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Abstract—A flexible incremental redundancy hybrid auto-
mated repeat request (IR-HARQ) scheme for polar codes is
proposed based on dynamically frozen bits and the quasi-uniform
puncturing (QUP) algorithm. The length of each transmission is
not restricted to a power of two. It is applicable for the binary
input additive white Gaussian noise (biAWGN) channel as well
as higher-order modulation. Simulation results show that this
scheme has similar performance as directly designed polar codes
with QUP and outperforms LTE-turbo and 5G-LDPC codes with
IR-HARQ.

Index Terms—polar coding, coded modulation, IR-HARQ

I. INTRODUCTION

Many communication channels are time-varying and un-

known to the transmitter. Incremental redundancy hybrid au-

tomated repeat request (IR-HARQ) as shown in Fig. 1 is a

scheme that transmits additional redundancy bits until the data

bits can be reconstructed. For turbo codes (such as those used

in LTE), a low rate mother code is punctured with different

patterns for several transmissions. The coding scheme for

enhanced mobile broadband (eMBB) in 5G uses protograph-

based, Raptor-like LDPC codes [1] that allow for both flexible

block length and code rate adaptation. The standard defines

two base matrices that offer optimized performance for differ-

ent operating regimes.

With cyclic redundancy check (CRC) outer codes and

successive cancellation list (SCL) decoding [2], polar codes

[3], [4] outperform state-of-the-art turbo and LDPC codes in

the short to medium length regime. Polar-coded modulation

(PCM) is discussed in [5]–[7]. The performance compari-

son and efficient code design methods of three polar-coded

modulation schemes are presented in [8, Fig. 11]. Multilevel

polar coding (MLPC) with set partitioning (SP) labeling in [5]

performs best and is around 1 dB more power efficient than

an AR4JA [9] LDPC code decoded with 200 iterations.

A quasi-uniform puncturing (QUP) algorithm was proposed

in [10] to efficiently design length-flexible polar codes, i.e.,

polar codes where the number of coded bits is not limited to

be a power of two.

In [11], a scheme the authors called “polar codes with

incremental freezing” and in [12] “parallel-concatenated polar

codes” is proposed. The capacity-achievability of this scheme

is proved in [11] by using the nesting property. In [13], a

n1 n2 nt

︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷

1st Transmission 2nd Transmission · · · tth Transmission
︸ ︷︷ ︸

1st decoding

︸ ︷︷ ︸

2nd decoding

︸ ︷︷ ︸

tth decoding

Figure 1: IR-HARQ.

polar code extension method is presented which outperforms

the scheme in [11], [12] for finite block length.

In this work, we prove that the scheme in [13] can achieve

capacity asymptotically in the block length under some design

constraints. In addition, a length-flexible IR-HARQ scheme

based on dynamically frozen bits and QUP is proposed. This

scheme is extended to polar-coded modulation with amplitude

shift keying (ASK) and quadrature amplitude modulation

(QAM) constellations. Simulation results show that the polar

codes designed by our algorithm have similar error correction

performance as directly designed polar codes.

This work is organized as follows. In Sec. II, we review

polar codes, PCM and QUP. We discuss existing and proposed

IR-HARQ schemes in Sec. III. Sec. IV provides design exam-

ples and numerical results. The performance of the proposed

scheme is compared with directly designed polar codes and

4G/5G codes [14], [15] in additive white Gaussian noise

(AWGN) channels. We conclude in Sec. V.

II. PRELIMINARIES

A. Polar Coding

In this paper, uppercase letters X,Y,B, U denote the ran-

dom variables (RV) while the corresponding lowercase letters

are their realizations. The notation cN1 is short for c1c2 . . . cN .

For an arbitrary subset S of {1, . . . , N}, S∁ is the complement

of S and cS denotes the vector of cN1 formed by the elements

with indices in S.

A binary polar code of block length N and dimension k
is defined by the polar transform with matrix F

⊗ log
2
N and

http://arxiv.org/abs/1805.07078v1
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I+ = I(U2;Y1Y2|U1)

I− = I(U2; Y1Y2)

I2 = I(B2;Y2)

I1 = I(B1;Y1)

Figure 2: MIs of the basic polar transform

N − k frozen positions, where F
⊗ log

2
N denotes the log2 N -

fold Kronecker power of the kernel

F =

[

1 0
1 1

]

. (1)

Polar encoding can be represented by

cN1 = uN
1 F

⊗ log
2
N . (2)

The vector cN1 denotes the codeword. The vector uN
1 includes

k information bits uA and N − k predefined frozen bits uA∁ .

A and A∁ are called the information set and frozen set defined

in [4]. SC decoding uses the channel observation and previous

estimates û1, . . . , ûi−1 to decode ui. Both encoding and SC

decoding have complexity O (N log2 N) [4].

The polar code construction finds the most reliable bits in

uN
1 under SC decoding. The Monte Carlo (MC) construction

was introduced in [3], [4], and needs extensive simulations.

An information theoretical construction was introduced in [4].

The reliability of the ith bit can be quantified by the mutual

information (MI) I
(

Ui;Y
N |U i−1

1

)

. We can calculate these

MIs for all i ∈ {1, 2, . . . , N} by recursively calculating the

MIs of the basic polar transform displayed in Fig. 2.

For the binary input additive white Gaussian noise (bi-

AWGN) channel, density evolution [16] with Gaussian approx-

imation (GA) [17] has much lower complexity and performs

very close to the MC construction. The update rule for the

basic polar transform is given by

I− = 1− J

(
√

[J−1(1− I1)]
2
+ [J−1(1− I2)]

2

)

(3)

I+ = J

(

√

[J−1(I1)]
2
+ [J−1(I2)]

2

)

(4)

The numerical approximations in [18] can be used for J(·)
and J−1(·). Additionally, the frame error rate (FER) under

SC decoding can be estimated by

Pr
(

Ûi 6= Ui|Û i−1
1 = U i−1

1

)

= Q

(

1

2
J−1

(

I
(

Ui;Y
n|U i−1

1

))

)

(5)

FERSC,est = 1−
∏

i∈A

(

1− Pr
(

Ûi 6= Ui|Û i−1
1 = U i−1

1

))

(6)

where

Q(x) =
1√
2π

∫ ∞

x

e
u2

2 du. (7)

The nesting property is introduced in [11]. The authors show

that the reliability order of the polarized bits is independent

on the channel quality for infinite length. Note that the nesting

property generally does not hold for finite length.

B. Polar-Coded Modulation

We consider the following memoryless AWGN chan-

nel model with 2m-ASK constellations X ∈ X =
{±1,±3, . . . ,±(2m − 1)}.

Y = X + σZ (8)

where Z is zero mean Gaussian noise with variance one. Note

that ASK constellations can be orthogonally extended to QAM

constellations.

Polar-coded modulation (PCM) schemes are discussed in

[5]–[7]. In [8], the performance of three schemes is compared

and their efficient design algorithms are presented. MLPC with

SP labeling in [5] provides the best performance. MLPC with

code length mN works as following:

• Encoding

1. Put k information bits in vector umN
1 and define

uN
1,j = ujN

(j−1)N+1, j = 1, . . . ,m. (9)

2. Encode m polar codes

cN1,j = uN
1,jF

⊗ log
2
N , j = 1, . . . ,m. (10)

3. Map the code words to symbols for i = 1, . . . , N

ci,1, ci,2, . . . , ci,m = bi,1, bi,2, . . . , bi,m

= (b1, b2, . . . , bm)i
SP7→ xi.

(11)

• Decoding

1. Demap and decode level 1

ℓi,1 = log
pBi,1|Yi

(0|yi)
pBi,1|Yi

(1|yi)
, i = 1, . . . , N

ĉN1,1 = polarSCDecode (l1,1, . . . , lN,1) .

(12)

j. Demap and decode level j for j = 2, . . . ,m

ℓi,j = log
pBi,j |YiBi,1...Bi,j−1

(0|yiĉi,1 . . . ĉi,j−1)

pBi,j |YiBi,1...Bi,j−1
(1|yiĉi,1 . . . ĉi,j−1)

,

i = 1, . . . , N

ĉN1,j = polarSCDecode (l1,j , . . . , lN,j)
(13)

where l denotes the input log-likelihood ratio (LLR).

MI demapper GA (MI-DGA) construction calculates

I
(

Bj ;Y Bj−1
1

)

for j = 1, . . . ,m and uses them to find the

most reliable bits in umN
1 with GA. Therefore, the required

code rates of the m polar codes k1/N, . . . , km/N are given

by MI-DGA. Note that the overall code rate of the system is

(k1 + · · ·+ km) /mN = k/mN and the transmission rate is

k/N bits/channel use.

C. Rate-Matched Polar Codes

Because of the recursive structure of F⊗ log
2
N , polar codes

usually have a block length that is a power of two. Punctured

polar codes are introduced in [19], [20]. The punctured (n, k)
polar codes can be decoded with standard polar decoders for

length N = 2⌈log2
n⌉. For punctured polar codes, N − n bits



in cN1 are not transmitted and the corresponding LLRs are set

to zero. For GA construction, the initial MIs of the punctured

bits are zero.

With the QUP algorithm, the first N −n bits in cN1 are not

transmitted, i.e.,

GA construction: set I (Bi;Y ) = 0, i = 1, . . . , N − n

after encoding: transmit cNN−n+1

before decoding: set lN−n
1 = 0.

This algorithm is called QUP because the punctured position in

bit-reversal representation [4] looks like uniformly distributed

in {1, . . . , N}. Let (n, k,N) denote a QUP polar code with

dimension k, block length n and punctured from N bits mother

codes with QUP algorithm, where N has to the power of two.

Theorem 1. For an (n, k,N) QUP-polar code, the first N−n
bits in uN

1 are frozen.

Proof. For the MI update of the basic polar transform in Fig. 2,

it is easy to show that

I− ≤ min{I1, I2}, I+ ≥ max{I1, I2}. (14)

As MI is always non-negative, we have

I− = 0, if I1 = 0 or I2 = 0 (15)

I− = I+ = 0, if I1 = I2 = 0. (16)

Thus the number of channels with zero capacity is invariant.

With QUP we set IN−n
1 to zero. Because of the recursive struc-

ture of F⊗ log
2
N the zeros will propagate through the transform

which causes I
(

Ui;Y
N |U i−1

1

)

= 0 for i = 1, . . . , N −n.

Theorem 2. All
(

n, k, 2jN
)

QUP-polar codes have the same

encoding and decoding complexity as (n, k,N) QUP-polar

codes, where j is a natural number and N = 2⌈log2
n⌉.

Proof. The decoder for (n, k, 2N) QUP-polar codes is shown

in Fig. 3. Obviously, more than N bits are punctured. Thus,

uN
1 are all frozen because of Theorem 1. According to the SC

decoding, we first decode uN
1 (upper decoder) and then decode

u2N
N+1 (lower decoder) based on ûN

1 . The input of the lower

decoder is (1 − 0) · ℓN1 + ℓ2NN+1 = ℓ2NN+1. Thus for this QUP-

polar code, we just need to run the lower decoder (dashed box

in Fig. 3) which is the decoder for (n, k,N) QUP-polar codes.

With the same idea we can extend the theorem to mother code

length 2jN .

III. IR-HARQ WITH POLAR CODES

The basic idea of IR-HARQ is displayed in Fig. 1. The

decoder receives nt bits from the tth transmission and then

decodes
(

∑t

q=1 nq, k
)

code. Using the CRC, the receiver

may detect a decoding failure, in which case it requests the

(t+ 1)th transmission from the sender.

F⊗ log
2
N

F⊗ log
2
N +

ℓ2N
N+1

ℓN1 = 0

u2N
N+1

uN
1 = 0

0

0

ℓ2N
N+1

lower

upper

Figure 3: Equivalence of (n, k,N) and (n, k, 2N) QUP-polar code.

A. Existing Schemes: Polar Codes with Incremental Freezing

In [11], [12], polar codes with incremental freezing are

proposed. The main idea is as follows. An (N1, k) polar

code is transmitted first. When retransmission occurs, we

additionally freeze k′ “most unreliable” information bits in

the (N1, k) code and send them with an (N2, k
′) code in

next transmission. After the 2nd transmission we decode the

(N2, k
′) code and the first code successively. Note that the first

code becomes a (N1, k − k′) code with the estimation of the

“most unreliable” information bits. For the 3rd transmission

(if needed), we freeze k′′ “most unreliable” information bits

in both the (N1, k − k′) code and the (N2, k
′) code. The

retransmissions are continued with the same manner until the

decoding is successful. For infinite code length, this scheme

achieves capacity [11] with the nesting property. We note that

this scheme is equivalent to dividing the
(

∑t

q=1 Nq, k
)

code

into t separated polar codes and decoding them successively,

which causes a huge performance loss in the finite length

regime.

B. Existing Schemes: Polar Extension

A polar code extension method is presented in [13]. Con-

sider the 1st transmission with (N1, k) polar code c(1)N1

1 =
u(1)N1

1 F
⊗ log

2
N1 , where c(t)N1 denotes the codeword after the

tth transmission. When retransmission occurs, we design a

(2N1, k) polar code c(2)2N1

1 = u(2)2N1

1 F
⊗ log

2
(2N1), let the

information set in u(2)2N1

N1+1 be a subset of the information

set in u(1)N1

1 and set u(2)2N1

N1+1 = u(1)N1

1 . Then copy the

bits, which are reliable in u(1)N1

1 but unreliable in u(2)2N1

N1+1

to the most reliable positions in u(2)N1

1 . The code word can

be presented by

c(2)2N1

N1+1 = c(1)N1

1 (17)

c(2)N1

1 = c(1)N1

1 ⊕ u(2)N1

1 F
⊗ log

2
N1 . (18)

Thus, only the first N1 bits c(2)N1

1 need to be transmitted,

because the receiver already knows the remaining N1 bits

of the (2N1, k) polar code from the previous transmission.

The receiver first decodes the information bits in u(2)N1

1 ,

copies them to u(2)2N1

N1+1 as frozen bits and then decodes

the remaining bits. The only difference between a directly



generated (2N1, k) polar code and the code after the 2nd

transmission is the information set in u(2)2N1

N1+1 which has

to be a subset of the information set in u(1)N1

1 . In this

scheme, we decode an (N2, k) code after the 2nd transmission

(N2 = 2N1). This extension is repeated until the decoding

is successful. This extension method is not flexible because

the transmission length has to be the same as the sum of all

previous transmissions, i.e.,

Nt =

t−1
∑

q=1

Nq, t = 2, 3, . . . (19)

This scheme is capacity-achieving under some constraints.

According to the information theoretical construction in [4],

designing a (2N, k) polar code for a channel with mutual

information I is equivalent to designing a (N, k1) polar code

for I− and a (N, k2) polar code for I+, where

k1 + k2 = k (20)

k1/k2 = I−/I+. (21)

Let It be the design MI for the tth transmission and 2Nt the

code length after the tth transmission (t ≥ 2). Note that only

Nt bits are sent in the tth transmission. Under the constraints

I+t ≤ It−1, t = 2, 3, . . . (22)

the information set in u(t + 1)2Nt

Nt+1 is always a subset of

the information set in u(t)Nt

1 because of the nesting property,

i.e., every polar code after tth transmission is an optimal
(

∑t

q=1 Nq, k
)

polar code.

C. Proposed Scheme

Polar codes with dynamically frozen bits are proposed in

[21] to improve the distance properties of polar codes. The

idea is to predetermine some frozen bits as linear combinations

of previous information bits. The corresponding “dynamically

frozen constraint” is needed to encode and decode. Our

scheme is based on this technique and QUP. There are no

constraints regarding the block length of any transmission.

We assume the system is designed for a maximum of tmax

transmissions. Let N be the length of a mother polar code

N = 2⌈log2(
∑tmax

q=1
nq)⌉, (23)

where ⌈·⌉ denotes the ceiling function and nq denotes the

length of the qth transmission. In the proposed scheme, after

the tth transmission, a
(

∑t

q=1 nq, k,N
)

QUP-polar code

is decoded. The main structure and design algorithm are

displayed in Fig. 4 and Algorithm 1 respectively. The set It
is

{

N −
t

∑

q=1

nq + 1, . . . , N −
t−1
∑

q=1

nq

}

, (24)

and At and A∁
t denote the information and frozen set of

the
(

∑t

q=1 nq, k,N
)

QUP-polar code after the tth transmis-

sion. The output dynamically frozen constraint is used for

encoding and decoding. Note that At ∪ A∁
t =

⋃t

q=1 Iq . First

F⊗ log
2
N

n1

n2

.

.

.

ntmax

I1

I2

Itmax

.

.

.

Figure 4: Proposed IR-HARQ scheme for polar coding

N −∑t

q=1 nq bits are frozen to zero (Theorem 1), but their

indices are neither in At nor A∁
t .

Algorithm 1: Design tth transmission

Input : message length k, mother code length N ,
tth transmission length nt, design MI It,

previous code length n′
t =

∑t−1
q=1 nq ,

previous frozen set A′∁
t =

⋃t−1
q=1 A

∁
q ,

previous information set A′
t =

⋃t−1
q=1 Aq

Output: information set At,

frozen set A∁
t ,

dynamically frozen constraint

1 Initialize design MI: I
N−nt−n′

t
1 = 0, IN

N−nt−n′

t+1
= It.

2 Estimate Pei := Pr
(

Ûi 6= Ui|Û
i−1
1 = U i−1

1

)

.

3 Set Pe
A′∁

t

= 1. Find k smallest in PeN
N−nt−n′

t+1
and put their

indices in At.
4 Frozen set A∁

t =
⋃t

q=1 Iq \ At .

5 if t 6= 1 then
6 Dynamically frozen constraint is given by uA′

t\At
= uAt\A

′

t
.

7 end

Obviously, for t = 1, the code is a normal QUP-polar

code. Other codes are extended from previous codes with

dynamically frozen bits. The bits which are already frozen

have to be frozen for all extensions. This scheme is equivalent

to the polar code extension method in [13] if n1 is a power

of two and nt =
∑t−1

q=1 nq, t = 2, 3, . . . , tmax.

For example, we consider k = 5 and n = (7, 5). The

information bits are m1,...,5.

• For the first transmission, A1 = {12, 13, 14, 15, 16} for

the (7, 5, 16) QUP-polar code. Thus, uA1
= m5

1 and

u{1,...,16}\A1
= 0. We encode the vector by c(1)161 =

u16
1 F

4 and transmit the last 7 bits c(1)1610.

• For the second transmission, A2 = {8, 12, 14, 15, 16} for

the (12, 5, 16) QUP-polar code. We precode u16
1 with

uA2\A1
= uA1\A2

, which is u8 = u13 = m2 in this

case. We encode c(2)161 = u16
1 F

4 and send c(2)95.

Because F
4 is a lower triangular matrix, u8 = u13 does

not change the first transmitted bits, i.e., c(2)1610 = c(1)1610.



Table I: Explanation for the curves in Fig. 5, Fig. 6, Fig. 7.

direct polar proposed polar 5G-LDPC LTE-turbo

1st

2nd

3rd

4th

At receiver, we decode the (12, 5, 16) QUP-polar code

from the noisy version of c(2)165 . Note that u13 is now a

dynamically frozen bit with constraint u13 = u8.

In this example, the QUP-polar codes with optimal information

set are decoded after every single transmission by using all

received information.

D. Extension to MLC

With 2m-ASK, nt symbols (mnt bits) are transmitted in the

tth transmission. We replace line 1,2 in Algorithm 1 with an

MLPC construction algorithm (MI-DGA in this work).

IV. DESIGN EXAMPLES AND SIMULATION RESULTS

In this section, three design examples for tmax = 4 are

shown in Fig. 5, Fig. 6, Fig. 7. We use 16 bits CRC with

generator polynomial “x16 + x12 + x5 + 1” for error detec-

tion. The polar codes are decoded by min-sum approximated

SCL decoding with list size 32. Log-MAP decoding with 10

iterations and belief propagation (BP) with 50 iterations are

used for LTE-turbo and 5G-LDPC codes, respectively. In the

8-ASK example, Bit-Interleaved Coded Modulation (BICM)

[22] is used for turbo and LDPC codes. Note that the directly

designed polar codes (dashed curves) are
(

∑t

q=1 nq, k, ·
)

QUP-polar codes only serve as a reference and can not work

for an IR-HARQ scheme.

The simulation results show that the polar codes generated

by the proposed algorithm perform very similar to directly

designed polar codes. In the 8-ASK example, the proposed

scheme performs approximately 1dB better than 5G-LDPC

codes after two to four transmissions.

Because of the extension constraint, it is hard to extend a

heavily punctured polar codes. Consider an (N + w, k, 2N)
QUP-polar code, where w is a positive integer and w ≪ N .

Normally, the first w bits are unreliable, while these bits

are almost perfect in the extended (2N, k) code. This ef-

fect degrades the performance for all further extensions. For

example, for n4
1 = (1000, 100, 100, 100), the 3rd and 4th

polar codes perform much worse than directly designed code

because
∑2

q=1 nq = 1100 and 1100 − 1024 = 76 ≪ 1024.

Therefore, we should avoid using heavily punctured polar code

for the {1, . . . , tmax − 1}th transmissions in biAWGN channel.

However, this effect disappears for MLPC. We can design very

good codes for n4
1/m = (1000, 100, 100, 100). The reason

should be the automatically controlled code rate for m polar

codes.

V. CONCLUSION

In this paper, an IR-HARQ scheme based on QUP and

dynamically frozen bits for biAWGN channel and PCM is

proposed. Simulation results show that the rate-matched polar

codes generated by the proposed algorithm perform very

similar to directly designed QUP-polar codes.

For future work, this scheme can be applied for a fading

channel, i.e. the channel information estimated by training

symbols of the previous transmissions could be used to design

polar codes for next transmission.
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Figure 5: biAWGN, k = 128, n4
1 = (250, 250, 200, 140), design SNR = (3,−1,−2.5,−3)dB
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Figure 6: biAWGN, k = 848, n4
1 = (1000, 1000, 1500, 800), design SNR = (6.5, 1,−2,−3)dB
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Figure 7: 8-ASK, k = 896, n4
1 = (1200, 600, 1200, 900), design SNR = (16.25, 11.25, 6.75, 5)dB
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