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Abstract. A set theoretic approach for the spectral characterization
of a color scanner is described. These devices usually employ three
channels to obtain a device dependent RGB (red, green, blue) im-
age. To display/print an image, the device dependent RGB values
must be correctly transformed to the color space of the target de-
vice. To determine accurate and efficient transformations for a num-
ber of devices, knowledge of the spectral sensitivity of the scanner
is essential. Direct measurement of the sensitivity requires a set of
expensive narrow band reflectances and is often infeasible. Meth-
ods that estimate the spectral sensitivity based on measurements
with typical reflectance samples are therefore of interest. Due to the
low dimensionality of the space of object reflectance spectra, this is
a highly ill-conditioned problem. As a result, conventional estimation
techniques that fail to take a priori knowledge into account perform
rather poorly on this problem. A set theoretic approach that incorpo-
rates available a priori knowledge into the estimation framework
yields better results. Results are presented for a simulated scanner
characterization problem and for an actual characterization to dem-
onstrate the increased accuracy compared with conventional
methods. © 1996 SPIE and IS&T.

1 Introduction

has received only limited attentidn’® The spectral char-
acterization can be used to determine the optimal transfor-
mation of the color data into the output device spate
instead of the suboptimal two-step procedure involving the
transformation to an intermediate device independent color
space. The spectral characterization can also be used for
estimating dye sensitivities from scans of photographic
prints® and in more general color separation applications
aimed at high quality color hardcopy. It is also of indepen-
dent interest in gauging the colorimetric quality of the
scannet* at the user’s end and can form the basis of hard-
ware improvements in the scanner.

2 Scanner Model

The output of a color scanner is a three-band image, typi-
cally in red, green and blue channels. Assuming that the
scanner sensors are linear and that the spatial response of
the scanner is the ideal 2-D impulse functfaiiie scanning
process can be modeled as

With increasing exchange of image data between different
platforms, there has been a rising interest in transforma-
tions that translate color data obtained on one device into % _
the native color space of another device with minimal deg- t(')ZJ fi(N) OO ()N dh+ !
radation in color. To this end, attempts are underway to

standardize the mechanisms for specifying these transfor- % .
mations and for their inclusion in standard image formats =J mM)r(M)INdN+eD, 1=1,2,3, (1)
as device profile8.The creation of profiles for color scan- *
ners requires a characterization of these devices. Calibra-
tion schemes that attempt to transform the scanner data into

a standardized device independent color space have beefinerefi(x), f2(X), andfs(r) are the spectral transmit-

problem of estimating the spectral sensitivity of the scannerthe detector used in the measuremehs) is the spectral
radiance of the illuminant;(\) is the spectral reflectance

of the area being scannee!’ is the measurement noise,

*Current affiliation: Digital Imaging Technology Center, Xerox Corp., 800 Phillips m;(\)=Tf;(\) 6(\) is the product of filter transmittance and

Rd., Webster, NY 14580. E-mail: sharma@wrc.xerox.com. detector sensitivity, and® denotes the value obtained
from thei’th channel.

— o0

For the purposes of this paper the knowledge of color standards and terminology is
not required. The interested reader can, however, refer to Ref. 1 for a tutorial
introduction to color signal processing.

1. . .
Paper 95-039 received Dec. 4, 1995; revised manuscript received May 3, 1996;  The problem of determining the spatial response can be separated from

accepted for publication May 9, 1996.
1017-9909/96/$6.00 © 1996 SPIE and IS&T.

that of estimating the spectral sensitivity by using reasonable large color
patches for the spectral characterization.
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If the spectra are all band-limited, they can be repre- ()= T| m + ¢ =123 (3)
. R . k k i ’ 1699
sented in terms of their samples, and the integral can then
be approximated by a summation. If sampleNaéquis-  This set of equations can be written as,
paced wavelengths are used, the scanning process can be
represented algebraically as tO=RTLm;+ € (4)

D= TLm+ e j= . - o
th=rlm+e?, =123, 2 where t{), =[t{) t§ . t{]7 is the vector of measure-

ments from thda’th channel, andR=[rq,r,...r¢] is the
matrix of reflectance spectra used in the measurements.
The problem of obtaining spectral characterization of the

tor of | ¢ th duct of thiéh filter © i scanner is now one of estimatifgm;}>_, from the mea-
vector of sampies of the product o Hertransmit-— syrement vectorgt™,t®,t®)}. It is shown in Section 5

tance and the detector sensitivity. . . . .
Reflectances encountered in scanned images are typit_hat an independent and direct measurement of the illumi-

15-17 nant improves the final estimates of the sensitivity consid-
cally smoo_th fungtpn’é . Of. wavglength aletiel b? erably. This can often be accomplished without much dif-
sampled with negligible aliasing using a 10-nm sampling

; : . ] ) ficulty. For fluorescent lamps, a technique for obtaining the
interval. The same is true of transmittances of typical filters Y P a 9

decomposition of Eq(23) of Appendix A from measure-

used in color scanners, detector sensitivities and mcandesfnents made with band-limited sensors has been demon-

cent lamp spectra. However, a 10-nm sampling interval is grated in Ref. 20.

inadequate for fluorescent lamps which have sharp emis-  The sensitivity estimation is considered for two indepen-

. . . . 19 . X . . . . .
sion lines in their spectrd:*® A much smaller sampling  gent cases: the first in which the illuminant spectrum is
interval could be used in Ed2), but this leads to a large  055red and knowa priori so that{m;}?_, needs to be
increase in the dimensionality of the problem with the at- stimated. and the second in which Itﬁérle is angriori

tendant_dlsadvgnta}ges of I_arger computathn_al Ioad_ anoEnowledge about the illuminant and the illuminant sensitiv-
greater ill-conditioning. For instance, if the visible region . 3 . oo
from 380 to 780 nm is used, a 10-nm sampling interval ity products{Lmi}_, are_tc_J be estlmated. qu a “r."f'ed
leads toN=41 samples whereas a 2-nm samplifrg- treatment of both cases, it is convenient to write &j.in
i : the form
quired for the accurate representation of a fluorescent)lamp
would raise the dimensionality of the problemNo=201. £
Fluorescent lamps are often used in desktop scanners on
account of their higher efficiency and lower heat dissipation . . . .
compared with incandescent lamps. Hence, the problem ofVNere s=Lmi, W=R if the l||Umln6Tlnt spectrum is not
increased dimensionalitidue to a high sampling ratés knowna priori ands=m;, andW=L 'R if the illuminant
frequently encountered in practice. As a remedy for the Spectrum is knowra priori. Thus in either caséyV repre-
high sampling rate, it is possible to use a decomposition forsents the known information ar{g}?_, represent the un-
fluorescent illuminant spectrum in terms of the smooth known quantities to be estimated. Note here that the same
spectrum emitted by the phosphor coating on the lamp en-framework can be used when the scanner has a fluorescent
velope, and monochromatic spectral peaks correspondindamp and knowledge of the illuminant is limited to the lo-
to the emission lines of the gaseous vapor in the 1Amf: cation of the spectral peaks. Appendix B provides the de-
Appendix A describes the mechanism for incorporating the tails for this case.
illuminant decomposition into the scanner model. The re-  The vectors(s;,s;,s;} need to be estimated for charac-
sulting scanner model in E426) of Appendix A has the terizing the scanner. Since the correlation between the dif-
same form as Eq2) except that the illuminant matrik is ferent channel sensitivities is not known, the only tech-
replaced by the effective illuminant mati , which is not niques considered here will be those which use only the
necessarily diagonal. Therefore, in the subsequent discusvectort() to estimates . It will therefore be notationally
sion, Eq.(2) is used with the understanding that if the illu- efficient to consider the estimation of the sensitivify
minant is a fluorescent lamp, either a high sampling rate isgiven the measurements
used(2 nm in our discussion, which yieldd=201) or
L, replaces.. tex1=W'ste, (6)
The spectral response of the scanner is given by the
illuminant sensitivity product$Lmi}i3:1 for the three chan-  with the understanding that the estimation procedure is per-
nels. For initial calibration, the individual quantities can be formed independently for the three channels.
measured before assembly, and the scanner sensitivity com-
puted from those. However, such a calibration would dete- o _
riorate with time due to the aging of the componeitin 3 Least Squares and Principal Eigenvector
addition, this calibration would represent a significant ex- Solutions
pense for these low cost devices and is rarely done. For am simple procedure to estimate the scanner sensitivity
in situ characterization of the scanner, one has to estimateyould be to solve the least-squares problem
the sensitivities by using the scanner measurements for a
target comprised of samples with known reflectance specs=arg mirjjt—WTy||, 7

tra, {rihi1, y

wherer is theNX 1 vector of reflectance samplds,is an
N XN diagonal matrix with samples of the radiant spectrum
of the illuminant along the diagonal, and; is anNX1

=WTs+€", i=1,23, (5)
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where the minimization is performed over all possible
NXx1 vectors, andW is computed fromR as indicated
earlier.

The solution to this problem is readily obtained in terms
of the Moore-Penrose pseudoinvef3é? In terms of the
singular value decompositiéh (SVD), W=UAV', the
least-squares solution can be written as

(vit)

T

P
8=2, U, ®)

i=1
where P [<min(K,N)] is the rank ofW; {o;}[_, are the
nonzero singular values &V (in decreasing ordgr and
{u}N; and{v;})\, are the columns ob) andV, respec-
tively (the left and right singular vectors dY).

The least-squares approach suffers from a serious prac
tical problem in that the spectra of natural objects do not
have sufficient dimensionality to yield a good estimate of
s. If the noise is assumed to be white, the mean square
estimation error for least squares is given by,

N

Ells-3%= 3y

=P+1

(€)

|q
Nl o

=]
+2
i=1

o

where E denotes the expectation operator, aﬂijis the
noise variance. Typically, the matrix of reflectance spectra
R is highly ill-conditioned and has only seven to eight sig-
nificant singular value®?° As a result, even at low levels
of noise the higher order singular values \&f are small
compared withcri, and the second summation in K@) is
large. Therefore, the least-squares solution is highly sensi

spectral sensitivity at noise levels typical in desktop scan-
ners.

The sensitivity of the least-squares solution to noise is
greatly reduced if only the singular vectors corresponding
to the significant singular values are used in the solution,
i.e., if the singular vectors; for which o is small are not
included in the solution. If the singular values beyond

. : X ; i
tive to noise and yields extremely poor estimates of thef

scanner characterization

W=LR will also have sharp peaks and will yield estimates
of {sj}f:1 that have sharp spectral peaks. On the other
hand, if the illuminant is a fluorescent lamp whose spec-
trum is not known, the functiongs; = Lmj}j?’=l have sharp
spectral peaks, but for typical reflectance samples the prin-
cipal eigenvectors oW=R will be smooth and therefore
yield only smooth estimates eﬁ‘sj}f:l. In addition to this
knowledge of smoothness/impulsiveness, otg@riori in-
formation such as non-negativity of the sensitivity func-
tions and boundedness can be incorporated in a set theo-
retic estimaté® Based on each constraint that the scanner
sensitivity must satisfy, a set can be defined in which the
true value of the sensitivity must lie. Any element in the
intersection of the constraint sets is then a feasible solution
and can be used as an estimate of the sensitivity. If only
closed convex constraint sets are used, a point in the inter-
section can be determined by projecting onto the sets in
cyclic order starting from an arbitrary point iRN. This is

0the well-known method of successive projections onto con-

vex seté®?°(POCS. If one hasn constraint sets, the POCS
estimate is the limit of the sequendg,} defined recur-
sively by,

Yi+1=Pn(Pr-1( ... Pa(P1(yi) .. .)), (11)

wherey, is an arbitrary starting point, ané;(z) denotes
the projection ofz onto thei’th constraint set, defined as
the vector in thd'th constraint set closest tn The itera-
tive process of successive projections is guaranteed to con-
verge to a point in the intersection, provided the intersec-
on is nonempty’>3® The same convergence result holds
or several variants of the basic method that use relaxation/
parallelization to speed up convergerite.

Based on the physical nature of the problem and the
measurement model, it can be said that the following con-
straint sets can be used for the sensitivity funcson

1. The set of non-negative vectors

op, are considered insignificant, the estimate of the sensi- A={yeRN| y;=0, Vis<i=N}. (12)
tivity becomes
- (th) 2. The noise variance set
=2 —— (10 A=lye RN [[t=WTy|=»}, (13
1= i

This solution, referred to as the principal eigenved®E)
solution®2426:27js far less sensitive to noise than the least-
squares solution and is tested in Section 5.

4 Method of Projections onto Convex Sets

While the PE method is less sensitive to noise than the
least-squares solution, it still fails to take into account the
considerable priori knowledge available from the physi-
cal situation. For instance, except for the illuminant, the
scanner sensitivity is a smooth function of wavelength.
Hence if the illuminant is known, the functions
{s,:mj}f:l are smooth. However, if the illuminant has
sharp peaks in its spectrum, the principal eigenvectors of

where the upper bound is determined from the sta-
tistics of the noise to ensure a reasonable confidence
level* If the noise is assumed Gaussidt, WTy||2

is a chi-squared random variable wikh degrees of
freedom. UsuallyK is large enough for the central
limit theorem to apply and in that case, the 95% con-
fidence level is attained f&#33

_ 2

v=Ko? (14)

*A confidence interval would typically involve both a lower and an upper

bound, but in practice the other constraints ensure that the residual en-
ergy lies above the lower bound.
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where limy o5 is the 95% confidence limit for the
standard normal distribution, and is the noise vari-
ance.

. The noise outlier sets
A=lyeRN [t—wlyl<& i=12,.. K, (15

wherew; is thei’th column of W and é~3 o, en-
sures a 99% confidence level for Gaussian noise.

. The passive response set
A={ye RN y;<1, V1s<i<Nj} (16)

can be used if the illuminant is knowan priori, and

the combined effect of the passive filter and detector
responses is to be determined. Even if the illuminant
is unknown or known only up to a constant scale

whereH denotes the Laplacian filtdrz]; denotes the
i'th component of the vectoz, and.” is the set of
indices that defines the wavelength range over which
the sensitivity is known to be concave.

. The set of vectors close to the human visual space

(HVS) can be used if it is known that the scanner
sensitivities were designed to approximate color mix-
ture curves, i.e., close to linear transformations of the
CIE color matching function® The corresponding
set can be defined as,

An={ye R [(1-P,)yl?><k}, (19

where P, denotes the orthogonal projection matrix
that projects onto the H\V'$3" and the upper bound

x is determined by the closeness of the sensitivity to
the HVS.

factor, the physical situation typically provides us an

upper bound of the form in Eq16). This bound can It can be readily verified that each of the constraint sets
still be used though it may not be too tight. More just defined is convex and closed. The projection operators
useful bounds can be established in terms of possiblefor these constraint sets can be calculated using standard
deviations from a measured prototyffefhese would  nonlinear programming techniqisand are tabulated in
vary over the wavelength range unlike the uniform Appendix C.

bound of Eq.(16). The POCS estimate is typically nonunique and depends

5. A smoothness constraint set can be used when then the initial pointy, chosen to start the iterations. Typi-
sensitivities{s}f’:l are known to be smooth functions cally the converged solution is close to the initial point
of wavelength. The set of smooth spectra can be de-chosen to commence the iteraticfisThe global conver-
fined in terms of an upper bound on the energy in a 9€Nce guaranteed by POCS can be used to incorporate im-
high-pass filtered output precisea priori information into the estimation through a

proper choice of the initial estimate. The estimate to which
As={y e RN [[Hy|*< u}, (17

POCS converges may be appropriately perturbed to incor-
porate information not captured in the POCS framework,
whereH represents the convolution operator for the and the algorithm repeated to obtain estimates that agree
high-pass filter with impulse response?’ and  better with the new information. A “more” unimodal esti-
1=0 is chosen so as to impose the desired degree ofnate can be obtained, for example, by repeating POCS
smoothness. The filtdr can be chosen in a number Commencing with the concave hull of the original estimate.
of different ways depending on the nature of the
knowledge that is available regarding the smooth-
ness. If an absolute bandlimit is known, a perfect ) .
high-pass filter can be chosen wjgh=0. Alternately, ~ > Simulation Results
if it is desirable to allow some energy in the high- To compare the performance of the PE and the POCS es-
pass region, filters that approximate derivatives of timators, simulations were conducted using the scanner
different orders can be usétiPrototypes of the sen- model of Eq.(2). The WR-25 red, WR-40 green, and WR-
sitivity functions can then be used to estimate the 38a blue filters from the “Wratten” filter set were chosen
upper bound ©.34% The Laplacian filter, h  as the color filters. The detector response was assumed to
= (1,—2,1)T, which approximates the second deriva- be uniform and UV(GG400Q and IR (KG4) cutoff filters
tive operation is one possible choice for the filter in from Schott's catalog of commercial glass filtérsvere
the smoothness constraint. used to ensure that the response is restricted to the visible
6. A concave or unimodal set can be used when theregion of th_e spectrum. The spectrum ofafluorescen; Iam_p
color filters used are known to be unimodal. The set from an existing desktop scanner was gseq as the illumi-
of unimodal filters does not constitute a convex set Mant: The illuminant spectrum is shown in Fig. 1.
and therefore cannot be used in POCS. However, uni- For comparison of the different algorithms, the Kodak
modality can be enforced in practice by requiring the Q60 target’ and the Munsell chalt were used. The reflec-
estimated vector to be concave over a certain wave-t@nce spectra for the 240 blocks in the Kodak Q60 target
length range. In terms of the samples of the scanner?‘nd the 64 Munsell chips were measured independently us-
sensitivity, this restriction can be imposed by requir- iNg & spectrophotometer. A randomly chosen subset con-
ing that the Laplacian approximation to the second taining half of these, i.eiX =152 spectra, was used as the
derivative be nonpositive over a specified set of indi- calibration target. The remaining 152 reflectances were
ces. The corresponding sets can be defined as, used as a test target. Note that the nature of the results of
i N o this section does not change appreciably if a different or
A={ye R"| [Hy]i<0} ie7, (18 somewhat smaller set of reflectances is used.
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Fig. 1 Spectrum of illuminant used in simulations. Fig. 2 PE estimate; illuminant unknown case.

moothness and concavity constraint sets were not used for
OCS! The estimates for the scanner sensitivity for the
hree channels are plotted in Fig. 2 for the PE method and
in Fig. 3 for the POCS method. For comparison both fig-

. 2 . . '05%res include plots of the actual sensitivities used in gener-
variance o was calculated assuming a signal-to-noise aing the simulated measurements. The actual sensitivities
ratic* (SNR) of 33 dB in conjunction with the definition  are nonnegative functions with sharp spectral peaks. The

T2 PE estimates are smooth and have negative lobes that are
Iw's| ) physically impossible. The POCS estimates are also
K(ri '

Simulated noisy measurements of scanner RGB value
were made using the calibration target reflectances in the
model of Eq.(2), where the noise; was generated using a t
Gaussian random number generator. The value of the nois

(20 smooth, but do not have any negative lobes due to the

imposed nonnegativity constraint. Thepriori information
In the principa| eigen\/ector metho®’' =8 was used for in this case is rather limited, and hence POCS does not
this set of reflectances. perform significantly better than the PE method.

Two sets of simulations were conducted. In the first ex- N the second simulation, the illuminant spectrum was
periment no prior knowledge of the illuminant was as- assumed to be knowa priori, so that only the optical path
sumed. In the notation of Section 2, this Corresponds to thetransm|ttances needed to be eSt|mated. In the notation of
case where the estimated sensitivity is the product of theSection 2, this corresponds to the case vgth m; and
illuminant and the optical path transmittanses Lm; , and W=LR. For this case since the sensitivity is smooth and
W=R. Since the illuminant is a fluorescent lamp with unimodal, both the smoothness and concavity constraints
sharp emission lines in its radiant spectrum, the scannevere used in POCS.
sensitivity will also have sharp spectral peaks and therefore
a 2-nm sampling interval is necessary for the simulation.

This yields N=201 samples in the visible region from ' H ! ' ' . ) )
380 to 780 nm. The noisy “measurements” and the osf — Estimate 1
known matrix of target reflectance spectra were used in the i
PE and the POCS methods to obtain estimates of the scan- i
ner sensitivity. Since in this case the sensitiVityhich in- 07| 1
cludes the fluorescent illumingnts neither smooth nor i
concave over a spectral region of appreciable spread, the_.;"'e'

SNR (dB)=10 Ioglo(

gost :
]
P 0.4} 1
The SNR was arrived at by actually estimating the noise level in a com- H .k
mercial 8 bit/channel flatbed color scanner. 0.3} AN T ;
_ 0.2f -
™The nature of the results does not change if any integer between 6 and il ]
10 is used instead of 8. ) . .
0=%0 450 50 ufoo 650 700 750
*While, it is known that the sensitivity has sharp peaks this information avelongth {nm)
cannot be readily incorporated in the POCS estimation scheme on ac-
count of its nonconvex nature. Fig. 3 POCS estimate; illuminant unknown case.
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Fig. 4 PE estimate; illuminant known case, 2-nm sampling. Fig. 6 PE estimate; illuminant known case, 10-nm sampling with

illuminant model.

Two further subcases were considered in this simulationthe problem and leads to faster convergeffoe POCS
to test the effect of the illuminant model of EQJ). In the and, as shown later, more accurate estimates.
first the sampling rate of 2 nm necessary for accurate sam- The PE and POCS estimates exhibit interesting differ-
pling of the illuminant was used for the reflectance spectraences. Since the illuminant has sharp peaks in its spectrum,
and for the sensitivity, and therefore the dimensionality of the left singular vectors ofV(=LR) are not smooth. This
the problem remainetl=201. In the second subcase, the remains true even when the sampling rate of 10 nm is used
illuminant model described in Eq$24) to (27) was used  in conjunction with the illuminant model. Therefore, as
with a 10-nm sampling for the reflectance spectra and thengted in Section 4, the estimates{cs}js:l obtained by the
sensitivity, reducing the dimensionality of the problem to pg methodsee Eq.(10)] also exhibit sharp peaks. Addi-
N=41. The estimates obtained for the sensitivity functions tionally, in both cases the PE estimates of the sensitivity
of the three color channels with the 2-nm sampling are have large negative regions that are inconsistent with the
shown in Fig. 4 for the PE method and in Fig. 5 for POCS. physical nature of the sensitivity. The POCS estimates
The corresponding results for the characterization using theagree with all the constraints imposed and are therefore
illuminant model and 10-nm sampling are shown in Figs. 6 nonnegative, smooth functions with concave regions
and 7, respectively. Note that the POCS estimates for thearound the peaks. The difference in the estimates indicates
two different sampling rates are quite close and thereforethe utility of a priori information for the characterization.
validate the model. The use of the model instead of the To quantify the accuracy of the estimates, two different
higher sampling rate greatly reduces the dimensionality of error metrics were considered: the mean squared estimation

1 ¥ v
@e—_— AN
0.9l
1 0.8
0.7f
0.8 0.6
z
3
£ 505
2 3
2 0.6 ] oal
‘% K
0.4f 03r
0.2}
02f 0.1
S 0 D M 1 I SR 1 I 1
NIFA ; . . A~ . . , 400 450 500 550 600 €50 700 750
40 450 500 55 600 650 700 750 Wavelength (nm)
Wavelength (nm)
Fig. 7 POCS estimate; illuminant known case, 10-nm sampling with
Fig. 5 POCS estimate; illuminant known case, 2-nm sampling. illuminant model.
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Table 1 Mean squared estimation error of spectra for PE and the reflectance spectra used in the test is close to the corre-
POCS estimates. lation matrix of the reflectance spectra used in the PE esti-
mation procedure.

To examine this more closely, consider the case when

Mean Squared Error (dB)

Estimation Scheme Red  Green  Blue th.e illuminant is knowra priori. Let Rtestdgnote the matrix _
with the K. test reflectance spectra as its columns, and in
PE 2 nm -6.88 -954 -501 i i - '
lluminant unknown the notation of Section 2, |8V es= LR est- The MSE in
POCS2nm -1356 -9.74 -5.28 scanner RGB values is given by
_ PE2nm  —1464 -845 —6.23
llluminant known
POCS2nm —1511 -1519 -12.94 1 . ! . . )
PE10nm -1574 -10.39 -12.01 K [Wiess=Wiesd|*=1— (5 8) WiesWie( 5=95). (2D
test test

POCS 10 nm -15.47 -17.62 -—16.74

The matrix (1K) Wtesthestis the sample correlation ma-
trix for the test spectra. In the notation of Section 3 the

error and the error in predicted scanner RGB values. Forestlmatmn error for the PE method can be written as

both estimation schemes, the mean squared estimation error o

was computedfor each of the three channglas the aver- R . 1
age squared difference between the actual value and thé—S= 2 (U, S)Ui—_Z - (vieu. (22)
estimate of the sensitivity. The resulting numerical values i=P'+1 =

are presented in Table 1. From the tabulation one can see

that the performance of the PE and POCS methods is simiFor typical SNRs and appropriate choice Rf, the first

lar when the illuminant spectrum is not known and there is term is dominant and therefore the error in the PE estimate
limited prior knowledge(first two rows of Table 1L How- lies largely in the space orthogonal to that spanned by the
ever, when the illuminant spectrum is knowrpriori, the P’ principal eigenvectors d?WW'. Since the autocorrela-
performance of POCS improves radically while that of the tion matrices (1IK)WW" and (1K o) WiesWies; are close,

PE method does not. For the two subcases for the knownthe spaces spanned by their principal eigenvectors are also
illuminant case, POCS is significantly better than PE for the close, and therefore the error in the PE estimate is largely
2-nm sampling and much better for the 10-nm sampling orthogonal to  the  principal  eigenvectors  of

with the illuminant model. . (1K ) WiesWiog: Consequently the quadratic form in Eq.
For the computation of mean squared error in scanner(21) is small.
RGB values, the test target was used in the model of &qg. Unfortunately, as mentioned earlier, it is a well docu-

with the noise term set to zero. Recall that the test targetmented fact that reflectance spectra encountered in the real
was composed of the 152 reflectance spectra of the Kodakyorld can be modeled fairly accurately using a few basis
Q60 target and the Munsell chips not used in the characteryectors®1” Hence the preceding problem will persist for
ization process. Mean squared errors in scanner RGB valal| spectra that can be used in a physical experiment. MSE
ues were computed as the average squared difference bén scanner RGB values is therefore not a reliable indicator
tween the “measurements” with the actual and estimated of estimation accuracy for this problem. For simulation, the
sensitivities. These are tabulated in Table 2 for both eSti-problem could be circumvented by using a set of extremely
mation schemes, for each of the three channels. The resultaarrow-band reflectances for our test “measurements,” but
are significantly better than the estimated scanner SNR bethe results in such a case would be identical to the mean
cause of the absence of noise. However, it can be seen thajquared estimation errors already tabulated in Table 1. Un-
the difference in the mean squared er(bfSE) between  fortunately, MSE in scanner RGB values is often the only
POCS and PE is significantly smaller than would be ex- criterion available for evaluating the characterization of an
pected from the mean squared estimation errors in Table lactual scanner where the true sensitivities are not known.
The primary reason for this is that the correlation matrix for  Note also that in Ref. 7 the sensitivity of a transmissive
scanner was determined using smoothed least squares and
minimum mean squared error estimates. However, the

Table 2 Mean squared error in scanner RGB values obtained from spectral reflectances of the calibration targets considered in

the PE and POCS estimates. the simulations here are rather smooth in comparison to the
narrow-band transmission filters used in Ref. 7. Since

Mean Squared Error (dB) narrow-band interferometric reflectances are expensive and

sensitive to orientation, the targets considered here are

Estimation Scheme Red  Green  Blue more realistic and useful in a practical scenario.
_ PE 2 nm —-39.12 -47.98 -—44.79
llluminant unknown
POCS2nm —28.31 —33.24 -—43.29
uminant known PE 2 nm -48.16 -48.03 -—48.01 )
POCS2nm 4202 -4252 -4313 0 Experimental Results
PE10nm  —49.81 —47.90 -—48.90 In this section the PE and POCS methods are compared for
POCS 10 nm —-43.81 —44.22 —39.86 the characterization of an HP Scanijetlic scanner. The scan-

ner utilizes a fluorescent lamp whose relative spectral radi-
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Fig. 8 PE estimates for HP Scanjetlic. Fig. 9 POCS estimates for HP Scanjetlic.

ance was measured using a spectroradiotheterd is calibration target with the imposed constraints in POCS.
shown in Fig. 1. For the purposes of characterization the 0" this purpose, average squared differences between
knowledge of the scanner lamp was used for the POCS angcanner measurements and model predictions of scanner
the PE methods with a 10-nm sampling and the illuminant XCB values(using estimates of scanner sensitiviliegre

: computed for both estimation schemes over the test target.
th?gse ! Sgesdeﬁtrllo?hi' -gihrﬁulfz;?(?rlfngfo :ﬁég?égngégﬁol\:u\zﬁg These are tabulated in Table 3. From the tabulation it can

scanned to obtain scanner RGB measurenieAssin the be seen that the two estimates give nearly the same perfor-

simulations, half of the scanned blocks were used as a calimance as far as prediction of device tristimulus values is

bration target and the other half were used as a test target(.:oncemed' The mean squared tristimulus errors are in
For the PE methodP=6 was used as higher values gave agreement with the estimated SNR of 33 dB, which was
rise to estimates with very large negative lobes. For theusesq In th'\ﬁSPEOCS estlmatlgré%roceldurea |

POCS method, the noise variance, outlier, nonnegativity, e||l\l;lv(i:t?1 ercemtusaflartr]gzrsures o\lfacg?osr d(i)f?;renn%tec?trrr?]:te
smoothness, and local concavity constraints were used. Th%’ g th tpth : tuall i ' | Y
estimated SNR of 33 dB was used along with 95 and € argue at the efror in a perceptually uniorm color

99% confidence levels for defining the noise variance andspace such as the CIE"a*b* space®is a more relevant
the (E)utlier Sets 9 metric for comparing the estimates. Toward this end the

The estimates of the scanner sensitivity for the PE knowledge of scanner sensitivity may be used to determine

method are plotted in Fig. 8 and for the POCS method the“optimal” transformations that transform scanner RGB to

: * ok Ik 1 K
corresponding estimates are in Fig. 9. The performance o.he CIEL*a*b* space.” However, such a transformatlon
the methods is similar to that in the simulations. The PE involves error not only due to the erroneous estimates of
method yields estimates that have sharp peaks' and Iargé;canner sensitivity, but also due to the fact that the sensor
negative regions, while the POCS method yields estimated ©SPONSes are not colorimetiido not span the human vi-

that satisfy constraints imposed on the sensitivities basedt subspacg For present commercial scanners the con-
on prior knowledge. ribution due to the noncolorimetric nature dominates that

Since the true sensitivities for the scanner were not?uuae” toutnhh?orerﬁ“srngtégna?erzric):i#ei?ﬁgl, E)rrr?:z)sn:nz;?iﬁ ptehrgepe'r_
known, the mean squared estimation error could not be y P paring P

computed. As indicated in the last section, MSEs in scannerformance af the estimation scheg*nes for current lde.sktop
RGB values obtained using typical reflectance targets aresr(l:anrjeri: owev?r, ‘15 scanners eco;mra] more co prlmeltlrlc
not reliable indicators of estimation accuracy. However, the '€ Slgnificance of a better estimate of the sensitivity wi
validity of the POCS estimates can be tested by comparing"¢'¢a5€-

MSEs in scanner RGB values for a target different from the

Table 3 MSE for the tristimulus values obtained from the PE and
POCS estimates for HP Scanjetlic.

*It was observed that the scanner lamp exhibits a warm-up time during
which its spectrum undergoes a significant change. Hence, for the scanner MSE (dB)
lamp measurements and for the scans, a sufficient warm-up was allowed.

Estimate Red Green Blue
"The scanner employs an internal matrixing of the data to obtain tristimu-  pg —~33.99 ~31.82 ~32.18
lus values corresponding to the NTSC primaries. However, such a ma-
trixing would invalidate the positivity constraint that is employed in POCS —33.80 —30.88 —32.30

POCS and hence raw device data was used in this work.

486 / Journal of Electronic Imaging / October 1996 / Vol. 5(4)



Set theoretic estimation in color scanner characterization

7 Conclusions mi()\k):glmi k=1,2,...,0,
This paper investigated the use of PE and POCS estimation
methods for the problem of color scanner characterization.r()\k):gIr k=1,2,....,q,

A useful model was introduced for representing fluorescent

illuminants accurately and efficiently, which greatly re- whereg, is the vector of interpolation weights that gives
duced the dimensionality of the problem. The two methods the value af\, from the equispaced samples. Substitution
were compared through simulations and for an actual scanin Eq. (24) now yields,

ner characterization problem. The results indicate that when

significanta priori information is available, the method of q

POCS outperforms the PE method, yielding significantly tV=rTLom;+ >, a,mgeger + ¥ (25)
better estimates of the scanner sensitivities. The principal k=1

gains of the POCS method stem from the fact that it at- _

tempts to determine a smooth and continuous function de- =r'Lemi+€", =123, (26)
termining the sensitivity as opposed to the PE scheme that
estimates the samples of the sensitivity as independent pawhere
rameters. The fluorescent illuminant model plays an impor-

tant role in the problem by effectively increasing the avail- T
ablea priori information about the sensitivity. e= Lc+k21 GGk (27)

q

8 Appendix A: Model for Fluorescent Scanner is the effective illuminant matrix.

lluminant

In this appendix, an efficient decomposition for fluorescent  APpendix B: Partial Knowledge of Illuminant

illuminant spectra is described and incorporated into the ~ Cas€

scanner model. The spectral sensitivities in the resultingThis appendix demonstrates how the framework of &y.

model for the scanner’s operation have a much lower di-can be used when the the scanner has a fluorescent lamp

mensionality than the model based on a high spectral samand knowledge of the illuminant is limited to the location

pling rate. of the spectral peaks. While physically, the model of Eq.
A fluorescent lamp spectrum can be represented as th€26) of Appendix A is still valid, the effective illuminant

sum of a continuous spectrum emitted by the phosphorsmatrix L in Eq.(27) is not known, and therefore cannot be

and WEightEd impulses corresponding to the emissionused. Note, however, that E425) can be rewritten as

lines 92 tO=wWTs+€", i=1,2,3, where
q _ R _ Lcmi
100 =c0)+ 2, ardh =\ 23 W=|gR| S=|p,G'm|" (28)

whereG=[g,0, . . .gq] andD, is a diagonal matrix with
{ay}i- as the diagonal. Note that, as in Ef), W repre-
sents the known information ar{é}>_, represent the un-
known quantities to be estimated. Also observe that; is

wherec(\) is the smooth and continuouband-limited
spectrum emitted by the phosphofk, ,\, ... A4} are the
locations of theq spectral peaksyy is the strength of the
spectral line at wavelength, (emitted by the vapor in the

. X X i
lamp), and §() denotes the Dirac delta function. The an Nx1 - vector of uniformly spaced samples of

) Q(A)mi()\), and therefore in the set theoretic estimation
smooth spectrum can be represented by its samples &cheme a smoothness constraint can be imposed on the cor-
10-nm increments, thus yielding a representation of the P

whole spectrum in terms of these samples along with therespondmg components &f.

strengthq e, }4—, and the location$\}_ , of the spectral

peaks. Using this model greatly reduces the dimensionalityl0 Appendix C: Projections onto the Constraint
of the problem compared with the uniform sampling case, Sets

and the scanner E1) now becomes The projection ofz e RN onto a convex closed sét is

defined as
q

i)_,T i H- .

tO=r Lcmi+k21 am(\)r(v)+e, 1=1,23, (249 PA(z)=arg m|r1|y—z||§_ (29
yeA

whereL . is now theN XN diagonal matrix with samples of The projections onté, andA,, are trivial. For the other
the smooth part of the illuminant spectrug(\), and the  constraint sets defined above the projections for a vector
other terms are as before. outside the constraint set are summarized next.

Equation(24) can be further simplified by noting that
sincer(\) andm;(\) are band-limited, their values at the 1. Projection onto A: For z¢ A, the projection onto
peak locations can be written as interpolated values of their A, is calculated most readily using the SVD .
samples, Using the notation of Section 3 the projection is
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P
PaD=2+2, s (e, (30
(1+707)
where e=t—W'z, and the Kuhn-Tucker

parametef r is the positive root of
=]

2 T r0??

Since A, has the same form a&,, the projection
onto A, is obtained from the preceding equations by
replacingW, P, t, andv by (I-P,), 3, 0, andx,
respectively.

(vep)?

(1+ 70; ) (3Y)

2 (Vi €g)?—v=0.

2. Projection onto A : The projectiorz¢ AL onto Al is

given by*
Pa(2) =2+ yw;, (32
wherew; is thei’th column of W, and

&~ ¢

, g >
|z o7 -

77 eo £

w7 ca=¢

whereey, is thei’th component ofgy=t—W'z

3. Projection onto A: The projectionx of z¢ Ag onto

A, is given by>43
X(k _Lk) k=0,1,..N—-1 34
W= @y < O N (39

where Y(k) denotes the discrete Fourier transform
(DFT) of y and 7 is the positive root of

[Z0HME
(1T+ AHOP?

u= 0. (35

k=0

Once X(k) is known x is readily found using the
inverse DFT.

4. Projection onto A The projection ofz onto Aic is

given by

hT
X=z— h;, (36)
Thf> ™
whereh; is thei'th row of H or the (zero padded
impulse response circularly shifted-1) times.

References

1.

2
3.
4

[$2]

. InterColor Consortium,/ntercolor Profile Format, ver.

H. J. Trussell, “DSP solutions run the gamut for color systems,”
IEEE Signal Process. Mad.0(2), 8—23(1993.

3.0(June
1994 (available by anonymous ftp from ftp.fogra.grg

P. G. Engeldrum, “Color scanner colorimetric design requirements,”
Proc. SPIE1909 75-83(1993.

. P. C. Hung, “Colorimetric calibration in electronic imaging devices

using a look-up table model and interpolationd,”’Electron. Imaging
2(1), 53-61(1993.

. H. R. Kang, “Color scanner calibration,J. Imaging Sci. Technol.

36(2), 162—-170(1992.

. H. Haneishi, T. Hirao, A. Shimazu, and Y. Mikaye, “Colorimetric

precision in scanner calibration using matrices,”Rroc. 3rd IS&T/

488/ Journal of Electronic Imaging / October 1996 / Vol. 5(4)

7.

8.

13.
14.
15.
16.
17.
18.
19.

20.

21.
22.

23.

24.

26.

27.
28.
29.

30.

31.

32.

34.

35.
36.
37.
38.

40.
41.

. G. Sharma and H. J. Trussell,

. M. J. Vrhel, “Mathematical methods of color correction,

. M. J. Vrhel and H. J. Trussell,

. P. L. Combettes and H. J. Trussell,

. H.J. Trussell and M. R. Civanlar,

SID Color Imaging Conference: Color Science, Systems and Applica-
tions, pp. 106—108Nov. 1995.

W. K. Pratt and C. E. Mancill, “Spectral estimation techniques for the
spectral calibration of a color image scanneippl. Opt. 15(1),
73-79(1976.

J. E. Farrell and B. A. Wandell,
Imaging 2(3), 225-230(1993.

“Scanner linearity,J. Electron.

. H. J. Trussell and G. Sharma, “Signal processing methods in color

calibration,” in Device Independent Color Imaging, Proc. SRIE/Q
18-23(Feb. 1994.

“Characterization of scanner sensitiv-
ity,” in Proc. IS&T/SID Color Imaging Conference: Transforms and
Portability of Color, pp. 103—107Nov. 1993.

" PhD Dis-
sertation, North Carolina State Universitylay 1993.

. R. E. Burger and D. Sherman, “Producing colorimetric data from film

scanners using a spectral characterization targetPexice Indepen-
dent Color Imaging, Proc. SPIE17Q 42-52(1994).

M. A. Rodriguez and T. G. Stockham, “Producing colorimetric data
from densitometric scans,Proc. SPIE1913 413-418(1993.

P. L. Vora and H. J. Trussell, “Measure of goodness of a set of color
scanning filters,”J. Opt. Soc. Am. AQ(7), 1499-15081993.

M. J. Vrhel, R. Gershon, and L. S. lwan, “Measurement and analysis
of object reflectance spectraColor Res. Appl19(1), 4—9(1994).

D. Marimont and B. A. Wandell, “Linear models of surface and
illuminant spectra,”J. Opt. Soc. Am. A(11), 1905-19131992.

B. A. Wandell, “The synthesis and analysis of color imagd&EE
Trans. Pattern Anal. Mach. IntelPAMI-9 (1), 2—13(1987).

H. J. Trussell and M. S. Kulkarni, “Sampling and processing of color
signals,” IEEE Trans. Image ProcesS, 677—-681(Apr. 1996.

H. J. Trussell and M. Kulkarni, “Estimation of color under fluores-
cent illuminants,” inProc. IEEE Intl. Conf. Image Proc. 1994p.
1111006—1010(1999.

G. Sharma and H. J. Trussell, “Decomposition of fluorescent illumi-
nant spectra for accurate colorimetry,” Rroc. IEEE Intl. Conf. Im-
age Proc. 1994pp. 111002—-1006(Nov. 1994.

D. L. MacAdamColor Measurement: Theme and Variatio2sd ed.,
Springer-Verlag, New YorKk1981).

G. Wyszecki and W. S. Stile€olor Science: Concepts and Methods,
Quantitative Data and Formulaend ed., John Wiley & Sons, New
York (1982.

G. W. Stewartintroduction to Matrix Computations\cademic Press,
New York (1974.

G. H. Golub and C. F. Van LoaMatrix Computations2nd ed., The
Johns Hopkins University Press, Baltimqd989.

“Color correction using principal
components,”Color Res. Appl17(5), 328—338(1992.

R. Kumaresan and D. W. Tufts, “Estimating the parameters of expo-
nentially damped sinusoids and pole-zero modelling in noisEFE
Trans. Acoust. Speech Signal Proce36), 833—840(1982.

A. K. Jain,Fundamentals of Digital Image Processjrigrentice-Hall,
Englewood Cliffs, NJ1989.

P. L. Combettes, “The foundations of set theoretic estimati®mgtc.
IEEE 81(2), 182—-208(1993.

L. M. Bregman, “The method of successive projection for finding a
common point of convex sets,Dokl. Akad. Nauk. USSR623),
487-490(1965.

L. G. Gubin, B. T. Polyak, and E. T. Raik, “The method of projec-
tions for finding the common point of convex setdJSSR Comput.
Math. Phys.7(6), 1-24(1967).

A. R. De Pierro and A. N. lusem, “A parallel projection method for
finding a common point of a family of convex setsPesquisa Op-
eracion.5(1), 1-20(1985.

J. L. DevoreProbability and Statistics for Engineering and the Sci-
ences 3rd ed., Brooks/Cole Publishing, Pacific Grove, C®91).

“The use of noise properties in set
Eheorj)etic estimation,”|EEE Trans. Sig. Proc.39(7), 1630-1641
1997).

M. I. Sezan and H. J. Trussell, “Prototype image constraints for set-
theoretic image restoration,|IEEE Trans. Sig. Proc39(10), 2275—
2285(199)).

H. Stark and E. T. Olsen, “Projection-based image restoratidn,”
Opt. Soc. Am9(11), 1914-19191992.

CIE, “Colorimetry,” CIE publication 15.2, Technical report, Vienna
(1986.

J. B. Cohen, “Color and color mixture: scalar and vector fundamen-
tals,” Color Res. Appl13(1), 5-39(1988.

D. G. LuenbergerLinear and Nonlinear Programming2nd ed.,
Addison-Wesley, Reading, MAL989.

“The initial estimate in constrained
itera:;ive restoration,” inNCASSP Prog.Vol. 2, pp. 643-1648Apr.
1983.

SchottOptical Glass Filters Schott Glass Technologies, Duryea, PA.
M. Nier and M. E. Courtot, EdsStandards for Electronic Imaging
Systems, Proc. SPIER37 (199)).



Set theoretic estimation in color scanner characterization

42. G. Sharma and H. J. Trussell, “Color scanner performance trade-

offs,” Proc. SPIE2658 270—-278(1996).

43. H. J. Trussell and M. R. Civanlar, “Feasible solution in signal resto-

ration,” IEEE Trans. Acoust. Speech Signal ProcésSSP-32 201
212 (Apr. 1984.

Gaurav Sharma received a BE degree in
electronics and communication engineer-
ing from the University of Roorkee, India,
in 1990; an ME degree in electrical com-
munication engineering from the Indian In-
stitute of Science, Bangalore, India, in
1992; an MS degree in applied mathemat-
ics from North Carolina State University
(NCSU), Raleigh, in 1995; and a PhD in
electrical engineering, also from NCSU, in
1996. From 1992 through 1996 he was a
research assistant at the Center for Advanced Computing and Com-
munications in the Electrical and Computer Engineering Department
at NCSU. Since August 1996 he has been employed as a member
of the research and technical staff at Xerox Corporation’s Digital
Imaging Technology Center in Webster, New York. His current re-
search interests include signal restoration, color science, image
halftoning, and error correction coding. Dr. Sharma is a member of
Phi Kappa Phi, an associate member of Sigma Xi, and a student
member of SPIE, IEEE, and the IEEE Signal Processing Society.

N

£ |

H. Joel Trussell received a BS degree
from Georgia Tech in 1967, an MS degree
from Florida State in 1968, and a PhD de-
gree from the University of New Mexico in
1976. He joined the Los Alamos Scientific
Laboratory, New Mexico, in 1969, where
he began working in image and signal pro-
cessing in 1971. During 1978 and 1979 he
was a visiting professor at Heriot-Watt
University, Edinburgh, Scotland, where he
worked with both the university and indus-
try on image processing problems. In 1980 he joined the Electrical
and Computer Engineering Department at North Carolina State Uni-
versity, Raleigh. During 1988 and 1989 he was a visiting scientist at
the Eastman Kodak Company in Rochester, New York. Dr. Trus-
sell's teaching has included a wide variety of subjects in the signal
and image processing areas. His research interests include estima-
tion theory, signal and image restoration, accurate measurement
and reproduction of color. He is a past associate editor for the IEEE
Transactions on Acoustics, Speech, and Signal Processing and cur-
rently is an associate editor for the Signal Processing Letters. He
was a member and past chairman of the Image and Multidimen-
sional Digital Signal Processing Committee of the Signal Processing
Society of the IEEE and is a fellow of the IEEE.

Journal of Electronic Imaging / October 1996 / Vol. 5(4) / 489



	1 Introduction
	2 Scanner Model
	3 Least Squares and Principal Eigenvector
	4 Method of Projections onto Convex Sets
	5 Simulation Results
	6 Experimental Results
	7 Conclusions
	8 Appendix A: Model for Fluorescent Scanner
	9 Appendix B: Partial Knowledge of Illuminant
	10 Appendix C: Projections onto the Constraint
	References

