i.d.) data vectors is

M = 3N = 24. Note that, since we assume to have M i.i.d. data vectors, the SFIM in (54)

and the FIM in (67) have to be multiply by M .

• The tuning parameter u of Huber’s estimator has been chosen as u = 0.9, 0.5, 0.1. Note

that for u = 1 Huber’s estimator is equal to the SCM, while for u → 0 Huber’s estimator

tends to Tyler’s estimator [14].

• The number of independent Monte Carlo runs is 106.
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A. Case 1: the t-distribution

The density generator for the t-distribution is:

g0(t) ,
2N/2Γ(λ+N

2
)

πN/2Γ(λ/2)

(
λ

η

)λ/2(
λ

η
+ t

)−λ+N
2

(75)

and then ψ0(t) in (36) is given by ψ0(t) = −2−1(λ+N)(λ/η + t)−1. Consequently, from (13),

we have that:

pQ(q) =
Γ(λ+N

2
)

Γ(λ/2)Γ(N/2)

(
λ

η

)λ/2
qN/2−1

(
λ

η
+ q

)−λ+N
2

(76)

Using the integral in [45, pp. 315, n. 3.194 (3)], we have that:

E{Qψ0(Q)} = −N/2 (77)

E{Qψ0(Q)2} =
ηN(λ+N)

4(N + λ+ 2)
(78)

E{Q2ψ0(Q)2} =
N(N + 2)(λ+N)

4(N + λ+ 2)
(79)

Then, the coefficients (70) and (71) for the t-distribution are:

a1,t , −
1

2(N + λ+ 2)
, a2,t ,

λ+N

2(N + λ+ 2)
. (80)

By substituting the previous results in (68), (69) and (56), we obtain the matrices C0(sµ0),

C0(svecs(Σ0)) and C0(s̄vecs(Σ0)) for the t-distribution.

Fig. 1 shows the MSE index of the sample mean compared with the CSCRB as function of

the shape parameter λ. As we can see, when λ→∞, the sample mean tends to be an efficient

estimator. This is an expected result, since, when the shape parameter λ goes to infinity, the

t-distribution becomes a Gaussian distribution, then the sample mean is the ML estimator for

µ0. In Fig. 2 we can observe an interesting fact: the distance between the CSCRB and the

CCRB increases as λ → ∞. This means that the lack of knowledge of the particular density

generator, i.e. the lack of knowledge of the particular RES distribution of the data, has an higher

impact when the tails of the true distribution become lighter. This behavior has been already

observed in [20]. Regarding the constrained scatter matrix estimators, the CSCM achieves the

CSCRB as λ → ∞, i.e. as the data tends to be Gaussian distributed. Note that while it is

well-known that the SCM is the ML estimator for the unconstrained scatter matrix, the CSCM

is not the ML estimator for the constrained scatter matrix Σ0. This is why, as λ → ∞, the

CSCM does not achieve the CCRB. Regarding C-Tyler’s and C-Huber’s estimators, from Fig. 2

we can see that C-Huber’s estimator has better estimation performance for all the three values
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of u with respect to C-Tyler’s estimator. In particular, the estimation performance of C-Huber’s

estimator improves as u tends to 1, i.e. when it tends to collapse to the CSCM. Both C-Tyler’s

and C-Huber’s estimators are far from being efficient with respect to the CSCRB. However, it

must be mentioned here that efficiency is not the only property that an estimator should have.

Robustness is also important in the choice of an estimation algorithm. We will investigate the

trade-off between efficiency and robustness in future works.

Another important question that may arise is related to the behaviour of the Maximum

Likelihood estimator of the scatter matrix. To answer this question, firstly we have to note

that the density generator of the t-distribution in (75) depends on two additional parameters: the

shape λ and the scale η. If we assume to know perfectly both the functional form of g0 and the

scale and shape parameters, then the ML estimator of the scatter matrix Σ will outperform all

M-estimators and will achieve the classical CRB for Σ. This scenario is discussed in [39]. A

more realistic situation is when only the functional form of g0 is assumed to be a priori known

while the scale and shape parameters have to be jointly estimated with the scatter matrix Σ.

A joint ML (JML) estimator for Σ, λ and η generally does not exists, so we have to rely of

sub-optimal strategies as the one discussed in [41]. Specifically, the recursive joint estimator of

Σ, λ and η proposed in [41] exploits the Method of Moments (MoM) to estimate the scale and

shape parameters, while an estimation of the scatter matrix is obtained using an ML approach

where the unknown parameters λ and η are replaced by their MoM estimates. Clearly, this JML

algorithm will no longer achieve the classical CRB on the scatter matrix due to the lack of a

priori knowledge about the scale and shape parameters. It would be interesting to investigate

how the JML estimator behaves with respect to the CSCRB. As we can see from Fig. 1, the

MSE index of the JML is larger than the CSCRB and this would suggest that not knowing the

shape and scale parameters has the same impact of not knowing the whole functional form of

the density generator. Of course, this aspect deserves further investigation and we leave it to

future work.

B. Case 2: the Generalized Gaussian distribution

The density generator relative to the Generalized Gaussian (GG) distribution is:

g0(t) ,
2N/2sΓ(N/2)

πN/2(2b)
N
2sΓ(N/2s)

exp

(
− t

s

2b

)
(81)

and then ψ0(t) in (36) is given by ψ0(t) = −s(2b)−1ts−1.
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Consequently, from (13), we have that:

pQ(q) =
sqN/2−1

(2b)
N
2sΓ(N/2s)

exp

(
− q

s

2b

)
. (82)

Using the integral in [45, pp. 370, n. 3.478 (1)], we have that:

E{Qψ0(Q)} = −N/2. (83)

E{Qψ0(Q)2} =
s2Γ(N+4s−2

2s
)

(2b)1/sΓ(N/2s)
(84)

E{Q2ψ0(Q)2} = N(N + 2s)/4. (85)

Then, the coefficients (70) and (71) for the GG distribution are:

a1,GG ,
s− 1

2(N + 2)
, a2,GG ,

N + 2s

2(N + 2)
. (86)

As before, by substituting the previous results in (68), (69) and (56), we obtain the matrices

C0(sµ0), C0(svecs(Σ0)) and C0(s̄vecs(Σ0)) for the GG distribution.

The simulation results for the GG distributed data confirm all the previous discussions about

t-distributed data:

• The sample mean estimator is an efficient estimator of µ0 when the data is Gaussian

distributed. In fact, as we can see from Fig. 3 that the MSE index εµ0 equates the CSCRB

for s = 1, i.e., when the GG distribution becomes the Gaussian one.

• The distance between the CSCRB and the CCRB increases as the tails of the true data

distribution become lighter. This behavior can be observed in Fig. 4. It is worth recalling

here that for 0 < s < 1 the GG distribution has heavier tails and for s > 1 lighter tails

compared to the Gaussian distribution that can be obtained for s = 1.

• The CSCM is an efficient estimator for Σ0 w.r.t. the CSCRB when the data is Gaussian

distributed, i.e., when s = 1 (see Fig. 4). However, it does not achieve the CCRB since,

as discussed before, the CSCM is not the ML estimator for the constrained scatter matrix

under Gaussian distributed data.

VI. CONCLUSION

This paper is organized in two interrelated parts. The first part is devoted to place the class of

RES distributions within the framework of semiparametric group models. This analysis allows

to look at the well-known RES family from a different and enlightening standpoint. The main

features of the semiparametric group models have been presented and discussed, paying particular
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attention to their implications on the family of RES distributions. In the second part of the paper,

we showed how the direct application of these properties leads to derive a closed-form expresson

for the CSCRB for the joint estimation of the mean vector µ0 and of the constrained scatter

matrix Σ of a set of RES distributed random vectors.

Even if the semiparametric inference offers us a wide range of research opportunities, a huge

amount of work still remains to be done. Our short-term research activity will be devoted to

the extension of the CSCRB to the complex field, i.e. to the joint estimation of a complex

mean vector and a complex scatter matrix in the family of Complex Elliptically Symmetric

(CES) distributions. This is of great relevance in radar applications where both the data and

the parameters to be estimated are modeled as complex quantities. Regarding the long-term

research activities, our efforts will be devoted to an in-depth study of the robustness property of

an estimator in the framework of semiparametric models. Specifically, particular attention will

be devoted to the analysis of the trade-off between robustness and semiparametric efficiency of

an estimator.

APPENDIX A

THE HILBERT SPACE OF q-DIMENSIONAL RANDOM FUNCTIONS

This Appendix provides some additional details on the Hilbert space Hq of the zero-mean,

q-dimensional functions and on the projection operator Π(·|V), where V ⊆ Hq. The following

discussion does not claim to provide a complete mathematical characterization of these two

elements, but could be useful as background material for the derivation of the CSCRB provided

in this paper.

Let us introduce the underlying probability space (X ,F,PX), where X ⊆ RN is the sample

space, F is the Borel σ-algebra of events in X and PX is the probability measure. Let x ∈ X

be a random vector, then PX(a) , PX(x1 ≤ a1, . . . , xN ≤ aN) is its cumulative distribution

function (cdf). We assume that the cdf PX admits a relevant probability density function (pdf)

(with respect to the standard Lebesgue measure), denoted as pX , such that dPX(a) = pX(a)da.

Consider now the vector space of the one-dimensional square-integrable function defined on

(X ,F,PX):

L2(PX) =

{
h : X → R

∣∣∣∣∫
X
|h(x)|2dPX(x) <∞

}
, (87)
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with the inner product given by:

〈h, g〉X = EX{hg} ,
∫
X
h(x)g(x)dPX(x), ∀h, g ∈ L2(PX). (88)

Let us define H1 ⊆ L2(PX) as the subspace of all the one-dimensional, zero-mean functions

on (X ,F,PX) such that:

H1 = {h ∈ L2(PX) |EX{h} = 0} . (89)

It is immediate to verify that H1, endowed with the inner product defined in (88), is an infinite-

dimensional Hilbert space [27, Ch. 2].

The “q-replicating” Hilbert space Hq of the zero-mean, q-dimensional functions on (X ,F,PX)

is defined as the Cartesian product of q copies of the Hilbert space H1, i.e. Hq , H1 ×H1 ×

· · · × H1 [27, Ch. 3, Def. 6], such that:

Hq =
{
h = [h1, . . . , hq]

T
∣∣hi ∈ H1, i = 1, . . . , q

}
. (90)

Due to the Cartesian product-based construction, the inner product of Hq is naturally induced

by the one of H1, i.e.:

〈h1,h2〉X , EX{hT1 h2} =
∑q

i=1
EX{h1,ih2,i}, (91)

and consequently the norm is:

||h||X =
√
〈h,h〉X =

∑q

i=1
EX{h2

i }. (92)

Let us now investigate the geometrical structure of Hq, with a particular focus on the orthog-

onal projection of a generic element h ∈ Hq into a closed subspace V of Hq. The following

theorem is a fundamental result in Hilbert spaces theory, and can be established in a very general

setting (see e.g. [46, Theo. 3.9.3]). Here, we will adapt it to the particular Hilbert space Hq.

Theorem A.1 (The Projection Theorem). Let V be a closed subspace of the Hilbert space Hq

and let h and g be two q-dimensional, zero-mean functions on (X ,F,PX), such that h ∈ Hq

and g ∈ V . Then, the following conditions are equivalent:

1) ||h− g||X = inf
l∈V
||h− l||X ,

2) h can be uniquely written as

h = g + (h− g), (93)

where g , Π(h|V) ∈ V and h − Π(h|V) ∈ V⊥, where V⊥ indicates the orthogonal

complement of V in Hq,
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3) the element g , Π(h|V) ∈ V is then uniquely determined by the orthogonality constraint

〈h− Π(h|V), l〉X = 0, ∀l ∈ V . (94)

The operator Π(·|V) defined in Theorem A.1 is called the orthogonal projection operator onto

the closed subspace V . The unique element Π(h|V) is then called the orthogonal projection of

h ∈ Hq onto V . Furthermore, as a consequence of the Condition 2) in Theorem A.1, the Hilbert

space Hq can be written as the Cartesian product of the subspace V and of its orthogonal

complement V⊥, i.e. Hq = V × V⊥.

APPENDIX B

PROJECTION OPERATOR AND CONDITIONAL EXPECTATION

In Appendix A we defined Hq as the Hilbert space of the q-dimensional, zero-mean functions

on the probability space (X ,F,PX). Let G(V ) ⊆ F be the sub-sigma algebra generated by the

random variable V . It can be shown (see e.g. [47, Ch. 23] and [5, Appendix 3]) that the set of

all the q-dimensional, zero-mean functions on the probability space (X ,G(V ),PX|V ) is a closed

linear subsapce, say V , of the Hilbert space Hq.

This fact can be exploited to establish a link between the projection operator Π(·|V) and the

conditional expectation EX|V {·|V }. Firstly, let us define EX|V {·|V } as in [47, Ch. 23] and [5,

Appendix 3].

Definition B.1. Let h ∈ Hq and l ∈ V ⊆ Hq be two q-dimensional, zero-mean functions on

the probability spaces (X ,F,PX) and (X ,G(V ),PX|V ) with G(V ) ⊆ F, respectively. Then the

conditional expectation EX|V {h|V } is the unique element in V , such that:〈
h− EX|V {h|V }, l

〉
X
, EX{(h− EX|V {h|V })T l} = 0, (95)

for every l ∈ V .

For a more general and formal definition we refer the reader to [47, Ch. 23] and [5, Appendix

3]. The condition (95) is equivalent to (94) in Theorem A.1 that defines the projection operator,

and consequently, we have that:

Π(·|V) = EX|V {·|V }. (96)

The usefulness of this relation is in the fact that, for some semiparametric models, the

tangent space presents an invariance structure with respect to a group of transformations and it
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admits a characterization through a certain sub-sigma algebra generated by the relevant maximal

invariant statistic [30]. An example of a semiparametric model that owns this property is the

semiparametric group model of RES distributions discussed in Subsection III-B.
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Fig. 1: MSE index for µ̂ and the related CSCRB as functions of the shape parameter λ for

t-distributed data (M = 3N ).
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Fig. 2: MSE indices for the constrained scatter matrix estimators and the related CCRB and

CSCRB as functions of the shape parameter λ for t-distributed data (M = 3N ).
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Fig. 3: MSE index for µ̂ and the related CSCRB as functions of the shape parameter s for GG

distributed data (M = 3N ).
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Fig. 4: MSE indices for the constrained scatter matrix estimators and the related CCRB and

CSCRB as functions of the shape parameter s for GG distributed data (M = 3N ).


