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Abstract

Echo state networks (ESN) are recurrent neural networks where the hidden layer is replaced with a 

fixed reservoir of neurons. Unlike feed-forward networks, neuron training in ESN is restricted to 

the output neurons alone thereby providing a computational advantage. We demonstrate the use of 

such ESNs in our mutual connectivity analysis (MCA) framework for recovering the primary 

motor cortex network associated with hand movement from resting state functional MRI (fMRI) 

data. Such a framework consists of two steps - (1) defining a pair-wise affinity matrix between 

different pixel time series within the brain to characterize network activity and (2) recovering 

network components from the affinity matrix with non-metric clustering. Here, ESNs are used to 

evaluate pair-wise cross-estimation performance between pixel time series to create the affinity 

matrix, which is subsequently subject to non-metric clustering with the Louvain method. For 

comparison, the ground truth of the motor cortex network structure is established with a task-

based fMRI sequence. Overlap between the primary motor cortex network recovered with our 

model free MCA approach and the ground truth was measured with the Dice coefficient. Our 

results show that network recovery with our proposed MCA approach is in close agreement with 

the ground truth. Such network recovery is achieved without requiring low-pass filtering of the 

time series ensembles prior to analysis, an fMRI preprocessing step that has courted controversy in 

recent years. Thus, we conclude our MCA framework can allow recovery and visualization of the 

underlying functionally connected networks in the brain on resting state fMRI.
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1. INTRODUCTION

There has been significant growth in research aimed at exploring functional connectivity in 

the human brain at fine-grained spatial and temporal resolution scales, based on the 

acquisition capabilities provided by the most advanced contemporary in vivo neuro-imaging 

techniques, such as state-of-the-art fMRI [1]. Here, several analytic techniques such as seed-

based functional connectivity analysis [2], principal component analysis (PCA) [3] 

independent component analysis (ICA) [4], Granger causality [5] etc. include assumptions 

of linearity or implicit time-series separability, which can obscure the characteristics of the 

complex system being investigated. Another drawback with such approaches is the 

transformation of the original high-dimensional imaging data into simpler lower-dimension 

representations, which further limits the interpretability of the results obtained from brain 

connectivity analysis.

We have previously proposed a computational framework involving non-linear mutual 

connectivity analysis [6] for recovering functionally connected networks in the brain from 

resting state fMRI data which circumvents the pitfalls of previously mentioned technique. 

Our approach involves network identification through large scale, model free, non-linear 

pair-wise cross-estimation [6] of fMRI time series followed by functional network 

identification through partitioning of the resulting affinity matrix with non-metric clustering. 

In this contribution, we explore the use of echo state networks (ESN) for constructing the 

pair-wise affinity matrix through evaluation of cross-estimation performance between pairs 

of pixel time series ensembles. Echo state networks (ESN) are recurrent neural networks 

where the hidden layer is replaced with a fixed reservoir of neurons [7]. Unlike feed-forward 

networks, neuron training in ESN is restricted to the output neurons alone thereby providing 

a computational advantage, which can be realized when applied to non-linear, dynamic 

systems such as functional networks in the human brain. The affinity matrix computed with 

these ESNs is then decomposed into the underlying network components through non-metric 

clustering with the Louvain method [8] for network recovery.

We demonstrate the applicability of our MCA framework to identifying and visualizing 

regions of the primary motor cortex network through analysis of resting-state fMRI data. It 

has been previously shown that frequency fluctuations (< 0.1 Hz) from regions of the motor 

cortex associated with hand movement are strongly correlated both within and across 

hemispheres [2]. We explore non-linear connectivity in time series ensembles from different 

regions of the primary motor cortex associated with hand movement, as discussed in the 

following sections. This work is embedded in our group’s endeavor to expedite ‘big data’ 

analysis in biomedical imaging by means of advanced pattern recognition and machine 

learning methods for computational radiology, e.g. [9–39].

2. DATA

Functional MRI data was acquired using a 1.5T GE SIGNA™ whole-body MRI scanner 

(GE, Milwaukee, WI, USA) from a cohort of four healthy subjects aged between 25 to 28 

years (3 males and 1 female). Two fMRI sequences were performed on all subjects, one 

under resting-state conditions and the other involving a finger-tapping task that stimulated 
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the primary motor cortex. The purpose of the task sequence was to enable localization of the 

left motor cortex (LMC), right motor cortex (RMC) and the supplementary motor area 

(SMA) regions of the primary motor cortex network, which served as ground truth. All 

fMRI (EPI-BOLD) sequences were acquired using TE = 40ms, TR = 500ms, and FA = 90°. 

512 fMRI scans were acquired from two slice locations that corresponded to the motor 

cortex; each image had a slice thickness of 10 mm and an in-plane pixel resolution of 3.75 

mm x 3.75 mm. The first 24 time points of fMRI data were discarded to avoid any impact on 

the data analysis by initial saturation effects.

3. METHODS

3.1 Preprocessing fMRI data

Registration of the fMRI time series was performed to compensate for motion artifacts. 

Subsequent linear de-trending eliminated signal drifts caused during acquisition. We 

specifically note that our pre-processing of resting state fMRI data does not include low-pass 

filtering at a cut-off frequency of 0.08 Hz, a step that has attracted controversy in recent 

years [40]. Finally, the time-courses were further normalized to zero mean and unit standard 

deviation to focus on signal dynamics rather than amplitude [41]

3.2 Pair-wise affinity matrix computation with ESN

Our first step is to build a pair-wise affinity/similarity matrix A for all time series from the 

brain on a single fMRI slice. The similarity measure used in this study is based on cross-

estimation performance. Given N pixels, the pair-wise affinity between two pixel time series 

x and y (where x = (x(1),…,x(t)), and y = (y(1),…,y(t))) describes the degree of their 

dynamic coupling as a measure of how well one can estimate y given x. For this purpose, we 

use ESNs as previously described in [7]. Briefly, ESNs are recurrent neural networks that 

have a reservoir of M sparsely connected neurons whose weights are randomly assigned, 

fixed and do not require any training and a set of output neurons that are trained such that 

the error between response of the network and desired value is minimum [7]. During the 

training phase of the ESN, this reservoir of neurons is driven by the training subset of x, i.e. 

xTR, the state of the neurons in the reservoir is given by U, and the training subset of the 

desired target yTR and reservoir output is linearly combined with a set of output neurons to 

produce the final ESN output. The output weights are selected such that the ESN output best 

replicates yTR. During the test phase, the test subset of x, i.e. xT, now drives the ESN and 

produces an estimate of yT, i.e. ŷT. Now, the entry AX,Y of the affinity matrix is chosen as 

the Pearson correlation coefficient computed between ŷT and yT.

The number of output neurons is N, and the number of input neurons is set to 2, namely one 

for the time series x and the other for the bias term [42]. We design the ESN network to 

predict N of the time series Y = {y1,…,yN} where, yn = (yn(1),…,yn(t)) independently of 

each other, where n = 1,…,N. Using one time series, ESNs can be applied with the 

underlying assumption that the output can in fact be estimated from the given input. For the 

given fMRI data, a small reservoir is used to prevent over-fitting. In this study, we use a 

reservoir of 35 neurons, with output feedback. Smaller reservoirs could not be used owing to 

their inability to keep up with the abrupt, high frequency changes in the time series. We used 
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60 percent of the time series for training and the remaining 40 percent for testing. We used 

non-spiking, leaky integrator neurons and output feedback with a scaling factor of 0.2. 

Leaky integrator neurons [43] are used when the network should have memory in order to 

model continuously changing dynamics. Here, the amount by which the previous state 

influences the current state is given by the leakage parameter a, see equation (2) below.

The state update equations are as follows –

(1)

(2)

where Win is the input weight matrix with dimension M x 2, W is an M x M reservoir 

weight matrix and Wback is an M x N output weight matrix, y(t) = (y1(t),…yN(t)) and u(t) = 

(u1(t),… uM(t)). The notation [ : ] represents the concatenation of the input and the bias. The 

function f = (f1,…,fN) is the activation function of the reservoir neurons, u(t) is the current 

state of the reservoir neurons, b(t) is the bias term, and a the leakage rate; when a = 1, u(t) = 

ù(t), and the system has no memory. When a = 0, u(t) = u(t-1), which means that the state of 

the system does not change. The parameter a can be varied between 0 and 1, and finally,

(3)

where Wout is the output matrix, which is of dimension N x (M + 2). The function fout is the 

activation function of the output neurons. The notation [ : : ] represents the concatenation of 

the input, bias, and reservoir states. As such, the output can be computed from the input and 

the reservoir states.

3.3 Louvain method for non-metric clustering

From the affinity matrix A we find the network structure using non-metric clustering such as 

Louvain method [8]. The Louvain method aims to find high modularity clusters in networks, 

where modularity is the measure of the quality of a partition of the network into different 

clusters. Thus, a complex network is decomposed into clusters with strong intra-community 

links and weak inter-community links. Modularity is given by:

(4)

where Aij is the weight that represents the similarity between nodes i and j,
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(5)

is the sum of weights in Aij that are attached to vertex i, i is in community Ci, δ(u,v) = 1 

when u = v, and 0 otherwise, and

(6)

Thus, a complex network, such as the brain, is decomposed into clusters, which are 

functionally connected networks in the brain, with strong intra-community links and weak 

inter-community links. The maximum modularity is obtained by an iterative process during 

which different nodes of the network are merged into larger communities if the modularity is 

improved as a consequence. The process is stopped when no further improvement in 

modularity can be achieved. Further details to the Louvain method can be found in [8].

Applying Louvain clustering on the affinity matrix A results in large and improper clusters. 

This could be due to the fact that even ‘noise’ is considered as weak connections when 

clustering. In order to avoid this, we use an approach frequently applied in spectral 

clustering [44] to make the affinity matrix sparser. Specifically, we only consider the k most 

similar nodes for any given node i. In this study we have also investigated the effect of using 

different percentages of the nearest neighbors. The clustering results obtained by our 

methods are evaluated against the ground truth using the Dice coefficient [45].

All procedures were implemented using MATLAB 8.1 (MathWorks Inc., Natick, MA, 

2013). The Louvain method implementation was taken from [46] and echo state network 

from [47].

4. RESULTS

The behavior of the ESN during the training and testing phase is demonstrated for an 

example pair of time series in Figure 1. During the training phase, the output weights of the 

ESN are optimized for maximum resemblance between the desired and actual output. As 

expected, when the training portion of the time series is used as input for the trained ESN, 

the produced output is quite similar to the desired output (here, the training portion of the 

second time series), as seen in Figure 1 (left pane). However, during the test phase, greater 

differences between the desired and actual output of the trained ESN are noted, as expected.

Figure 2 shows the results of the primary motor cortex network recovery with the Louvain 

method along with the ground truth. The Dice coefficient between the ground truth and the 

results achieved with our MCA approach was 0.59. The results show clear visualization of 

the LMC, RMC and SMA regions.

Table 1 enumerates the results obtained for the different subjects using our analysis. The 

highest dice coefficient obtained is 0.55.
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5. NEW AND BREAKTHROUGH WORK

We present a computational framework for analysis of functional connectivity in the brain 

from resting state fMRI data for purposes of recovering the underlying network structure 

while avoiding information loss-inducing assumptions such as linearity, implicit time series 

separability etc. To this end, we propose to use non-linear mutual connectivity analysis 

(MCA) to evaluate the pair-wise cross-estimation/prediction quality between resting state 

fMRI time series acquired from the brain. Our results, as demonstrated with the primary 

motor cortex network in Figure 2, suggest that such a computational framework can also 

reveal valuable information concerning the underlying network structure. In this 

contribution, we specifically focus on the use of ESNs [7] for evaluating cross-estimation 

capabilities between fMRI pixel time series while constructing the pair-wise affinity matrix. 

In addition, using ESN, where training is restricted to the output neurons, provides a huge 

computational advantage as compared to using feed-forward networks. Our results suggest 

that such ESNs are more robust to the high frequency components in such resting state fMRI 

data and allow for network recovery without requiring prior low-pass filtering of the data, 

which has been a source of controversy in the literature [40].

6. CONCLUSION

We present an MCA framework for analysis of functional connectivity in the brain from 

resting state fMRI data, using ESNs to establish network connectivity through pair-wise 

cross-estimation performance of time series, and non-metric clustering with the Louvain 

method to recover network structure. The results observed in our study demonstrates that our 

methodology constitutes a model-free approach to recovering the network structure of the 

primary motor cortex, where its robustness to high frequency components in fMRI data 

suggests that prior low-pass filtering is not required for this task.

This work is not being and has not been submitted for publication or presentation elsewhere.
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Figure 1. 
Top Left: Portion of a sample time series used for training the ESN; Bottom Left: Output of 

trained ESN for the input shown in top left pane; the actual output is shown in blue while the 

expected output is shown in red; Top Right: Remainder of the same sample time series used 

for testing the ESN; Bottom Right: Output of trained ESN for the input shown in the top 

right pane; the actual output is shown in blue while the expected output is shown in red.
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Figure 2. 
Comparison of ground truth (left) and results of our model free MCA approach (right), in 

recovering and visualizing regions of the primary motor cortex (highlighted in red). As seen 

here, our MCA approach is able to recover the primary motor cortex network with close 

similarity to the ground truth.
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Table 1

Dice coefficients (Mean ± Standard deviation) achieved for the different patients over 10 iterations of the 

algorithm. The best result overall is highlighted in bold. Here the number k of most similar nodes to a given 

node is chosen as 2%.

Subject Number Slice Number Dice Coefficient

1 1 0.44 ± 0.083

2 0.55 ± 0.067

2 1 0.44 ± 0.04

2 0.32 ± 0.089

3 1 0.51 ± 0.028

2 0.31 ± 0.045

4 1 0.28 ± 0.029

2 0.25 ± 0.062
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