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Abstract. A set theoretic approach for the spectral characterization
of a color scanner is described. These devices usually employ three
channels to obtain a device dependent RGB (red, green, blue) im-
age. To display/print an image, the device dependent RGB values
must be correctly transformed to the color space of the target de-
vice. To determine accurate and efficient transformations for a num-
ber of devices, knowledge of the spectral sensitivity of the scanner
is essential. Direct measurement of the sensitivity requires a set of
expensive narrow band reflectances and is often infeasible. Meth-
ods that estimate the spectral sensitivity based on measurements
with typical reflectance samples are therefore of interest. Due to the
low dimensionality of the space of object reflectance spectra, this is
a highly ill-conditioned problem. As a result, conventional estimation
techniques that fail to take a priori knowledge into account perform
rather poorly on this problem. A set theoretic approach that incorpo-
rates available a priori knowledge into the estimation framework
yields better results. Results are presented for a simulated scanner
characterization problem and for an actual characterization to dem-
onstrate the increased accuracy compared with conventional
methods. © 1996 SPIE and IS&T.

1 Introduction

With increasing exchange of image data between differ
platforms, there has been a rising interest in transform
tions that translate color data obtained on one device i
the native color space of another device with minimal de
radation in color.† To this end, attempts are underway
standardize the mechanisms for specifying these trans
mations and for their inclusion in standard image forma
as device profiles.2 The creation of profiles for color scan
ners requires a characterization of these devices. Cali
tion schemes that attempt to transform the scanner data
a standardized device independent color space have b
studied extensively.3–6 However, the more fundamenta
problem of estimating the spectral sensitivity of the scann

*Current affiliation: Digital Imaging Technology Center, Xerox Corp., 800 Phillip
Rd., Webster, NY 14580. E-mail: sharma@wrc.xerox.com.

†For the purposes of this paper the knowledge of color standards and terminolo
not required. The interested reader can, however, refer to Ref. 1 for a tuto
introduction to color signal processing.
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has received only limited attention.7–10 The spectral char-
acterization can be used to determine the optimal transfor-
mation of the color data into the output device space11,12

instead of the suboptimal two-step procedure involving the
transformation to an intermediate device independent color
space. The spectral characterization can also be used for
estimating dye sensitivities from scans of photographic
prints13 and in more general color separation applications
aimed at high quality color hardcopy. It is also of indepen-
dent interest in gauging the colorimetric quality of the
scanner14 at the user’s end and can form the basis of hard-
ware improvements in the scanner.

2 Scanner Model

The output of a color scanner is a three-band image, typi-
cally in red, green and blue channels. Assuming that the
scanner sensors are linear and that the spatial response o
the scanner is the ideal 2-D impulse function,‡ the scanning
process can be modeled as

t ~ i !5E
2`

`

f i~l!u~l!r ~l!l ~l!dl1e~ i !

5E
2`

`

mi~l!r ~l!l ~l!dl1e~ i !, i51,2,3, ~1!

where f 1(l), f 2(l), and f 3(l) are the spectral transmit-
tances of the three color filters;u(l) is the sensitivity of
the detector used in the measurements;l (l) is the spectral
radiance of the illuminant;r (l) is the spectral reflectance
of the area being scanned;e ( i ) is the measurement noise,
mi(l)5 f i(l)u(l) is the product of filter transmittance and
detector sensitivity, andt ( i ) denotes the value obtained
from the i ’th channel.

s

gy is
rial

;
‡
The problem of determining the spatial response can be separated from
that of estimating the spectral sensitivity by using reasonable large color
patches for the spectral characterization.
Journal of Electronic Imaging / October 1996 / Vol. 5(4) / 479



-

t

Sharma and Trussell
If the spectra are all band-limited, they can be rep
sented in terms of their samples, and the integral can t
be approximated by a summation. If samples atN equis-
paced wavelengths are used, the scanning process ca
represented algebraically as

t ~ i !5rTLmi1e~ i !, i51,2,3, ~2!

wherer is theN31 vector of reflectance samples,L is an
N3N diagonal matrix with samples of the radiant spectru
of the illuminant along the diagonal, andmi is anN31
vector of samples of the product of thei ’th filter transmit-
tance and the detector sensitivity.

Reflectances encountered in scanned images are t
cally smooth functions15–17 of wavelength and can be
sampled with negligible aliasing using a 10-nm sampli
interval. The same is true of transmittances of typical filte
used in color scanners, detector sensitivities and incand
cent lamp spectra. However, a 10-nm sampling interva
inadequate for fluorescent lamps which have sharp em
sion lines in their spectra.18,19 A much smaller sampling
interval could be used in Eq.~2!, but this leads to a large
increase in the dimensionality of the problem with the a
tendant disadvantages of larger computational load a
greater ill-conditioning. For instance, if the visible regio
from 380 to 780 nm is used, a 10-nm sampling interv
leads toN541 samples whereas a 2-nm sampling~re-
quired for the accurate representation of a fluorescent lam!
would raise the dimensionality of the problem toN5201.

Fluorescent lamps are often used in desktop scanner
account of their higher efficiency and lower heat dissipati
compared with incandescent lamps. Hence, the problem
increased dimensionality~due to a high sampling rate! is
frequently encountered in practice. As a remedy for t
high sampling rate, it is possible to use a decomposition
fluorescent illuminant spectrum in terms of the smoo
spectrum emitted by the phosphor coating on the lamp
velope, and monochromatic spectral peaks correspond
to the emission lines of the gaseous vapor in the lamp.19–21

Appendix A describes the mechanism for incorporating t
illuminant decomposition into the scanner model. The
sulting scanner model in Eq.~26! of Appendix A has the
same form as Eq.~2! except that the illuminant matrixL is
replaced by the effective illuminant matrixLe , which is not
necessarily diagonal. Therefore, in the subsequent disc
sion, Eq.~2! is used with the understanding that if the illu
minant is a fluorescent lamp, either a high sampling rate
used ~2 nm in our discussion, which yieldsN5201! or
Le replacesL.

The spectral response of the scanner is given by
illuminant sensitivity products$Lmi% i51

3 for the three chan-
nels. For initial calibration, the individual quantities can b
measured before assembly, and the scanner sensitivity c
puted from those. However, such a calibration would de
riorate with time due to the aging of the components.22 In
addition, this calibration would represent a significant e
pense for these low cost devices and is rarely done. Fo
in situ characterization of the scanner, one has to estim
the sensitivities by using the scanner measurements fo
target comprised of samples with known reflectance sp
tra, $r k%k51

K ,
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~ i !5r k

TLmi1e~ i !, i51,2,3. ~3!

This set of equations can be written as,

t~ i !5RTLmi1e~ i !, ~4!

where tK31
( i ) 5@ t1

( i ) ,t2
( i ) . . . tK

( i )#T is the vector of measure-
ments from thei ’th channel, andR5@r1 ,r2 . . . rK# is the
matrix of reflectance spectra used in the measurements.

The problem of obtaining spectral characterization of the
scanner is now one of estimating$Lmi% i51

3 from the mea-
surement vectors$t(1),t(2),t(3)%. It is shown in Section 5
that an independent and direct measurement of the illumi-
nant improves the final estimates of the sensitivity consid-
erably. This can often be accomplished without much dif-
ficulty. For fluorescent lamps, a technique for obtaining the
decomposition of Eq.~23! of Appendix A from measure-
ments made with band-limited sensors has been demon
strated in Ref. 20.

The sensitivity estimation is considered for two indepen-
dent cases: the first in which the illuminant spectrum is
measured and knowna priori so that$mi% i51

3 needs to be
estimated, and the second in which there is noa priori
knowledge about the illuminant and the illuminant sensitiv-
ity products $Lmi% i51

3 are to be estimated. For a unified
treatment of both cases, it is convenient to write Eq.~4! in
the form

t~ i !5WTsi1e~ i !, i51,2,3, ~5!

where si5Lmi , W5R if the illuminant spectrum is not
knowna priori andsi5mi , andW5LTR if the illuminant
spectrum is knowna priori. Thus in either case,W repre-
sents the known information and$si% i51

3 represent the un-
known quantities to be estimated. Note here that the same
framework can be used when the scanner has a fluorescen
lamp and knowledge of the illuminant is limited to the lo-
cation of the spectral peaks. Appendix B provides the de-
tails for this case.

The vectors$s1 ,s2 ,s3% need to be estimated for charac-
terizing the scanner. Since the correlation between the dif-
ferent channel sensitivities is not known, the only tech-
niques considered here will be those which use only the
vector t( i ) to estimatesi . It will therefore be notationally
efficient to consider the estimation of the sensitivitysN31
given the measurements

tK315WTs1e, ~6!

with the understanding that the estimation procedure is per-
formed independently for the three channels.

3 Least Squares and Principal Eigenvector
Solutions

A simple procedure to estimate the scanner sensitivity
would be to solve the least-squares problem

ŝ5arg min
y

i t2WTyi , ~7!
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where the minimization is performed over all possibl
N31 vectors, andW is computed fromR as indicated
earlier.

The solution to this problem is readily obtained in term
of the Moore-Penrose pseudoinverse.23,24 In terms of the
singular value decomposition23 ~SVD!, W5ULVT, the
least-squares solution can be written as

ŝ5(
i51

P
~vi

Tt!

s i
ui , ~8!

whereP @<min(K,N)# is the rank ofW; $s i% i51
P are the

nonzero singular values ofW ~in decreasing order!; and
$ui% i51

N and $vi% i51
N are the columns ofU andV, respec-

tively ~the left and right singular vectors ofW!.
The least-squares approach suffers from a serious pr

tical problem in that the spectra of natural objects do n
have sufficient dimensionality to yield a good estimate o
s. If the noise is assumed to be white, the mean squar
estimation error for least squares is given by,

E$is2 ŝi2%5 (
i5P11

N

~ui
Ts!21(

i51

P se
2

s i
2 , ~9!

whereE denotes the expectation operator, andse
2 is the

noise variance. Typically, the matrix of reflectance spect
R is highly ill-conditioned and has only seven to eight sig
nificant singular values.15,25As a result, even at low levels
of noise the higher order singular values ofW are small
compared withse

2 , and the second summation in Eq.~9! is
large. Therefore, the least-squares solution is highly sen
tive to noise and yields extremely poor estimates of th
spectral sensitivity at noise levels typical in desktop sca
ners.

The sensitivity of the least-squares solution to noise
greatly reduced if only the singular vectors correspondin
to the significant singular values are used in the solutio
i.e., if the singular vectorsvi for which s i is small are not
included in the solution. If the singular values beyon
sP8 are considered insignificant, the estimate of the sen
tivity becomes

ŝ5(
i51

P8 ~vi
Tt!

s i
ui . ~10!

This solution, referred to as the principal eigenvector~PE!
solution,8,24,26,27is far less sensitive to noise than the leas
squares solution and is tested in Section 5.

4 Method of Projections onto Convex Sets

While the PE method is less sensitive to noise than th
least-squares solution, it still fails to take into account th
considerablea priori knowledge available from the physi-
cal situation. For instance, except for the illuminant, th
scanner sensitivity is a smooth function of wavelength
Hence if the illuminant is known, the functions
$sj5mj% j51

3 are smooth. However, if the illuminant has
sharp peaks in its spectrum, the principal eigenvectors
e
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W5LR will also have sharp peaks and will yield estimates
of $sj% j51

3 that have sharp spectral peaks. On the other
hand, if the illuminant is a fluorescent lamp whose spec-
trum is not known, the functions$sj5Lmj% j51

3 have sharp
spectral peaks, but for typical reflectance samples the prin-
cipal eigenvectors ofW5R will be smooth and therefore
yield only smooth estimates of$sj% j51

3 . In addition to this
knowledge of smoothness/impulsiveness, othera priori in-
formation such as non-negativity of the sensitivity func-
tions and boundedness can be incorporated in a set theo
retic estimate.28 Based on each constraint that the scanner
sensitivity must satisfy, a set can be defined in which the
true value of the sensitivity must lie. Any element in the
intersection of the constraint sets is then a feasible solution
and can be used as an estimate of the sensitivity. If only
closed convex constraint sets are used, a point in the inter-
section can be determined by projecting onto the sets in
cyclic order starting from an arbitrary point inRN. This is
the well-known method of successive projections onto con-
vex sets28,29~POCS!. If one hasn constraint sets, the POCS
estimate is the limit of the sequence$yk% defined recur-
sively by,

yk115Pn~Pn21~ . . .P2~P1~yk!! . . . !!, ~11!

wherey0 is an arbitrary starting point, andPi(z) denotes
the projection ofz onto thei ’th constraint set, defined as
the vector in thei ’th constraint set closest toz. The itera-
tive process of successive projections is guaranteed to con-
verge to a point in the intersection, provided the intersec-
tion is nonempty.29,30 The same convergence result holds
for several variants of the basic method that use relaxation/
parallelization to speed up convergence.31

Based on the physical nature of the problem and the
measurement model, it can be said that the following con-
straint sets can be used for the sensitivity functions:

1. The set of non-negative vectors

An5$yPRNu yi>0, ;1< i<N%. ~12!

2. The noise variance set

Ae5$yPRNu i t2WTyi2<n%, ~13!

where the upper boundn is determined from the sta-
tistics of the noise to ensure a reasonable confidence
level.* If the noise is assumed Gaussian,i t2WTyi2

is a chi-squared random variable withK degrees of
freedom. Usually,K is large enough for the central
limit theorem to apply and in that case, the 95% con-
fidence level is attained for32,33

n5Kse
2S11lim0.95A2

K D , ~14!

*A confidence interval would typically involve both a lower and an upper
bound, but in practice the other constraints ensure that the residual en-
ergy lies above the lower bound.
Journal of Electronic Imaging / October 1996 / Vol. 5(4) / 481
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where lim0.95 is the 95% confidence limit for the
standard normal distribution, andse

2 is the noise vari-
ance.

3. The noise outlier sets

Ao
i 5$yPRNu ut i2wi

Tyu<j% i5 1,2, . . .K, ~15!

wherewi is the i ’th column ofW and j'3 se en-
sures a 99% confidence level for Gaussian noise.

4. The passive response set

Ap5$yPRNu yi<1, ;1< i<N% ~16!

can be used if the illuminant is knowna priori, and
the combined effect of the passive filter and detec
responses is to be determined. Even if the illumina
is unknown or known only up to a constant sca
factor, the physical situation typically provides us a
upper bound of the form in Eq.~16!. This bound can
still be used though it may not be too tight. Mor
useful bounds can be established in terms of poss
deviations from a measured prototype.34 These would
vary over the wavelength range unlike the unifor
bound of Eq.~16!.

5. A smoothness constraint set can be used when
sensitivities$s% j51

3 are known to be smooth function
of wavelength. The set of smooth spectra can be
fined in terms of an upper bound on the energy in
high-pass filtered output

As5$yPRNu iHyi2<m%, ~17!

whereH represents the convolution operator for th
high-pass filter with impulse responseh 27 and
m>0 is chosen so as to impose the desired degree
smoothness. The filterh can be chosen in a numbe
of different ways depending on the nature of th
knowledge that is available regarding the smoot
ness. If an absolute bandlimit is known, a perfe
high-pass filter can be chosen withm50. Alternately,
if it is desirable to allow some energy in the high
pass region, filters that approximate derivatives
different orders can be used.35 Prototypes of the sen-
sitivity functions can then be used to estimate t
upper bound m.34,35 The Laplacian filter, h
5 (1,22,1)T, which approximates the second deriv
tive operation is one possible choice for the filter
the smoothness constraint.

6. A concave or unimodal set can be used when
color filters used are known to be unimodal. The s
of unimodal filters does not constitute a convex s
and therefore cannot be used in POCS. However, u
modality can be enforced in practice by requiring th
estimated vector to be concave over a certain wa
length range. In terms of the samples of the scan
sensitivity, this restriction can be imposed by requ
ing that the Laplacian approximation to the seco
derivative be nonpositive over a specified set of ind
ces. The corresponding sets can be defined as,

Ac
i5$yPRNu @Hy# i<0% iPI , ~18!
482 / Journal of Electronic Imaging / October 1996 / Vol. 5(4)
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whereH denotes the Laplacian filter,@z# i denotes the
i ’th component of the vectorz, andI is the set of
indices that defines the wavelength range over which
the sensitivity is known to be concave.

7. The set of vectors close to the human visual space
~HVS! can be used if it is known that the scanner
sensitivities were designed to approximate color mix-
ture curves, i.e., close to linear transformations of the
CIE color matching functions.36 The corresponding
set can be defined as,

Am5$yPRNu i~ I2Pv!yi2<k%, ~19!

wherePv denotes the orthogonal projection matrix
that projects onto the HVS14,37 and the upper bound
k is determined by the closeness of the sensitivity to
the HVS.

It can be readily verified that each of the constraint sets
just defined is convex and closed. The projection operators
for these constraint sets can be calculated using standard
nonlinear programming techniques38 and are tabulated in
Appendix C.

The POCS estimate is typically nonunique and depends
on the initial pointy0 chosen to start the iterations. Typi-
cally the converged solution is close to the initial point
chosen to commence the iterations.39 The global conver-
gence guaranteed by POCS can be used to incorporate im
precisea priori information into the estimation through a
proper choice of the initial estimate. The estimate to which
POCS converges may be appropriately perturbed to incor-
porate information not captured in the POCS framework,
and the algorithm repeated to obtain estimates that agree
better with the new information. A ‘‘more’’ unimodal esti-
mate can be obtained, for example, by repeating POCS
commencing with the concave hull of the original estimate.

5 Simulation Results

To compare the performance of the PE and the POCS es-
timators, simulations were conducted using the scanner
model of Eq.~2!. The WR-25 red, WR-40 green, and WR-
38a blue filters from the ‘‘Wratten’’ filter set were chosen
as the color filters. The detector response was assumed to
be uniform and UV~GG400! and IR ~KG4! cutoff filters
from Schott’s catalog of commercial glass filters40 were
used to ensure that the response is restricted to the visible
region of the spectrum. The spectrum of a fluorescent lamp
from an existing desktop scanner was used as the illumi-
nant. The illuminant spectrum is shown in Fig. 1.

For comparison of the different algorithms, the Kodak
Q60 target41 and the Munsell chart15 were used. The reflec-
tance spectra for the 240 blocks in the Kodak Q60 target
and the 64 Munsell chips were measured independently us-
ing a spectrophotometer. A randomly chosen subset con-
taining half of these, i.e.,K5152 spectra, was used as the
calibration target. The remaining 152 reflectances were
used as a test target. Note that the nature of the results o
this section does not change appreciably if a different or
somewhat smaller set of reflectances is used.
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Simulated noisy measurements of scanner RGB values
were made using the calibration target reflectances in the
model of Eq.~2!, where the noisee i was generated using a
Gaussian random number generator. The value of the nois
variance se

2 was calculated assuming a signal-to-noise
ratio* ~SNR! of 33 dB in conjunction with the definition

SNR ~dB!510 log10S iWTsi2

Kse
2 D . ~20!

In the principal eigenvector method,P858 was used for
this set of reflectances.†

Two sets of simulations were conducted. In the first ex-
periment no prior knowledge of the illuminant was as-
sumed. In the notation of Section 2, this corresponds to the
case where the estimated sensitivity is the product of the
illuminant and the optical path transmittance,si5Lmi , and
W5R. Since the illuminant is a fluorescent lamp with
sharp emission lines in its radiant spectrum, the scanne
sensitivity will also have sharp spectral peaks and therefore
a 2-nm sampling interval is necessary for the simulation.
This yields N5201 samples in the visible region from
380 to 780 nm. The noisy ‘‘measurements’’ and the
known matrix of target reflectance spectra were used in the
PE and the POCS methods to obtain estimates of the scan
ner sensitivity. Since in this case the sensitivity~which in-
cludes the fluorescent illuminant! is neither smooth nor
concave over a spectral region of appreciable spread, the

*The SNR was arrived at by actually estimating the noise level in a com-
mercial 8 bit/channel flatbed color scanner.

†The nature of the results does not change if any integer between 6 and
10 is used instead of 8.

‡While, it is known that the sensitivity has sharp peaks this information
cannot be readily incorporated in the POCS estimation scheme on ac
count of its nonconvex nature.

Fig. 1 Spectrum of illuminant used in simulations.
e

r

-

smoothness and concavity constraint sets were not used for
POCS.‡ The estimates for the scanner sensitivity for the
three channels are plotted in Fig. 2 for the PE method and
in Fig. 3 for the POCS method. For comparison both fig-
ures include plots of the actual sensitivities used in gener-
ating the simulated measurements. The actual sensitivities
are nonnegative functions with sharp spectral peaks. The
PE estimates are smooth and have negative lobes that are
physically impossible. The POCS estimates are also
smooth, but do not have any negative lobes due to the
imposed nonnegativity constraint. Thea priori information
in this case is rather limited, and hence POCS does not
perform significantly better than the PE method.

In the second simulation, the illuminant spectrum was
assumed to be knowna priori, so that only the optical path
transmittances needed to be estimated. In the notation of
Section 2, this corresponds to the case withsi5mi and
W5LR. For this case since the sensitivity is smooth and
unimodal, both the smoothness and concavity constraints
were used in POCS.

-

Fig. 2 PE estimate; illuminant unknown case.

Fig. 3 POCS estimate; illuminant unknown case.
Journal of Electronic Imaging / October 1996 / Vol. 5(4) / 483
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Two further subcases were considered in this simulati
to test the effect of the illuminant model of Eq.~23!. In the
first the sampling rate of 2 nm necessary for accurate sa
pling of the illuminant was used for the reflectance spec
and for the sensitivity, and therefore the dimensionality
the problem remainedN5201. In the second subcase, th
illuminant model described in Eqs.~24! to ~27! was used
with a 10-nm sampling for the reflectance spectra and t
sensitivity, reducing the dimensionality of the problem t
N541. The estimates obtained for the sensitivity function
of the three color channels with the 2-nm sampling a
shown in Fig. 4 for the PE method and in Fig. 5 for POCS
The corresponding results for the characterization using
illuminant model and 10-nm sampling are shown in Figs.
and 7, respectively. Note that the POCS estimates for
two different sampling rates are quite close and therefo
validate the model. The use of the model instead of t
higher sampling rate greatly reduces the dimensionality

Fig. 4 PE estimate; illuminant known case, 2-nm sampling.

Fig. 5 POCS estimate; illuminant known case, 2-nm sampling.
484 / Journal of Electronic Imaging / October 1996 / Vol. 5(4)
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the problem and leads to faster convergence~for POCS!
and, as shown later, more accurate estimates.

The PE and POCS estimates exhibit interesting differ-
ences. Since the illuminant has sharp peaks in its spectrum,
the left singular vectors ofW(5LR) are not smooth. This
remains true even when the sampling rate of 10 nm is used
in conjunction with the illuminant model. Therefore, as
noted in Section 4, the estimates of$s% j51

3 obtained by the
PE method@see Eq.~10!# also exhibit sharp peaks. Addi-
tionally, in both cases the PE estimates of the sensitivity
have large negative regions that are inconsistent with the
physical nature of the sensitivity. The POCS estimates
agree with all the constraints imposed and are therefore
nonnegative, smooth functions with concave regions
around the peaks. The difference in the estimates indicates
the utility of a priori information for the characterization.

To quantify the accuracy of the estimates, two different
error metrics were considered: the mean squared estimation

Fig. 6 PE estimate; illuminant known case, 10-nm sampling with
illuminant model.

Fig. 7 POCS estimate; illuminant known case, 10-nm sampling with
illuminant model.
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error and the error in predicted scanner RGB values. F
both estimation schemes, the mean squared estimation e
was computed~for each of the three channels! as the aver-
age squared difference between the actual value and
estimate of the sensitivity. The resulting numerical valu
are presented in Table 1. From the tabulation one can
that the performance of the PE and POCS methods is si
lar when the illuminant spectrum is not known and there
limited prior knowledge~first two rows of Table 1!. How-
ever, when the illuminant spectrum is knowna priori, the
performance of POCS improves radically while that of th
PE method does not. For the two subcases for the kno
illuminant case, POCS is significantly better than PE for th
2-nm sampling and much better for the 10-nm samplin
with the illuminant model.

For the computation of mean squared error in scann
RGB values, the test target was used in the model of Eq.~2!
with the noise term set to zero. Recall that the test targ
was composed of the 152 reflectance spectra of the Kod
Q60 target and the Munsell chips not used in the charact
ization process. Mean squared errors in scanner RGB v
ues were computed as the average squared difference
tween the ‘‘measurements’’ with the actual and estimat
sensitivities. These are tabulated in Table 2 for both es
mation schemes, for each of the three channels. The res
are significantly better than the estimated scanner SNR
cause of the absence of noise. However, it can be seen
the difference in the mean squared error~MSE! between
POCS and PE is significantly smaller than would be e
pected from the mean squared estimation errors in Table
The primary reason for this is that the correlation matrix fo

Table 1 Mean squared estimation error of spectra for PE and
POCS estimates.

Estimation Scheme

Mean Squared Error (dB)

Red Green Blue

Illuminant unknown
PE 2 nm 26.88 29.54 25.01

POCS 2 nm 213.56 29.74 25.28

Illuminant known
PE 2 nm 214.64 28.45 26.23

POCS 2 nm 215.11 215.19 212.94

PE 10 nm 215.74 210.39 212.01

POCS 10 nm 215.47 217.62 216.74

Table 2 Mean squared error in scanner RGB values obtained from
the PE and POCS estimates.

Estimation Scheme

Mean Squared Error (dB)

Red Green Blue

Illuminant unknown
PE 2 nm 239.12 247.98 244.79

POCS 2 nm 228.31 233.24 243.29

Iluminant known
PE 2 nm 248.16 248.03 248.01

POCS 2 nm 242.02 242.52 243.13

PE 10 nm 249.81 247.90 248.90

POCS 10 nm 243.81 244.22 239.86
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the reflectance spectra used in the test is close to the corre
lation matrix of the reflectance spectra used in the PE esti-
mation procedure.

To examine this more closely, consider the case when
the illuminant is knowna priori. LetRtestdenote the matrix
with theK test test reflectance spectra as its columns, and in
the notation of Section 2, letWtest5LRtest. The MSE in
scanner RGB values is given by

1

K test
iWtest

T s2Wtest
T ŝi25

1

K test
~s2 ŝ!TWtestWtest

T ~s2 ŝ!. ~21!

The matrix (1/K test)WtestWtest
T is the sample correlation ma-

trix for the test spectra. In the notation of Section 3 the
estimation error for the PE method can be written as

s2 ŝ5 (
i5P811

N

~ui
Ts!ui2(

i51

P8 1

s i
~vi

Te!ui . ~22!

For typical SNRs and appropriate choice ofP8, the first
term is dominant and therefore the error in the PE estimate
lies largely in the space orthogonal to that spanned by the
P8 principal eigenvectors ofWWT. Since the autocorrela-
tion matrices (1/K)WWT and (1/K test)WtestWtest

T are close,
the spaces spanned by their principal eigenvectors are also
close, and therefore the error in the PE estimate is largely
orthogonal to the principal eigenvectors of
(1/K test)WtestWtest

T . Consequently the quadratic form in Eq.
~21! is small.

Unfortunately, as mentioned earlier, it is a well docu-
mented fact that reflectance spectra encountered in the rea
world can be modeled fairly accurately using a few basis
vectors.15–17 Hence the preceding problem will persist for
all spectra that can be used in a physical experiment. MSE
in scanner RGB values is therefore not a reliable indicator
of estimation accuracy for this problem. For simulation, the
problem could be circumvented by using a set of extremely
narrow-band reflectances for our test ‘‘measurements,’’ but
the results in such a case would be identical to the mean
squared estimation errors already tabulated in Table 1. Un-
fortunately, MSE in scanner RGB values is often the only
criterion available for evaluating the characterization of an
actual scanner where the true sensitivities are not known.

Note also that in Ref. 7 the sensitivity of a transmissive
scanner was determined using smoothed least squares an
minimum mean squared error estimates. However, the
spectral reflectances of the calibration targets considered in
the simulations here are rather smooth in comparison to the
narrow-band transmission filters used in Ref. 7. Since
narrow-band interferometric reflectances are expensive and
sensitive to orientation, the targets considered here are
more realistic and useful in a practical scenario.

6 Experimental Results

In this section the PE and POCS methods are compared for
the characterization of an HP ScanjetIIc scanner. The scan-
ner utilizes a fluorescent lamp whose relative spectral radi-
Journal of Electronic Imaging / October 1996 / Vol. 5(4) / 485
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ance was measured using a spectroradiometer* and is
shown in Fig. 1. For the purposes of characterization t
knowledge of the scanner lamp was used for the POCS a
the PE methods with a 10-nm sampling and the illumina
model of Section 2. The Kodak Q60 target and the Muns
chips used in the simulations of the last section we
scanned to obtain scanner RGB measurements.† As in the
simulations, half of the scanned blocks were used as a c
bration target and the other half were used as a test tar
For the PE methodP56 was used as higher values gav
rise to estimates with very large negative lobes. For t
POCS method, the noise variance, outlier, nonnegativi
smoothness, and local concavity constraints were used.
estimated SNR of 33 dB was used along with 95 an
99% confidence levels for defining the noise variance a
the outlier sets.

The estimates of the scanner sensitivity for the P
method are plotted in Fig. 8 and for the POCS method t
corresponding estimates are in Fig. 9. The performance
the methods is similar to that in the simulations. The P
method yields estimates that have sharp peaks and la
negative regions, while the POCS method yields estima
that satisfy constraints imposed on the sensitivities bas
on prior knowledge.

Since the true sensitivities for the scanner were n
known, the mean squared estimation error could not
computed. As indicated in the last section, MSEs in scann
RGB values obtained using typical reflectance targets
not reliable indicators of estimation accuracy. However, t
validity of the POCS estimates can be tested by compar
MSEs in scanner RGB values for a target different from th

*It was observed that the scanner lamp exhibits a warm-up time dur
which its spectrum undergoes a significant change. Hence, for the sca
lamp measurements and for the scans, a sufficient warm-up was allow

†The scanner employs an internal matrixing of the data to obtain tristim
lus values corresponding to the NTSC primaries. However, such a m
trixing would invalidate the positivity constraint that is employed in
POCS and hence raw device data was used in this work.

Fig. 8 PE estimates for HP ScanjetIIc.
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calibration target with the imposed constraints in POCS.
For this purpose, average squared differences between
scanner measurements and model predictions of scanner
RGB values~using estimates of scanner sensitivities! were
computed for both estimation schemes over the test target.
These are tabulated in Table 3. From the tabulation it can
be seen that the two estimates give nearly the same perfor-
mance as far as prediction of device tristimulus values is
concerned. The mean squared tristimulus errors are in
agreement with the estimated SNR of 33 dB, which was
used in the POCS estimation procedure.

Since MSE in scanner RGB values does not correlate
well with perceptual measures of color difference, it may
be argued that the error in a perceptually uniform color
space such as the CIEL* a* b* space36 is a more relevant
metric for comparing the estimates. Toward this end the
knowledge of scanner sensitivity may be used to determine
‘‘optimal’’ transformations that transform scanner RGB to
the CIEL* a* b* space.11 However, such a transformation
involves error not only due to the erroneous estimates of
scanner sensitivity, but also due to the fact that the sensor
responses are not colorimetric~do not span the human vi-
sual subspace1!. For present commercial scanners the con-
tribution due to the noncolorimetric nature dominates that
due to the estimation errors.42 Hence, errors in the percep-
tually uniform space are ineffectual for comparing the per-
formance of the estimation schemes for current desktop
scanners. However, as scanners become more colorimetric
the significance of a better estimate of the sensitivity will
increase.

ing
nner
ed.

u-
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Fig. 9 POCS estimates for HP ScanjetIIc.

Table 3 MSE for the tristimulus values obtained from the PE and
POCS estimates for HP ScanjetIIc.

Estimate

MSE (dB)

Red Green Blue

PE 233.99 231.82 232.18

POCS 233.80 230.88 232.30
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Set theoretic estimation in color scanner characterization
7 Conclusions

This paper investigated the use of PE and POCS estimati
methods for the problem of color scanner characterizatio
A useful model was introduced for representing fluoresce
illuminants accurately and efficiently, which greatly re-
duced the dimensionality of the problem. The two method
were compared through simulations and for an actual sca
ner characterization problem. The results indicate that whe
significanta priori information is available, the method of
POCS outperforms the PE method, yielding significantl
better estimates of the scanner sensitivities. The princip
gains of the POCS method stem from the fact that it a
tempts to determine a smooth and continuous function d
termining the sensitivity as opposed to the PE scheme th
estimates the samples of the sensitivity as independent p
rameters. The fluorescent illuminant model plays an impo
tant role in the problem by effectively increasing the avail
ablea priori information about the sensitivity.

8 Appendix A: Model for Fluorescent Scanner
Illuminant

In this appendix, an efficient decomposition for fluorescen
illuminant spectra is described and incorporated into th
scanner model. The spectral sensitivities in the resultin
model for the scanner’s operation have a much lower d
mensionality than the model based on a high spectral sam
pling rate.

A fluorescent lamp spectrum can be represented as t
sum of a continuous spectrum emitted by the phospho
and weighted impulses corresponding to the emissio
lines,19–21

l ~l!5c~l!1 (
k51

q

akd~l2lk! ~23!

where c(l) is the smooth and continuous~band-limited!
spectrum emitted by the phosphors,$l1 ,l2 . . .lq% are the
locations of theq spectral peaks,ak is the strength of the
spectral line at wavelengthlk ~emitted by the vapor in the
lamp!, and d() denotes the Dirac delta function. The
smooth spectrum can be represented by its samples
10-nm increments, thus yielding a representation of th
whole spectrum in terms of these samples along with th
strengths$ak%k51

q and the locations$lk%k51
q of the spectral

peaks. Using this model greatly reduces the dimensionali
of the problem compared with the uniform sampling case
and the scanner Eq.~1! now becomes

t ~ i !5rTLcmi1 (
k51

q

akmi~lk!r ~lk!1e~ i !, i51,2,3, ~24!

whereLc is now theN3N diagonal matrix with samples of
the smooth part of the illuminant spectrum,c(l), and the
other terms are as before.

Equation~24! can be further simplified by noting that
sincer (l) andmi(l) are band-limited, their values at the
peak locations can be written as interpolated values of the
samples,
on
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mi~lk!5gk
Tmi k51,2, . . . ,q,

r ~lk!5gk
Tr k51,2, . . . ,q,

wheregk is the vector of interpolation weights that gives
the value atlk from the equispaced samples. Substitution
in Eq. ~24! now yields,

t ~ i !5rTLcmi1 (
k51

q

akmi
Tgkgk

Tr1e~ i ! ~25!

5rTLemi1e~ i !, i51,2,3 , ~26!

where

Le5Lc1 (
k51

q

akgkgk
T ~27!

is the effective illuminant matrix.

9 Appendix B: Partial Knowledge of Illuminant
Case

This appendix demonstrates how the framework of Eq.~5!
can be used when the the scanner has a fluorescent lam
and knowledge of the illuminant is limited to the location
of the spectral peaks. While physically, the model of Eq.
~26! of Appendix A is still valid, the effective illuminant
matrixLe in Eq. ~27! is not known, and therefore cannot be
used. Note, however, that Eq.~25! can be rewritten as
t( i )5WTsi1e( i ), i51,2,3, where

W5F R
GTRG , si5F Lcmi

DaG
Tmi

G , ~28!

whereG5@g1g2 . . .gq# andDa is a diagonal matrix with
$ak%k51

q as the diagonal. Note that, as in Eq.~5!, W repre-
sents the known information and$si% i51

3 represent the un-
known quantities to be estimated. Also observe thatLcmi is
an N31 vector of uniformly spaced samples of
c(l)mi(l), and therefore in the set theoretic estimation
scheme a smoothness constraint can be imposed on the co
responding components ofsi .

10 Appendix C: Projections onto the Constraint
Sets

The projection ofz P RN onto a convex closed setA is
defined as

PA~z!5arg min
yPA

iy2zi2
2. ~29!

The projections ontoAn andAp are trivial. For the other
constraint sets defined above the projections for a vecto
outside the constraint set are summarized next.

1. Projection onto Ae : For z¹Ae the projection onto
Ae is calculated most readily using the SVD ofW.
Using the notation of Section 3 the projection is
Journal of Electronic Imaging / October 1996 / Vol. 5(4) / 487
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PAe
~z!5z1(

i51

P
ts i

~11ts i
2!

~vi
te0!ui , ~30!

where e05t2WTz, and the Kuhn-Tucker
parameter38 t is the positive root of

(
i51

P
~vi

Te0!
2

~11ts i
2!2

1 (
i5P11

K

~vi
Te0!

22n50. ~31!

SinceAm has the same form asAe , the projection
ontoAm is obtained from the preceding equations b
replacingW, P, t, andn by (I2Pv), 3, 0, andk,
respectively.

2. Projection onto Ao
i : The projectionz¹Ao

i ontoAo
i is

given by43

PA
o
i ~z!5z1gwi , ~32!

wherewi is the i ’th column ofW, and

g55
e0i2j

iwi i2
, e0i.j

e0i1j

iwi i2
, e0i,2j,

~33!

wheree0i is the i ’th component ofe05t2WTz.

3. Projection onto As : The projectionx of z¹As onto
As is given by35,43

X~k!5
Z~k!

~11tuH~k!u2!
k5 0,1,...N21, ~34!

whereY(k) denotes the discrete Fourier transform
~DFT! of y andt is the positive root of

(
k50

N21 uZ~k!u2uH~k!u2

~11tuH~k!u2!2
2Nm5 0. ~35!

Once X(k) is known x is readily found using the
inverse DFT.

4. Projection onto Ac
i : The projection ofz onto Ac

i is
given by

x5z2
hi
Tz

ihi i2
hi , ~36!

wherehi is the i ’th row of H or the ~zero padded!
impulse response circularly shifted (i21) times.
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