
HAL Id: hal-01787046
https://inria.hal.science/hal-01787046v1

Submitted on 7 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiscale Visualization and Exploration of Large
Bipartite Graphs

Nicola Pezzotti, Jean-Daniel Fekete, Thomas Höllt, Boudewijn Lelieveldt,
Elmar Eisemann, Anna Vilanova

To cite this version:
Nicola Pezzotti, Jean-Daniel Fekete, Thomas Höllt, Boudewijn Lelieveldt, Elmar Eisemann, et al..
Multiscale Visualization and Exploration of Large Bipartite Graphs. Computer Graphics Forum,
2018, 37 (3), pp.12. �10.1111/cgf.13441�. �hal-01787046�

https://inria.hal.science/hal-01787046v1
https://hal.archives-ouvertes.fr

Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

Multiscale Visualization and Exploration of Large Bipartite Graphs

Nicola Pezzotti1, Jean-Daniel Fekete2, Thomas Höllt1,3, Boudewijn P.F. Lelieveldt1,3, Elmar Eisemann1 and Anna Vilanova1

1TU Delft, The Netherlands
2INRIA, Saclay, France

3Leiden University Medical Center, Leiden, The Netherlands

(a) (b) (c) (d) (e)

U V
Overview Detailed

(f)

Filter &
Drill-in

Figure 1: Example of WAOW-Vis for a bipartite graph containing a collection U of 9.4M Twitter users is linked to a collection of 228 V of
Twitter feeds associated to programming languages and US’ news outlets. The bipartite graph is preprocessed by the HSNE algorithm that
extracts a hierarchy of landmarks, i.e., sets of vertices. In the overview, landmarks in the highest scale for the two collections are placed in
(b,d) 1- and (a,e) 2-dimensional embeddings that reveal major clusters of similarly connected vertices (c). The hierarchy is explored with an
overview-first and details-on-demand approach that reveals hierarchies of sub-clusters (f).

Abstract
A bipartite graph is a powerful abstraction for modeling relationships between two collections. Visualizations of bipartite
graphs allow users to understand the mutual relationships between the elements in the two collections, e.g., by identifying
clusters of similarly connected elements. However, commonly-used visual representations do not scale for the analysis of large
bipartite graphs containing tens of millions of vertices, often resorting to an a-priori clustering of the sets. To address this issue,
we present the Who’s-Active-On-What-Visualization (WAOW-Vis) that allows for multiscale exploration of a bipartite social-
network without imposing an a-priori clustering. To this end, we propose to treat a bipartite graph as a high-dimensional space
and we create the WAOW-Vis adapting the multiscale dimensionality-reduction technique HSNE. The application of HSNE
for bipartite graph requires several modifications that form the contributions of this work. Given the nature of the problem, a
set-based similarity is proposed. For efficient and scalable computations, we use compressed bitmaps to represent sets and we
present a novel space partitioning tree to efficiently compute similarities; the Sets Intersection Tree. Finally, we validate WAOW-
Vis on several datasets connecting Twitter-users and -streams in different domains: news, computer science and politics. We
show how WAOW-Vis is particularly effective in identifying hierarchies of communities among social-media users.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

A Bipartite Graph is an important abstraction in computer science.
Vertices in the graph are divided into two disjoint and independent
collections of items U and V . The edges in the graph represent
the relationships between the elements in the two collections and,
therefore, only connect elements in U to elements in V . Several
problems can be modeled as a bipartite graph analysis, for example,
the two collections may be software developers and source files,
gene mutations and patients in a cohort study or social media users
and the news outlets they follow on social media.

Previous work [HMM00,VLKS∗11] has identified the following
analytical tasks for the exploratory analysis of bipartite graphs.

(T1) Identifying clusters of similar elements in U with regard to
their connections to elements in V and vice versa.

(T2) Understanding the interrelationships between the clusters
in the two collections U and V .

A widely used approach for performing these tasks is to visual-
ize the bipartite graph using a node-link visualization. A commonly
used approach separates the two collections of items on screen. Ver-
tices are displayed as points arranged along two parallel axes, i.e.,

submitted to Eurographics Conference on Visualization (EuroVis) (2018)

2 Pezzotti et al. / WAOW-Vis

corresponding to U and V , and the edges are visualized as lines
connecting the vertices [HMM00, VLKS∗11], see Figure 2a. By
using matrix reordering algorithms on the adjacency matrix of the
graph [BBHR∗16,VLKS∗11], vertices that share a similar connec-
tion pattern with respect to the other collection can be placed close
together along the axis, allowing for identification of vertices with
similar connections (T1) and their mutual relationships (T2). How-
ever, node-link visualizations do not scale for the analysis of bipar-
tite graphs containing more than a few hundreds vertices due to the
resulting visual clutter [GFC05]. To overcome this limitation, al-
gorithmic graph preprocessing techniques are often used to reduce
the complexity of the graph to be drawn [VLKS∗11]. For bipartite
graphs, biclustering algorithms, also known as co-clustering tech-
niques, become the standard for the identification of sub-clusters in
U and V that share a similar connection pattern to the other collec-
tion [HSBW11, MO04, OKHC14, PGAR15]. Clusters are then vi-
sualized as aggregated vertices in the node-link diagram. Nonethe-
less, such an approach assumes that there is no variability within a
cluster, which is problematic when the data is large and contains a
hierarchy of sub-clusters. For example, communities of social me-
dia users may share similar connections to a set of news feeds, but
they may also contain sub communities where the connections are
slightly different.

To address this problem we present Who’s-Active-On-What-
Visualization (WAOW-Vis), a technique designed to reveal hier-
archies of clusters in bipartite graphs. To this end, we adapt a
multiscale dimensionality-reduction algorithm, the “Hierarchical
Stochastic Neighbor Embedding” (HSNE) [PHL∗16], for extract-
ing and visualizing clusters of similarly connected vertices. Fig-
ure 1b-d shows the resulting layout of WAOW-Vis, where two 1-
dimensional embeddings are used to visualize the vertices in a lay-
out that mimic node-link visualizations for bipartite graphs (T1).
Moreover, we show that, by adding 2-dimensional embeddings of
the same vertices, we obtain more detailed insight on the interrela-
tionships between the clusters (T2). As an illustration of our results
and goal, in Figure 1a we can identify clusters and see the internal
structure much easier than in Figure 1b. However, Figure 1a-e,
shows only one scale of the hierarchy computed by HSNE. As a
matter of fact, HSNE does not embed the dataset in its entirety but
it selects representative vertices at different scales. i.e., landmarks.
The visualization of the landmarks in the highest scale shows an
overview of the main clusters of connected vertices in the graph.
The user can then select these clusters and ask for a detailed vi-
sualization that reveals more sub-clusters for the landmarks in the
lower scale, as shown in Figure 1f.

Several challenges need to be overcome to achieve our goals us-
ing HSNE. Dimensionality reduction algorithms rely on a dense
representation of the data for the computation of the similarities be-
tween points. This fact constitutes a problem if the dimensionality-
reduction is applied to a large adjacency matrix that is saved in
a dense format, as it will not fit in memory. Consider for exam-
ple a dataset that we mined from Twitter, which we will present
in Section 7. It comprises of 19M users linked to 329 user inter-
ests. The dense representation of the biadjacency matrix would oc-
cupy 23 GB in memory if organized as required by dimensionality-
reduction algorithms such as HSNE. We propose a novel computa-
tional pipeline that addresses the memory and computational scal-

U V
0

1

2

3

4

d

a

b

c

e

(a) (b)

(c)

d

a

b

c

e

0

1

3

2

4

= =J 3 2(,) =
dc e c

dc e cU

U

I
I I

I c

dc e

I
I I

I 0.33

= =J 3(,) =4
dc e d e

dc e d eU

U

I
I I

I d e

dc e

I
I I

I
0.66

J 3(,) =1
dc e b

dc e U

U

I
I I

I
b

=
dc e

I
I I

I
b

= 0.00

U Vas sets of elements in

Figure 2: Computation of the similarities between the vertices in
U . Vertices in U are seen as sets of elements in V (b). The Jac-
card similarities are computed as the cardinality of the intersection
divided by the cardinality of the union (c).

ability problem for undirected and non-weighted bipartite graphs.
Here, we propose to treat the data as a collection of sets. Then we
adopt the Jaccard similarities, a compelling metric that measure
the amount of shared links, to compute similarities between ver-
tices. Figure 2 shows an example of how the similarities for the
collection U are computed. The vertices in U are seen as sets of
elements in V . The Jaccard similarities are computed as the num-
ber of shared elements between sets divided by the size of their
union. A similar computation is done for the vertices in V . Scalable
computations and memory usage are enabled by the use of com-
pressed bitmaps [LSYKK16] to represent the sets and by a novel
tree-based data structure, the Sets Intersection Tree (SIT), to effi-
ciently compute the Jaccard similarities. Moreover, we show that
by combining the k-nearest neighborhood graph, computed as in-
put for HSNE, the resulting embeddings reveal clusters of vertices
at different scales (T1) and their interrelationships (T2). Finally,
since the user can be confused by the fact that same vertices may
appear in different locations in the 1- and 2-dimensional embed-
dings, we present a technique that enforces similar positions on the
vertical axis for the same vertices to facilitate the creation of a men-
tal map.

The contribution of this work is the WAOW-Vis framework, that
allows for analyzing bipartite graphs on a social-network scale at
different levels of detail. The development of WAOW-Vis is made
possible by a set of additional contributions of this paper:

• The usage of compressed bitmaps as high-dimensional data rep-
resentation for bipartite-graphs.

• A data structure for the efficient computations of similarities be-
tween compressed bitmaps in the Jaccard space; the Sets Inter-
section Tree.

• A modification of the tSNE [vdMH08] algorithm for the creation
of consistent and interrelated embeddings.

The rest of this paper is organized as follows. In the next sec-
tion we present the related work. An overview of WAOW-Vis is
given in Section 3. Section 4 highlights the generation of the hi-
erarchical representation of the data. In Section 5 we present the

c© 2018 The Author(s)

Pezzotti et al. / WAOW-Vis 3

interactive exploration using WAOW-Vis. Finally, in Section 7 we
validate WAOW-Vis via several test cases based on three datasets
that we obtained by mining Twitter. We demonstrate how WAOW-
Vis is particularly effective in highlighting communities of users
that shares similar interests.

2. Related Work

A Bipartite graph (U ,V,E) is a particular type of multifaceted
graph [HSS15] where vertices form two disjoint sets U and V ,
and edges E = (u,v) ∈ U ×V connect elements from each sets.
Bipartite graphs can be displayed using traditional visual encod-
ings for graphs such as node-link diagrams and adjacency ma-
trices [VLKS∗11]. In a node-link diagram vertices are placed in a
2-dimensional space using a layout algorithm [Tam07]. Adjacency-
matrix visualizations rely on matrix reordering techniques for high-
lighting connectivity patterns, e.g., cliques of strongly connected
nodes [BBHR∗16, VLKS∗11]. Empirical studies show that node-
link visualizations are usually more intuitive for understanding the
graph but, for dense graphs, adjacency matrix visualizations out-
perform node-link visualizations due to the reduced visual clut-
ter [GFC05]. Node-link diagrams relying on dimensionality reduc-
tion techniques have also been presented [MAH∗12], but they do
not scale beyond few thousand vertices. To combine the advantages
of both worlds, hybrid techniques had been developed. The Ma-
trixExplorer [HF06] and the NodeTrix [HFM07] visualization sys-
tems are just two examples that combine node-links and adjacency
matrix visualization in order to provide greater insights. WAOW-
Vis is a hybrid technique that scales to bipartite-graphs with several
millions vertices and edges. Similarly to matrix reordering tech-
niques, it allows for identifying clusters of similarly connected ver-
tices as clusters of points in the dimensionality reduction layouts
(T1), i.e., embeddings (see Figure 1a). Then, thanks to a visual de-
sign similar to node-link diagrams, WAOW-Vis provides a better in-
terpretability of the results by showing 1-dimensional embeddings
and their interrelationships (T2) (see Figure 1b-d).

In order to enforce a distinction between the collections U and
V , different approaches allocate separated visual spaces to the two
collections, which can be parallel axes, interleaved axes [BDF∗10],
or concentric circles [DRM12]. Edges connecting the vertices in the
two collections are then visualized as links. A subset of the links
may be drawn based on the user’s current focus or, to give a com-
plete picture of the data, all the links can be drawn. Lines may be
bundled in order to reduce the resulting visual clutter [ZXYQ13].
This approach is used in several visual analytics systems such as
VisLink [CC07], PivotPath [DRRD12], PNLBs [GKL∗13] and Jig-
saw [SGL08].

In this work we focus on the analysis of large graphs, i.e., con-
taining tens of millions of vertices and edges. Gaining insight from
a direct visualization of the data with one of the previously de-
scribed techniques is not possible due to the resulting visual clutter.
Algorithmic graph preprocessing [VLKS∗11] is therefore of ma-
jor importance in order to create meaningful visualizations. Graph
filtering algorithms are used for reducing the number of the visu-
alized vertices [BGW03, LF06]. Jia et al. [JHGH08], for example,
remove vertices that are not considered important according to a
notion of graph centrality. In graph aggregation techniques, the

Hierarchy computation V
Hierarchy computation

Exploratory Analysis

Bipartite Graph as
Compressed Bitmaps

Sets Intersection Tree
for KNN Graph Comp.

Hierarchy
Computation

WAOW-Visualization Drill-in

U
(c)(b)(a) 1

1

1 1 1

0

0 0

3 "0" - 3 "1"

(d) (e)

Focus

0

Figure 3: Overview of WAOW-Vis. Two hierarchical representa-
tions of the collections U and V are computed. The elements in the
collections are encoded via compressed bitmaps (a). The k-nearest
neighborhood graph are computed for the non-duplicated bitmaps
(b) and the hierarchy is computed by HSNE (c). In WAOW-Vis, we
first present an overview of the data (d). The user may focus on
specific regions of interest and generate more detailed visualiza-
tions (e).

vertices are not simply removed, but multiple vertices are merged
into a single one, hence reducing the size of the resulting graph.
Vertices can be merged according to different criteria, e.g., by treat-
ing cliques of strongly connected vertices as a single node in the vi-
sualization [BBD∗11, EDG∗08]. For bipartite graphs, aggregation
is usually performed using biclustering algorithms [MO04] which
create clusters in the two collections U and V based on their mu-
tual relationships. Biclustering algorithms are often used in bioin-
formatic [HSBW11, OKHC14, PGAR15] and for the analysis of
deep neural networks [MCZ∗17]. If the graph simplification is re-
peated multiple times, a hierarchical graph, also called compound
graph, is created. The hierarchical graph is then analyzed with vi-
sualizations that allow for the exploration of the data at different
scales [HF06,HFM07,Hol06,XCQS16]. Existing techniques, how-
ever, are limited in the analysis of large graphs. The preprocessing
represents a bottleneck that requires many hours, or even days, to
complete, hence limiting the interactive analysis of the data. Our
goal is to tackle bipartite graphs with tens of millions of vertices
and edges at interactive speed on regular hardware.

3. WAOW-Vis overview

Figure 3 shows the overview of the generation of WAOW-Vis and
its interactive exploration. WAOW-Vis uses separated visual spaces
for visualizing the two collections, and creates a layout similar to
the traditional and easy to interpret node-link visualization for bi-
partite graphs, as shown in Figure 1b-d. However, we propose to

c© 2018 The Author(s)

4 Pezzotti et al. / WAOW-Vis

enrich the visualization with 2-dimensional embeddings, see Fig-
ure 1a and e. This solution reveals more clusters and richer infor-
mation about their interrelationships, as vertices have more visual
space to be layed in (T2). We considered adding links between the
2D and 1D embeddings to make the identification of the same ver-
tices easier. However, we quickly realized it would introduce ex-
cessive clutter and, instead, we developed a novel embedding com-
putation technique keeps corresponding vertices roughly aligned
(Section 5.2).

The main contribution of WAOW-Vis is it scalability to graphs
that, to the best of our knowledge, cannot be handled by ex-
isting techniques. This result is achieved thanks to a novel al-
gorithmic graph preprocessing that take advantage of the recent
advancements in the field of large high-dimensional data analy-
sis [PHL∗16, TLZM16]. Our approach can be separated in two
steps, the hierarchy computation and the exploratory analysis of
the so computed hierarchies of vertices.

In the hierarchy computation step, two identical computational
pipelines are applied to the collections U and V separately (Fig-
ure 3a-c). First, the biadjacency matrices of the bipartite graph are
transformed into two collections of compressed bitmaps. A bitmap
associated with a vertex in u ∈ U contains the set of vertices in
V that are connected to u and vice versa (Section 4.1). Then, the
compressed bitmaps are organized in a novel data structure, the
Set Intersection Tree (SIT), presented in Section 4.2. The SIT al-
lows for the efficient computation of Jaccard similarities between
vertices, leading to a scalable approach for the creation of the k-
nearest neighborhoods graph. The k-nearest neighborhoods graph
is then used as the input for the Hierarchical Stochastic Neighbor
Embedding (HSNE) [PHL∗16] algorithm that generates a hierar-
chical representation of the collections U and V (Section 4.3). In-
tuitively, the resulting hierarchies contain a number of scales. Each
scale contains a number of landmarks that can be seen as a collec-
tion of elements in the two collection of vertices U and V .

The exploratory analysis starts from an overview visualization,
an example of which is presented in Figure 1a-e. The visualization
contains embeddings of the landmarks at the highest scale of the
HSNE hierarchy for each collection U and V that reveal similarly
connected clusters of vertices (Sections 5.1 and 5.2). Furthermore,
the user can request more detailed visualizations by filtering un-
interesting clusters of vertices and by drilling into the hierarchies
(Section 5.3), hence generating novel layouts containing data points
from a more detailed HSNE scale (Figure 1f). With this approach,
the user can reveal more heterogeneity within one of the previously
identified cluster of vertices (T1). WAOW-Vis is designed to ex-
plore the structure of bipartite graphs and the relations between
the structures of the two sets of vertices. From the perspective of
the task taxonomy of graph visualization by Lee et al. [LPS∗06],
WAOW-Vis supports group-level and cluster-level tasks, but not
path-level tasks. The node-level and link-level tasks can be sup-
ported with varying levels or precision depending on the visualized
scale.

4. Hierarchy computation

In this section we present how the bipartite graph is transformed in
the two hierarchical data representations that are used for the cre-

(c)

(a)

U V

3

0

1

2

0
1
2
3

4

5

(d)

(b)

V
U

Adjacency Matrix

U V

0

0

v0
v1

v2

v3

u2u1u0 u3u4 u5

1

1

0

Biadjacency Matrix

Bipartite Graph

Compressed Bitmaps

3 "0" - 3 "1"
V

U

1 1 100 0

2 "1" - 2 "0"

Figure 4: Bipartite graphs as high-dimensional data. A bipartite
graph connects a collection of users U with a collection of Twit-
ter feeds V . To avoid clutter, here we show only the links connect-
ing u2 and v3 (a). The bipartite graph is represented by an ad-
jacency matrix (b). The adjacency matrix contains two symmetric
biadjacency matrices (c). The elements in U and V are seen as two
high-dimensional datasets. To reduce the memory occupation and
speed up the similarities computation, the data points are saved
as compressed bitmaps using, for example, a Run-Length Encod-
ing [RC67](d).

ation of WAOW-Vis. In each subsection we present a single module
of computational pipeline that is introduced in Figure 3a-c.

4.1. Compressed bitmaps as high-dimensional data

Figure 4 shows an example of how the data is transformed in a col-
lection of compressed bitmaps that are used for the efficient com-
putation of the similarities, both in terms of memory and computa-
tions. The corresponding adjacency matrix for this data is presented
in Figure 4b. The matrix can be seen as a composition of two dis-
joint and symmetric regions called biadjacency matrices, one of
which is shown in Figure 4c. Biadjacency matrices encode the re-
lationships between the set U and V and vice versa.

We propose to treat the biadjacency matrices as high-
dimensional datasets and to measure similarities between the ver-
tices using the Jaccard similarities as introduced in Figure 2. Given
two indices i and j, the Jaccard similarity of the corresponding ver-
tices is defined as follows:

J
(
vi,v j

)
=

∑b
(
vi[b]∧v j[b]

)
∑b

(
vi[b]∨v j[b]

) , (1)

where vi[b] is the b-th element in the i-th row of the biadjacency
matrix where vi,v j ∈ U . The numerator computes the number of
shared elements in U for vi and v j, while the denominator counts
the number of elements in the union of the two.

c© 2018 The Author(s)

Pezzotti et al. / WAOW-Vis 5

p0
0 p1

0

p0
1 p1

1

p1
0

Recursive
tree creation

Pivot Duplicates Pivot-intersecting

(a) (b)

p0
0 p0

p0
0 p1

0

p0
1 p1

1

Indices in the bitmap collection

p0
1 p1

1

a b c(c)
p0
0 p1

0
p0
1 p1

1

p0
0 p1

0

p0
1

p1
1

q

Figure 5: Sets Intersection Tree Bitmaps are organized in a number of subtrees. (a) Every tree contains bitmaps that are intersecting with
the pivot, p0

0 and p0
1 in this case. Every sub tree is recursively divided in subtrees. (b) The SIT is implemented with a left-child right-sibling

binary-tree. Bitmaps are not actually inserted in the tree but every node references to a linear array of indices. (c) The query for a set q starts
from the root, i.e., p0

0. All the siblings of a visited node are traversed, i.e., p0
1. Children of a node are visited if the union of the sets in the

subtree are intersecting q. Both p1
0 and p0

0 are visited in the example.

Dimensionality-reduction techniques requires the data to be in
the form of dense matrices, i.e., losing the advantage of a sparse
representation of the biadjacency matrices. Moreover, the result-
ing data matrix will not fit in memory for large graphs, e.g., con-
taining tens of millions of vertices. To overcome this limitation, we
propose to treat the bipartite graph as a collection of compressed
bitmaps, also called bitsets, where every row in the biadjacency
matrices is saved as a compressed bitmap. A bitmap is a data repre-
sentation in which every element in the set is represented by a bit.
Bitmaps permit the extremely fast computation of the Jaccard sim-
ilarity, see Equation 1. The numerator is computed with a bitwise-
AND between the two bitmaps and the denominator with a bitwise-
OR. However, the memory occupation of the bitmap corresponds
to the maximum number of elements in the set, i.e., the number of
columns in our setting, making it identical to a dense representa-
tion. Compression techniques are used to address this problem and
to dramatically reduce the memory occupation of data. A straight-
forward approach is to use run-length encoding (RLE) [RC67], in
which repetitions of consecutive bits are stored as a single value as
well as the number of times it occurs. In this way, the biadjacency
matrices are transformed in two collections of compressed bitmaps
representing the vertices, see Figure 4d. In WAOW-Vis we use
the Roaring Bitmaps [LSYKK16], which are a hybrid data struc-
ture that combines different compression schemes on chunks of the
bitmap based on their characteristics, e.g. their sparsity. Roaring
Bitmaps are up to two orders of magnitude faster than traditional set
implementations and are used by several Big-Data processing en-
gines such as Apache-Lucene [MHG10] and -Spark [ZXW∗16]. In
the next section we present how the k-nearest neighborhood graph,
which is needed for the computation of the HSNE hierarchies, is
built from a large collection of compressed bitmaps.

4.2. Sets Intersection Tree

Once the biadjacency matrices are converted into two collections of
bitmaps, U and V , we compute the k-nearest neighborhood graph
for each collection. As the procedure is the same for both, we will
concentrate on the case of U . To the best of our knowledge, no
data structure exists to efficiently compute the k-nearest neighbors
among compressed bitmaps. To address this problem we propose
a novel tree-based data structure; the Sets Intersection Tree (SIT).
Each node in this tree represents an element in U and the SIT will

support an efficient algorithm to calculate the k-nearest neighbors
of a given query element q, represented by its bitmap, by using
a special traversal algorithm. The efficiency of this traversal re-
sults from the possibility for an early termination, which enables
us to skip testing many elements in U . The early termination will
be enabled by two criteria. First, each node contains a union of all
bitmaps of its subtree, enabling a quick test to determine if q shares
any common element with any node in the subtree by using a bit-
wise AND operation. Second, the special construction of the tree
will enable us to evaluate a bound on the Jaccard similarities of all
elements in a subtree using only the bitmap of this subtree’s root
node, the pivot. Before describing the traversal algorithm, we first
detail the construction, as it will facilitate deriving the bound on the
Jaccard similarity.

The actual construction of the tree works as follows. We select
the element u with the lowest cardinality to be the root node of our
binary tree. Its bitmap will be used as a pivot, hence the name, to
partition the remaining elements in U , into a set U1, which contains
all elements intersecting u (an AND operation between the bitmaps
will not result in a zero), and the rest U2. The set U1 will form
the left, U2 the right subtree of u. The subtrees are build up recur-
sively in the same manner, choosing a pivot of lowest cardinality
and building the subtrees. A special case are identical elements,
which do not appear multiple times in the tree, instead each node
will contain the indices of the corresponding elements in U . Ad-
ditionally, we compute the union of the bitmaps in each subtree,
which will be used for the early termination. We use a bottom-up
method by performing an OR operation between the bitmaps of the
children of each node.

The querying of k-nearest neighborhoods in the SIT works as
follows. Given q∈U for which we want to find the k-nearest neigh-
bors, we start a recursive visit from the root of the SIT, p0

0 in Fig-
ure 5. During the traversal, we maintain a min-heap data structure
of size k that keeps track of the closest neighbors found so far; each
visited node is compared against the minimal element in the heap
and replaces it if its Jaccard similarity (Equation 1; the intersection
divided by the union) is larger. At the end of the traversal, the heap
will contain the k-nearest neighbors.

For each node, we test q’s bitmap against the precomputed union
of the sets in its subtree M0

0 .If J
(

q,M0
0

)
6= 0, then the traversal

c© 2018 The Author(s)

6 Pezzotti et al. / WAOW-Vis

continues with the children, otherwise, they have no overlap and
cannot be similar (Jaccard similarity is zero). It is insufficient to test
only against the bitmap of a node, as illustrated in Figure 5c; p0

0 is
not intersecting q (Jaccard similarity is 0), however, q intersects p1

0

in the subtree, which has J
(

q, p1
0

)
= 0.5.

An additional early termination criterion stems from the way
that the SIT is constructed. By selecting the smallest set to be the
pivot of a subtree, we are inherently introducing an ordering for the
sets, i.e., the deeper a pivot, the larger it is. Because the denomina-
tor of the Jaccard similarity contains the union of the two sets, we
can compute an upper bound for the similarities that we may find in
a given sub tree. If the upper bound is lower than minimal element
in the heap, we can avoid visiting the subtree.

Finally, for high efficiency, we propose a few optimizations,
which we detail here. First, our tree does not actually store the
bitmaps in the nodes, as this would lead to many copy operations
of the data during the construction process. Instead, each node con-
tains pointers to a large linear array of indices that contains all
bitmaps in sequential order. The partitioning is then only affect-
ing the indices, but not the bitmaps. Second, the construction of a
subtree is stopped when only a few elements (typically 20) are left,
as then the traversal cost actually exceeds the cost for testing all ele-
ments individually. This strategy follows bucket KD-Trees [ML14],
where the final elements are stored in a list. This solution, together
with the efficient computation of bitwise-AND and -OR granted by
the RoaringBitmaps, enables us to compute the k-nearest neighbor-
hood graphs containing several millions of nodes.

4.3. Hierarchical representation

The hierarchical representation of the biparite graph is generated
by computing the Hierarchical Stochastic Neighbor Embedding
(HSNE) [PHL∗16]. We differ from the original HSNE algorithm
, which is openly available as parte of the HDI library [Pez17], as
we compute the hierarchies starting from the k-nearest neighbor-
hoods graph computed using the Jaccard similarities (Equation 1).
This HSNE result allows us to create visual clusters of vertices in U
that share connections to the other collection V in a multiscale ap-
proach (T1). Furthermore, by combining compressed bitmaps, the
SIT tree, and the HSNE algorithm, we are able to scale the compu-
tation to extremely large biadjacency matrices, making it possible
to analyze dataset of a social-network scale.

More specifically, HSNE organizes the high-dimensional points
or, in our case, the vertices, in a number of scales that are organized
hierarchically. Each scale contains a number of landmarks that rep-
resent the complete data at the level of detail identified by the scale.
Intuitively, a landmark is a collection of similarly connected ver-
tices, where the degree of similarity is given by the position in the
hierarchy. For lower scales, only vertices that shares very similar
connections belong to the same landmark, while this constraint is
relaxed the higher the scale in the hierarchy.

We denote the set of landmarks extracted from U at scale s as
the collection U s. U1 represents the first scale, which is the in-
put dataset U . Higher scales are always subsets of previous scales,
hence U s ⊂ U s−1. Inside a scale, the similarity between the land-
marks is encoded by a transition matrix T s

U . For the first scale, T 1
U

is given by the k-nearest neighborhood graph that is weighted by
the similarities. Landmarks in the next scale are selected among
those that have higher centrality in the graph. The centrality is com-
puted by using the transition matrix T 1

U as a Markov Chain and
by computing its stationary distribution with a Monte Carlo ap-
proach [Gey11]. Vertices with value in the stationary distribution
higher than a given threshold are selected to be landmarks in the
higher scale U2.

A link between landmarks U2 to the landmarks in the lower scale
U1 is then computed. More generally, it is defined as area of influ-
ence of U s over U s−1 and is encoded in the matrix Is

U . Is
U has size

|U s−1|× |U s|, where Is(i, j)U is the probability that the landmark
U s−1

i in the previous scale is well represented, i.e., close in the k-
nearest neighborhood graph, by U s

j . The similarity matrix T s
U for

landmarks in the new scale s encodes the overlap of the area of in-
fluence of the landmarks U s. The process is iterated until only a
limited number of landmarks, i.e., less then a thousand, remain in
the highest scale. A similar hierarchical representation is derived
for the collection V . In the next section we present how the hierar-
chy is visualized and explored.

5. Exploratory analysis

In this section we present the design of the visualizations used to in-
teractively explore the hierarchical data representation of the graph.
First we present the layout of a single visualization (Section 5.1).
Then we present how the dimensionality reduction is performed
for every collection (Section 5.2). Finally, we explain how more
detailed visualizations are generated from a subset of user-selected
landmarks (Section 5.3).

5.1. Visual design

Figure 1 shows an instance of WAOW-Vis. The visualization con-
sist of four embeddings. Every point in the embeddings represent a
landmark in the corresponding HSNE scale. Landmarks are placed
close together if they are similar according to their Jaccard similari-
ties at the given scale. This allows us to identify groups of elements
in the collection U that have similar connections to V , and vice
versa. Moreover, a landmark corresponds to a set of vertices in the
original collection, as presented in Section 4.3. The size of points
in the visualization encodes the number of vertices represented by
the corresponding landmark [PHL∗16].

At the center of the visualization two 1-dimensional embed-
dings, one for U and one for V , are used to create a layout that is
similar to a traditional node-link diagram for bipartite graphs. We
adopt this layout because it is reported that node-link diagrams are
more intuitive for understanding the graph [GFC05]. By brushing
on one of the embeddings, the vertices are selected and the links to
the other collection are visualized as lines. These lines are then bun-
dled with a real-time implementation of the force-directed bundling
algorithm proposed by Holten and van Wijk [HVW09]. Each col-
lection U and V is also shown in a 2-dimensional embedding, as
shown in Figure 1a and e. The rationale behind this choice is that,
the more visual space is available for the landmarks, the more in-
terrelationships between the clusters become apparent as it can be
seen by comparing Figure 1a to Figure 1b (T2).

c© 2018 The Author(s)

Pezzotti et al. / WAOW-Vis 7

(b) (c)

(a)

Figure 6: Possible problems that arise if the embeddings are gener-
ated independently from each other. Here, the same data presented
in Figure 1a-e is embedded with a tSNE minimization [vdMH08]
instead of our approach as presented in Section 5.2. Elements in
U and V are badly aligned, hence cluttering the visualization of
the links between the two collections. Moreover, the same cluster of
landmarks may appear in different positions along the vertical axis
(a). Bundling the lines reduces clutter but does not produce a neat
layout as in Figure 1a-e (b,c).

Finally, we found that, if attributes are available for the element
in the collection, it is useful for the understanding of the interrela-
tionships between the clusters to add this information using, e.g.,
a word-cloud visualization. This feature leads to the identification
and labeling of clusters of landmarks. In the WAOW-Vis presented
in Figure 1, the two clusters in the collection V consists of Twitter
feeds associated to two different domains, i.e., computer science
and United States’ news outlets.

5.2. Embedding computation and alignment

Without any additional constraint, the same clusters in the 1- and
2-dimensional embeddings might be placed in different positions
along the vertical axis, which makes associations between the re-
lated embeddings a difficult task. Example of possible problems
are shown in Figure 6 for the same data presented in Figure 1a-e.
The two clusters highlighted in red are in different positions along
the vertical axis. Furthermore, the two collections are not properly
aligned, hence creating a cluttered visualization of the links. By
bundling the lines, as shown in Figure 6b-c, the problem is miti-
gated but it is not removed. To address this issue, we implemented
a modified version of the tSNE algorithm [vdMH08] enforces sim-
ilar positions on the vertical axis for all landmarks of the same col-
lection and for similarly connected landmarks in U and V .

A single embedding is computed by randomly placing the land-

marks in a 1- or 2-dimensional space. With an iterative gradient-
descent minimization, landmarks are then moved in the embed-
dings in such a way that, after a number of iterations, they are
close to similar landmarks according to the transition matrix T s

U . In
this way, clusters of landmarks in the embedding represent groups
of similar elements. More specifically, we minimize the original
tSNE’s cost function CtSNE

e to generate the embedding e which is
defined as follows:

CtSNE
e = KL(T s

U ||Qe), (2)

where KL(T s
U ||Qe) is the Kullback-Leibler divergence between

the joint-probability distributions defined by the transition matrix
T s
U and Qe. Qe is a joint-probability distribution that is obtained by

weighting the distances between the landmarks in the embedding
e with the Student’s t-distribution [vdMH08]. The points are then
iteratively moved in the embedding along the negative gradient of
the cost function CtSNE

e , until their positions reflect the similarities
in T s
U . We refer the interested reader to the work of van de Maaten

et al. [vdMH08] for the detail on how Qe is computed and how the
gradient-descent parameters for CtSNE

e are chosen.

In order to take into consideration the position of landmarks in
a set of embeddings F , hence enforcing the alignment between the
same landmarks, we modify the cost function Ce as follows:

Ce = (1−α)CtSNE
e +αCalign

e

= (1−α)KL(T s
U ||Qe) +α ∑

f∈F
∑

i∈U s

||ye
i − y f

i ||
2,

(3)

where ye
i is the vertical position of the landmark i in the em-

bedding e that is iteratively optimized. For an embedding f ∈ F
containing landmarks from the same collection U s, y f

i is the ver-
tical position of i in f . For inter-collection embeddings, i.e., opti-
mization of U s from Vs, y f

i is computed as the mean position of
the landmarks in f that are connected by an edge to the landmark
i in e. Ce is the composition of two different costs, the CtSNE

e , as
presented in Equation 2, and Calign

e , which minimizes the squared
distances between the position of a landmarks in the embedding e
and in the embedding f . The parameter α controls the weight that
is given to the two terms. For α = 0 the cost function is the same as
a traditional tSNE minimization, while for α = 1, only the squared
distances along the vertical axes are minimized.

As before, the embeddings are generated by moving the points in
the opposite direction of the gradient of Ce. We found that good re-
sults are obtained if we optimize all embeddings for U and V simul-
taneously, letting each one influence the other during the minimiza-
tion. Regarding the parameter α, we found that for our test cases it
works well to start with a relatively high value, e.g., α = 0.5. In
this way, the landmarks are iteratively placed in similar positions
along the vertical axes right from the start. However, we believe
that the preservation of the similarities between similar vertices as
computed by CtSNE

e is of greater importance as it is the main insight
that the user aims at achieving (T1). For this reason we linearly re-
duce the value of α down to 0 after a number of iterations. Empiri-
cally, we found that a linear reduction of α to 0 in 500 iterations is
a good strategy for all test cases.

c© 2018 The Author(s)

8 Pezzotti et al. / WAOW-Vis

5.3. Hierarchy exploration

The data exploration is implemented with a filter and drill-in strat-
egy that starts from the highest scale in the HSNE hierarchy for
both collections U and V . Landmarks at this level of abstraction
represent the main clusters. WAOW-Vis provides a multiscale ex-
ploration of the clusters, which is performed by letting the user
select a set of landmarks in either of the two collections with a
brushing interaction. The selection leads to a refined visualization
that contains the influenced landmarks in the lower scale for the
corresponding collection.

We now provide the details on the creation of embeddings that
contain landmarks in lower scales of the hierarchy starting from
a selection in a higher scale for one of the collection, e.g., U . A
similar approach is performed if the selection is within V . Given
landmarks U s at scale s and a set of indices of selected landmarks
A, the new visualization contains a subset of landmarks in U s−1,
which are under the area of influence of the selection in s. As de-
fined in Section 4.3, the area of influence of the landmarks asso-
ciated to a scale s is defined by the matrix Is(i, j)U . Is

U has size
|U s−1|× |U s|, where Is(i, j)U is the probability that the landmark
U s−1

i in the previous scale is well represented by U s
j . The new em-

bedding contains all landmarks U s−1
k at scale s− 1 for which the

following is true:

∑
a∈A

Is(k,a)> θ, (4)

where 0 < θ ≤ 1 is a user defined threshold. Intuitively,
∑a∈A Is(k,a) represents the probability for the landmark U s−1

k to
be influence by the selection A of landmarks in U s. We experimen-
tally found that a default value of θ = 0.5, allows for the effective
exploration of the clusters of vertices. Figure 1 shows an example.
Once a cluster is selected, its detailed information at the lower scale
can be visualized upon the user’s request. In the next section, we
provide further examples of how the hierarchical exploration of the
data give richer insight on the hierarchy of clusters in the graph.

6. Implementation

WAOW-Vis is implemented in C++ for performance reasons
and, when possible, heavily uses OpenMP [DM98] to parallelize
computations. It fully supports the Progressive Visual Analytics
paradigm [FP16, MPG∗14], allowing for the visualization of the
evolutions of the embeddings, while the embeddings are iteratively
generated. Therefore, the user does not have to wait a fixed num-
ber of iterations and can autonomously decide on the convergence
of the embedding by evaluating their visual stability [PLvdM∗16].
The compressed bitmaps are implemented using the C++ version
of the Roaring Bitmaps library [LSYKK16]. The modified ver-
sion of the HSNE algorithm [PHL∗16], presented in this work,
is derived from the original C++ implementation available in the
High-Dimensional-Inspector library [Pez17]. The embeddings are
implemented in OpenGL. The word-clouds are implemented in
Javascript using D3 and are integrated in the C++ application using
the QtWebKit Bridge. Finally, WAOW-Vis is released as part of the
High-Dimensional-Inspector library [Pez17].

7. Test cases

To evaluate WAOW-Vis we present real-world examples of the
analysis of bipartite graphs of social-network scale. We identified
three domains to analyze: computer science, news, and politics. For
each one of these domains, we chose as elements of the collection
V a number of Twitter-feeds, i.e., Twitter users that post mainly
in the chosen domain. The collection U contains all the followers
for the element in V . Therefore, the resulting bipartite graph en-
codes the follower relationships between the users and the Twitter-
streams in the specific domain. In WAOW-Vis, clusters of similar
users are communities that share similar interests in the specific
domain, while clusters of similar feeds, share similar groups of fol-
lowers.

We decided to focus on the analysis on the relationship between
users and feeds in Twitter as we are interested in exploring the
presence of echo-chambers, or filter bubble, in social networks. An
echo chamber is a community of users that receives only polarized
information concerning a specific domain, e.g., politics. The pres-
ence of echo chambers in social networks is deemed responsible
for the polarization of the public discourse in recent years [Gar09].
Contrary to other social networks like Facebook, follower relation-
ships on Twitter are openly available through the Twitter-API, al-
lowing us to test WAOW-Vis on real-world data.

Table 1 presents the overview on the datasets that we collected
and analyzed. Every column corresponds to a bipartite graph as-
sociated with a specific domain. The computer science dataset
contains Twitter-feeds associated with several programming lan-
guages, e.g., Java, C++, PHP and OpenGL. The news dataset con-
tains journalists and presenters of two of the major United States’
news outlets, i.e., CNN and Fox News. The politics datasets con-
tains the Twitter accounts of every United States’ senator. The last
column presents an additional dataset which is the union of the pre-
viously introduced ones. The first three rows present the number
of vertices in the collections and the edges connecting them. Note
that, for the presented datasets, |U| � |V| due to scalability issues
of the Twitter mining. Twitter imposes a limitation in the number
of user-followers relationships, i.e., edges in our graph, that can be
obtained per minute. This limit is of 5000 links per minute, hence
it required approximately 9 effective days of mining for gathering
the datasets.

In Table 1, we present the computation time in seconds for the
three processing steps presented in Section 4, together with the
maximum memory occupation of WAOW-Vis for each dataset. The
results are generated on a workstation with an 3.40GHz Intel i7-
2600 CPU and 20 GB of memory. The computation of the hierar-
chies needed for the analysis of the largest dataset, which contains
19.7M users, takes less than one hour. To give a perspective on
size, Twitter has an estimated number of 340M active daily users.
We performed a comparison with the traditional HSNE hierarchy
computation, which relies on the FLANN library [ML14] for the
similarity computation, using the dense representation of the graph.
However, the computation of the HSNE hierarchy is impossible to
perform for all the datasets due to the heavy memory requirements,
hence demonstrating the need for a novel approach as presented in
this work.

c© 2018 The Author(s)

Pezzotti et al. / WAOW-Vis 9

DetailedDrill-in

(c)

Fox News followers
in the CNN cluster

(d)

News - Fox News & CNN Politics - United States' Senators
% of selected edgesOverview

(a)

(b)

(f)

Democtrats

Republicans

U V
3

U V

1

2

(e)

Follow
all senators

1 2 3

Detailed visualization of 3

Overview

Insight for the Overview

Figure 7: Analysis of the United States’ politics and news datasets. The News dataset comprises a collection V of Twitter accounts of
journalists from two of the United States’ major news outlets, CNN and Fox News. Users that follows the feeds in V are in the collection U .
Two echo chambers [Gar09] are identified in the dataset (a,b). Users in the top cluster are following only journalists from Fox News (a),
while the ones at the bottom are following only CNN’s journalists (b). In the two visualizations (a,b) only the edges linked to the selection are
shown. In the right embedding, landmarks are visualized with a green-to-orange color scale that shows the percentage of incoming edges in
the current selection. The clusters of orange-colored landmarks in V confirms the strong association for the selection in U . By drilling into
the CNN cluster, a sub community that follows Fox News accounts is identified (c) The analysis of the politics datasets does not show strong
evidence of a polarized audience (d). A cluster containing users that follow all the senators is highlighted in purple (d,e). The cluster in gray
contains users following the senators with the largest audience, while users in the red cluster follow senators with not so many followers
(d,e). A detailed visualization of the red cluster reveal that a polarized audience exists for these senators (f).

Table 1: Datasets information are presented in the columns. The
first three rows present the size of the biparite graph, where (M)
means millions of elements. Computation time in seconds for the
SIT creation, kNN and HSNE computation are presented. Finally,
peak memory occupation of WAOW-Vis is given.

Computer S. News Politics Combined
|U| 1.97M 7.67M 12.42M 19.7M
|V| 145 83 100 329
#Edges 4.4M 10.8M 24.5M 38.9M
SIT (s) 13 34 63 283
kNN (s) 50 59 430 1960
HSNE (s) 13 11 60 202
Mem. (GB) 1.6 2.1 3.7 10.6

7.1. News dataset

Figure 7a-b shows the exploratory analysis of the news dataset per-
formed using WAOW-Vis. Two separated clusters of Twitter feeds
are visible in the right embedding, i.e., V . By visualizing the own-
ers of the Twitter feeds in the word cloud, we realize that they be-
long to Fox News journalists for the cluster at the top and to CNN
journalists for the one at the bottom. This insight is confirmed by
the visualization of the edges connecting the two collections. Con-
trary to the visualizations that we presented so far, in Figure 7a-b
we show the edges related to a user-defined selection of landmarks.
Selected landmarks in the left embedding are rendered with a shade
of orange, and only edges connected to these landmarks are shown.
Most of these edges are connected to the top cluster in the em-
bedding on the right. Here, landmark colors encode the percentage

c© 2018 The Author(s)

10 Pezzotti et al. / WAOW-Vis

of incoming edges that are currently selected by the user with a
green-to-orange color scale. The top cluster in the right embedding
of Figure 7a has the same shade of orange of the selection in the left
embedding. This means that the current user selection among U is
mainly connected to the top cluster in V . The same observation can
be done for the cluster at the bottom of the visualization, as shown
in Figure 7b.

For both selections, only a small number of edges are connected
to the opposite cluster. This insight leads to the conclusion that two
echo chambers [Gar09] exist for the two news outlets. However, in
Figure 7b, we can observe that a more consistent stream of edges
is connecting CNN followers to the Fox News feeds. In order to
reveal more sub-communities within the cluster, a detailed visual-
ization is generated by drilling into the hierarchy. Figure 7c shows
the resulting embedding. The selection in the embedding contains
all the landmarks (i.e., group of users) that follow Fox News’ ac-
counts. Finally, by selecting the small cluster which is encircled in
Figure 7, followers of international CNN reporters, such as Kyung
Lah and Frederik Pleitgen, are identified.

7.2. Politics dataset

Figure 7d-f shows the exploratory analysis of the politics dataset.
In this test case, we expected to see an echo chamber for users con-
nected to the Republican senators and one for those connected to
the Democratic senators. However, a clear separation for the col-
lection V is not visible in the visualization shown in Figure 7d.
To better understand the interrelationships between the two collec-
tions, the user interacts with WAOW-Vis in order to get a more
detailed insight on the visible clusters. The cluster 1 in Figure 7d
is the most distinct one. To understand the connections of the clus-
ters 1 to the collection V , the edges linked to it are visualized.
Figure 7e shows that the selected landmarks are connected to the
accounts of every senators. We conclude that this clusters contain
political enthusiasts or, more likely, software-controlled Twitter ac-
counts. These accounts, also known as Twitter-bots, work as tweet
aggregators for a specific domain, for example, by automatically
reposting the senators’ tweets.

The cluster 2 is then selected by the user. A visualization of
the percentage of the incoming edges in the right embedding is vi-
sualized in Figure 7e. Only the large points in the embedding are
colored with a shade of orange. These points correspond to the sen-
ators with the largest user base, such a senator Elisabeth Warren
and Marco Rubio. This result shows that the cluster 2 identifies
the community of users who are following mainly the most famous
politicians. Finally, the cluster 3 in Figure 7d corresponds to users
following senators with a much smaller user base, as can be seen
by the result of the selection in Figure 7e. In the overview, cluster
3 already shows a separation in two sub clusters. A detailed visu-

alization, which is generated by drilling in the hierarchical repre-
sentation, shows a better separation of these clusters. The resulting
embedding, which is presented in Figure 7f, shows that a polariza-
tion of the users exists for Republicans and Democrats in this sub
community.

8. Conclusions and Future Work

In this work we have presented Who’s-Active-On-What-
Visualization (WAOW-Vis), a visual analytics system for the
exploratory analysis of large bipartite graphs. We presented a
novel graph preprocessing pipeline that is inspired by the recent
developments in the analysis of large high-dimensional data. The
scalability of WAOW-Vis is enabled by three main contributions
of this work. The adoption of compressed bitmaps for representing
the graph and the novel Sets Intersection Tree (SIT) for efficiently
computing Jaccard similarities between the bitmaps. The simi-
larities are then used to generate a hierarchical representation of
the graph with a modified version of the Hierarchical Stochastic
Neighbor Embedding (HSNE). Moreover, we presented several
insights obtained by the exploratory analysis of large datasets that
we mined from Twitter.

WAOW-Vis, however, does not come without limitations. First,
while WAOW-Vis can handle very large bipartite graphs, it can
only handle undirected and unweighted graphs. Extending our tech-
nique to handle weighted and directed graphs is an interesting fu-
ture work. Furthermore, in the exploratory analysis of the data, the
several visualizations that are generated make it difficult to keep
a mental mapping of the exploration process. Höllt et al. recently
proposed CyteGuide [HPvU∗17] for guiding the user in the ex-
ploration of a single HSNE hierarchy. An interesting future work
is the development of a similar approach for guiding the data ex-
ploration in WAOW-Vis. Moreover, the visualizations of the links
between the two collections is limited to the 1-dimensional embed-
dings. This may be a limitation as most of the insights are obtained
through the analysis of the 2-dimensional embeddings. Finally, in
the test cases we analyzed datasets where the two collections are
very different in size, due to the query limit imposed by Twitter.
Because we are not limited to this kind of datasets, we are inter-
ested in experimenting with more balanced bipartite graphs. In the
immediate future, we plan to introduce the visualization of the links
between the 2d embeddings as presented by Collins and Carpen-
dale [CC07]. Finally, bipartite graphs are widely used in biomed-
ical research [HSBW11] and for the visualization of deep neural
networks [MCZ∗17]. We are interested in exploring the insights
that WAOW-Vis can provide to these fields.

References
[BBD∗11] BATAGELJ V., BRANDENBURG F. J., DIDIMO W., LIOTTA

G., PALLADINO P., PATRIGNANI M.: Visual analysis of large graphs
using (x, y)-clustering and hybrid visualizations. IEEE transactions on
visualization and computer graphics 17, 11 (2011), 1587–1598. 3

[BBHR∗16] BEHRISCH M., BACH B., HENRY RICHE N., SCHRECK
T., FEKETE J.-D.: Matrix Reordering Methods for Table and Network
Visualization. Computer Graphics Forum 35 (2016), 24. 2, 3

[BDF∗10] BEZERIANOS A., DRAGICEVIC P., FEKETE J.-D., BAE J.,
WATSON B.: GeneaQuilts: A System for Exploring Large Genealo-
gies. IEEE Transactions on Visualization and Computer Graphics
16, 6 (Oct. 2010), 1073–1081. URL: https://hal.inria.fr/
inria-00532939, doi:10.1109/TVCG.2010.159. 3

[BGW03] BRANDES U., GAERTLER M., WAGNER D.: Experiments on
graph clustering algorithms. Springer, 2003. 3

[CC07] COLLINS C., CARPENDALE S.: Vislink: Revealing relationships
amongst visualizations. IEEE Transactions on Visualization and Com-
puter Graphics 13 (2007), 1192–1199. 3, 10

c© 2018 The Author(s)

https://hal.inria.fr/inria-00532939
https://hal.inria.fr/inria-00532939
http://dx.doi.org/10.1109/TVCG.2010.159

Pezzotti et al. / WAOW-Vis 11

[DM98] DAGUM L., MENON R.: Openmp: an industry standard api for
shared-memory programming. Computational Science & Engineering,
IEEE 5, 1 (1998), 46–55. 8

[DRM12] DUMAS M., ROBERT J.-M., MCGUFFIN M. J.: Alertwheel:
radial bipartite graph visualization applied to intrusion detection system
alerts. IEEE Network 26, 6 (2012). 3

[DRRD12] DÖRK M., RICHE N. H., RAMOS G., DUMAIS S.: Pivot-
paths: Strolling through faceted information spaces. IEEE Transactions
on Visualization and Computer Graphics 18, 12 (2012), 2709–2718. 3

[EDG∗08] ELMQVIST N., DO T.-N., GOODELL H., HENRY N.,
FEKETE J.-D.: Zame: Interactive large-scale graph visualization. In Pa-
cific Visualization Symposium (PacificVis) (2008), IEEE, pp. 215–222.
3

[FP16] FEKETE J.-D., PRIMET R.: Progressive analytics: A computation
paradigm for exploratory data analysis. arXiv preprint arXiv:1607.05162
(2016). 8

[Gar09] GARRETT R. K.: Echo chambers online?: Politically motivated
selective exposure among internet news users. Journal of Computer-
Mediated Communication 14 (2009), 265–285. 8, 9, 10

[Gey11] GEYER C.: Introduction to markov chain monte carlo. Hand-
book of Markov Chain Monte Carlo (2011), 3–48. 6

[GFC05] GHONIEM M., FEKETE J.-D., CASTAGLIOLA P.: On the read-
ability of graphs using node-link and matrix-based representations: a
controlled experiment and statistical analysis. Information Visualization
4, 2 (2005), 114–135. 2, 3, 6

[GKL∗13] GHANI S., KWON B. C., LEE S., YI J. S., ELMQVIST N.:
Visual analytics for multimodal social network analysis: A design study
with social scientists. IEEE Transactions on Visualization and Computer
Graphics 19, 12 (2013), 2032–2041. 3

[HF06] HENRY N., FEKETE J.-D.: Matrixexplorer: a dual-representation
system to explore social networks. IEEE Transactions on Visualization
and Computer Graphics 12, 5 (2006), 677–684. 3

[HFM07] HENRY N., FEKETE J.-D., MCGUFFIN M. J.: Nodetrix: a hy-
brid visualization of social networks. IEEE transactions on visualization
and computer graphics 13, 6 (2007), 1302–1309. 3

[HMM00] HERMAN I., MELANÇON G., MARSHALL M. S.: Graph vi-
sualization and navigation in information visualization: A survey. IEEE
Transactions on Visualization and Computer Graphics 6, 1 (2000), 24–
43. 1, 2

[Hol06] HOLTEN D.: Hierarchical edge bundles: Visualization of adja-
cency relations in hierarchical data. IEEE Transactions on Visualization
and Computer Graphics 12, 5 (2006), 741–748. 3

[HPvU∗17] HÖLLT T., PEZZOTTI N., VAN UNEN V., KONING F.,
LELIEVELDT B. P., VILANOVA A.: Cyteguide: Visual guidance for hi-
erarchical single-cell analysis. IEEE Transactions on Visualization and
Computer Graphics 24 (2017). 10

[HSBW11] HEINRICH J., SEIFERT R., BURCH M., WEISKOPF D.: Bi-
cluster viewer: a visualization tool for analyzing gene expression data.
Advances in Visual Computing (2011), 641–652. 2, 3, 10

[HSS15] HADLAK S., SCHUMANN H., SCHULZ H.-J.: A survey of
multi-faceted graph visualization. In Eurographics Conference on Vi-
sualization (EuroVis). (2015), pp. 1–20. 3

[HVW09] HOLTEN D., VAN WIJK J. J.: Force-directed edge bundling
for graph visualization. In Computer Graphics Forum (2009), vol. 28,
pp. 983–990. 6

[JHGH08] JIA Y., HOBEROCK J., GARLAND M., HART J.: On the visu-
alization of social and other scale-free networks. IEEE transactions on
visualization and computer graphics 14, 6 (2008), 1285–1292. 3

[LF06] LESKOVEC J., FALOUTSOS C.: Sampling from large graphs.
In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining (2006), pp. 631–636. 3

[LPS∗06] LEE B., PLAISANT C., SIMS C., FEKETE J.-D., HENRY N.:
Task taxonomy for graph visualization. In BELIV ’06: Proceedings
of the 2006 AVI workshop on BEyond time and errors (Venezia, Italy,
May 2006), ACM, ACM, pp. 1–5. URL: https://hal.inria.fr/
hal-00851754, doi:10.1145/1168149.1168168. 4

[LSYKK16] LEMIRE D., SSI-YAN-KAI G., KASER O.: Consistently
faster and smaller compressed bitmaps with roaring. Software: Practice
and Experience 46, 11 (2016), 1547–1569. 2, 5, 8

[MAH∗12] MARTINS R. M., ANDERY G. F., HEBERLE H.,
PAULOVICH F. V., DE ANDRADE LOPES A., PEDRINI H., MINGHIM
R.: Multidimensional projections for visual analysis of social networks.
Journal of Computer Science and Technology 27 (2012), 791–810. 3

[MCZ∗17] MING Y., CAO S., ZHANG R., LI Z., CHEN Y., SONG Y.,
QU H.: Understanding hidden memories of recurrent neural networks.
arXiv preprint arXiv:1710.10777 (2017). 3, 10

[MHG10] MCCANDLESS M., HATCHER E., GOSPODNETIC O.: Lucene
in Action: Covers Apache Lucene 3.0. Manning Publications Co., 2010.
5

[ML14] MUJA M., LOWE D.: Scalable nearest neighbor algorithms for
high dimensional data. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 36, 11 (2014), 2227–2240. 6, 8

[MO04] MADEIRA S. C., OLIVEIRA A. L.: Biclustering algorithms for
biological data analysis: a survey. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics (TCBB) 1, 1 (2004), 24–45. 2, 3

[MPG∗14] MÜHLBACHER T., PIRINGER H., GRATZL S., SEDLMAIR
M., STREIT M.: Opening the black box: Strategies for increased user
involvement in existing algorithm implementations. IEEE Transactions
on Visualization and Computer Graphics 20, 12 (2014), 1643–1652. 8

[OKHC14] OGHABIAN A., KILPINEN S., HAUTANIEMI S., CZEIZLER
E.: Biclustering methods: biological relevance and application in gene
expression analysis. PloS one 9, 3 (2014), e90801. 2, 3

[Pez17] PEZZOTTI N.: High dimensional inspector,
2017. URL: https://github.com/Nicola17/
High-Dimensional-Inspector. 6, 8

[PGAR15] PONTES B., GIRÁLDEZ R., AGUILAR-RUIZ J. S.: Biclus-
tering on expression data: A review. Journal of biomedical informatics
57 (2015), 163–180. 2, 3

[PHL∗16] PEZZOTTI N., HÖLLT T., LELIEVELDT B., EISEMANN E.,
VILANOVA A.: Hierarchical stochastic neighbor embedding. In Com-
puter Graphics Forum (2016), vol. 35, pp. 21–30. 2, 4, 6, 8

[PLvdM∗16] PEZZOTTI N., LELIEVELDT B., VAN DER MAATEN L.,
HOLLT T., EISEMANN E., VILANOVA A.: Approximated and user
steerable tsne for progressive visual analytics. IEEE Transactions on
Visualization and Computer Graphics PP, 99 (2016), 1–1. 8

[RC67] ROBINSON A. H., CHERRY C.: Results of a prototype television
bandwidth compression scheme. Proceedings of the IEEE 55, 3 (1967),
356–364. 4, 5

[SGL08] STASKO J., GÖRG C., LIU Z.: Jigsaw: supporting investigative
analysis through interactive visualization. Information visualization 7, 2
(2008), 118–132. 3

[Tam07] TAMASSIA R.: Handbook of Graph Drawing and Visualization
(Discrete Mathematics and Its Applications). Chapman & Hall/CRC,
2007. 3

[TLZM16] TANG J., LIU J., ZHANG M., MEI Q.: Visualizing large-
scale and high-dimensional data. In Proceedings of the 25th Interna-
tional Conference on World Wide Web (2016), pp. 287–297. 4

[vdMH08] VAN DER MAATEN L., HINTON G.: Visualizing data using
t-SNE. Journal of Machine Learning Research 9, 2579-2605 (2008), 85.
2, 7

[VLKS∗11] VON LANDESBERGER T., KUIJPER A., SCHRECK T.,
KOHLHAMMER J., VAN WIJK J. J., FEKETE J.-D., FELLNER D. W.:
Visual analysis of large graphs: state-of-the-art and future research chal-
lenges. In Computer Graphics Forum (2011), vol. 30, pp. 1719–1749. 1,
2, 3

c© 2018 The Author(s)

https://hal.inria.fr/hal-00851754
https://hal.inria.fr/hal-00851754
http://dx.doi.org/10.1145/1168149.1168168
https://github.com/Nicola17/High-Dimensional-Inspector
https://github.com/Nicola17/High-Dimensional-Inspector

12 Pezzotti et al. / WAOW-Vis

[XCQS16] XU P., CAO N., QU H., STASKO J.: Interactive visual co-
cluster analysis of bipartite graphs. In Pacific Visualization Symposium
(PacificVis) (2016), IEEE, pp. 32–39. 3

[ZXW∗16] ZAHARIA M., XIN R. S., WENDELL P., DAS T., ARM-
BRUST M., DAVE A., MENG X., ROSEN J., VENKATARAMAN S.,
FRANKLIN M. J., ET AL.: Apache spark: A unified engine for big data
processing. Communications of the ACM 59, 11 (2016), 56–65. 5

[ZXYQ13] ZHOU H., XU P., YUAN X., QU H.: Edge bundling in in-
formation visualization. Tsinghua Science and Technology 18, 2 (2013),
145–156. 3

c© 2018 The Author(s)

